--- title: "Variability levels" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Variability levels} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r, results='asis', echo=F, message=F, warning=F} if (campsis::onCran()) { cat("This vignette was not built on CRAN. Please check out the online version [here](https://calvagone.github.io/campsis.doc/articles/v02_uncertainties.html).") knitr::knit_exit() } ``` ```{r, results='hide', echo=F, message=F, warning=F} library(campsis) ``` ### Simulate with all variabilities Let's use a simple 1-compartment model with absorption compartment to illustrate the different levels of variabilities. ```{r} refModel <- model_suite$nonmem$advan2_trans2 refModel ``` We're going to use a very basic dataset. 1000 mg QD shall be administered for a week. ```{r} ds <- Dataset(25) %>% add(Bolus(time=0, amount=1000, ii=24, addl=6)) %>% add(Observations(times=seq(0,24*7,by=4))) ``` All subjects are different due to IIV and RUV. ```{r uncertainties_all_enabled , fig.align='center', fig.height=4, fig.width=8, message=F} results <- refModel %>% simulate(dataset=ds, seed=1) spaghettiPlot(results, "CONC_ERR") ``` ### Simulate without RUV Disabling RUV is done as follows: ```{r} model <- refModel %>% disable(c("RUV")) model@parameters ``` In that case, CONC_ERR (the observed concentration) is identical as CONC (the model-simulated plasma concentration). ```{r uncertainties_no_ruv_y , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds, seed=1) spaghettiPlot(results, "CONC_ERR") ``` ```{r uncertainties_no_ruv_cp , fig.align='center', fig.height=4, fig.width=8, message=F} spaghettiPlot(results, "CONC") ``` ### Simulate without RUV and IIV Disabling RUV and IIV is done as follows: ```{r} model <- refModel %>% disable(c("IIV", "RUV")) model@parameters ``` Now, the typical profile is shown for all subjects. ```{r uncertainties_no_ruv_no_iiv , fig.align='center', fig.height=4, fig.width=8, message=F} results <- model %>% simulate(dataset=ds, seed=1) spaghettiPlot(results, "CONC_ERR") ```