--- title: "Scenarios" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Scenarios} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, results='asis', echo=F, message=F, warning=F} if (campsis::onCran()) { cat("This vignette was not built on CRAN. Please check out the online version [here](https://calvagone.github.io/campsis.doc/articles/v11_scenarios.html).") knitr::knit_exit() } ``` ```{r, results='hide', echo=F, message=F, warning=F} library(campsis) ``` This vignette shows how scenarios can be implemented. ### Simulate several protocols at once Using treatment arms: ```{r several_protocols_with_arms, fig.align='center', fig.height=4, fig.width=8, message=F} model <- model_suite$nonmem$advan4_trans4 arm1 <- Arm(subjects=3, label="1000 mg SD") %>% add(Bolus(time=0, 1000)) %>% add(Observations(times=seq(0, 24, by=0.1))) arm2 <- Arm(subjects=5, label="1500 mg SD") %>% add(Bolus(time=0, 1500)) %>% add(Observations(times=seq(0, 24, by=0.1))) arm3 <- Arm(subjects=10, label="2000 mg SD") %>% add(Bolus(time=0, 2000)) %>% add(Observations(times=seq(0, 24, by=0.1))) results <- model %>% simulate(dataset=Dataset() %>% add(c(arm1, arm2, arm3)), seed=1) spaghettiPlot(results, "CONC", "ARM") + ggplot2::facet_wrap(~ARM) ``` Using scenarios: ```{r several_protocols_with_scenarios, fig.align='center', fig.height=4, fig.width=8, message=F} model <- model_suite$nonmem$advan4_trans4 dataset <- Dataset() %>% add(Observations(times=seq(0, 24, by=0.1))) scenarios <- Scenarios() %>% add(Scenario("1000 mg SD", dataset=~.x %>% setSubjects(3) %>% add(Bolus(time=0, 1000)))) %>% add(Scenario("1500 mg SD", dataset=~.x %>% setSubjects(5) %>% add(Bolus(time=0, 1500)))) %>% add(Scenario("2000 mg SD", dataset=~.x %>% setSubjects(10) %>% add(Bolus(time=0, 2000)))) results <- model %>% simulate(dataset=dataset, scenarios=scenarios, seed=1) spaghettiPlot(results, "CONC", "SCENARIO") + ggplot2::facet_wrap(~SCENARIO) ``` ### Make a model parameter vary Assume we want to test different values of `THETA_KA`: ```{r scenarios_make_theta_ka_vary, fig.align='center', fig.height=4, fig.width=8, message=F} model <- model_suite$nonmem$advan4_trans4 ds <- Dataset(50) %>% add(Bolus(time=0, amount=1000)) %>% add(Observations(times=seq(0, 24, by=0.1))) scenarios <- Scenarios() %>% add(Scenario("THETA_KA=1", model=~.x %>% replace(Theta(name="KA", value=1)))) %>% add(Scenario("THETA_KA=3", model=~.x %>% replace(Theta(name="KA", value=3)))) %>% add(Scenario("THETA_KA=6", model=~.x %>% replace(Theta(name="KA", value=6)))) results <- model %>% simulate(dataset=ds, scenarios=scenarios, seed=1) shadedPlot(results, "CONC", "SCENARIO") ``` ### Compare different distributions Assume we want to compare different distributions of body weight `BW`: ```{r scenarios_compare_bw_distributions , fig.align='center', fig.height=6, fig.width=8, message=F} model <- model_suite$nonmem$advan1_trans2 %>% replace(Equation("CL", "THETA_CL*exp(ETA_CL)*pow(BW/70, 0.75)")) %>% disable("IIV") ds <- Dataset(50) %>% add(Bolus(time=0, amount=1000)) %>% add(Observations(times=seq(0, 24, by=0.1))) %>% add(Covariate("BW", 70)) scenarios <- Scenarios() %>% add(Scenario("Constant BW")) %>% add(Scenario("BW ∼ Uniform distribution", dataset=~.x %>% replace(Covariate("BW", UniformDistribution(min=60, max=80))))) %>% add(Scenario("BW ∼ Normal distribution", dataset=~.x %>% replace(Covariate("BW", NormalDistribution(mean=70, sd=10))))) results <- model %>% simulate(dataset=ds, scenarios=scenarios, seed=1) shadedPlot(results, "CONC", "SCENARIO") + ggplot2::facet_wrap(~SCENARIO, ncol=1) ```