--- title: "Complex PK/PD models from literature" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Complex PK/PD models from literature} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, results='asis', echo=F, message=F, warning=F} if (campsis::onCran()) { cat("This vignette was not built on CRAN. Please check out the online version [here](https://calvagone.github.io/campsis.doc/articles/v14_complex_pkpd_models.html).") knitr::knit_exit() } ``` ```{r, results='hide', echo=F, message=F, warning=F} library(campsis) ``` This vignette intends to demonstrate that CAMPSIS can be used to implement almost any PK/PD model, including complex ones. ### Filgrastim PK/PD model Load the filgrastim PK/PD model from the model library as follows. Please note that this model was translated from NONMEM code. The original model file can be found [here](http://repository.ddmore.eu/model/DDMODEL00000077) on the DDMORE repository. Eventually, this model was updated with the final parameters from the corresponding publication ([Krzyzanski et al., 2010](https://pubmed.ncbi.nlm.nih.gov/20881223/)). ```{r} pkpd <- model_suite$literature$filgrastim_pkpd_krzyzanski pkpd ``` Let's create a simple demonstration dataset of 250 subjects: ```{r} baseDataset <- Dataset(250) %>% add(Covariate("BAS", 0.02)) %>% add(Covariate("WT", UniformDistribution(50, 100))) %>% add(DoseAdaptation("WT*AMT")) %>% # per kilo dosing add(Observations(0:216)) %>% add(Covariate("ROUT", 0)) # subcutaneous route (SC) ``` Assume we want to compare the following subcutaneous administrations of filgrastim: - 2.5 μg/kg QD for a week - 5 μg/kg QD for a week - 10 μg/kg QD for a week We define the following scenarios: ```{r} scenarios <- Scenarios() %>% add(Scenario("2.5 μg/kg SC", dataset=~.x %>% add(Bolus(time=0, amount=2.5, compartment=1, ii=24, addl=6)))) %>% add(Scenario("5 μg/kg SC", dataset=~.x %>% add(Bolus(time=0, amount=5, compartment=1, ii=24, addl=6)))) %>% add(Scenario("10 μg/kg SC", dataset=~.x %>% add(Bolus(time=0, amount=10, compartment=1, ii=24, addl=6)))) ``` A quick simulation gives us the plasma concentration of filgrastim, as well as the absolute neutrophil count (ANC): ```{r filgrastim_pkpd_model, fig.align='center', fig.height=6, fig.width=8, message=F} library(ggplot2) results <- pkpd %>% simulate(dataset=baseDataset, scenarios=scenarios, seed=1) results <- results %>% dplyr::mutate(SCENARIO=factor(SCENARIO, levels=unique(SCENARIO))) p1 <- shadedPlot(results, "CP", "SCENARIO") + facet_wrap(~SCENARIO) + scale_y_log10(breaks=c(.01,.1,1,10,100)) + ylab("G-CSF Serum Concentration (ng/mL)") p2 <- shadedPlot(results, "A_14", "SCENARIO") + facet_wrap(~SCENARIO) + ylab("ANC (10^3 cells/μL)") gridExtra::grid.arrange(p1, p2, nrow=2) ```