Package 'caRamel'

Title: Automatic Calibration by Evolutionary Multi Objective Algorithm
Description: The caRamel optimizer has been developed to meet the requirement for an automatic calibration procedure that delivers a family of parameter sets that are optimal with regard to a multi-objective target (Monteil et al. <doi:10.5194/hess-24-3189-2020>).
Authors: Nicolas Le Moine [aut], Celine Monteil [aut], Frederic Hendrickx [ctb], Fabrice Zaoui [aut, cre], Alban de Lavenne [ctb]
Maintainer: Fabrice Zaoui <[email protected]>
License: GPL-3 | file LICENSE
Version: 1.4
Built: 2024-11-11 07:27:06 UTC
Source: CRAN

Help Index


caRamel optimizer

Description

Automatic Calibration by Evolutionary Multi Objective Algorithm

Details

caRamel is a package for multi-objective optimization of complex environmental models.

The algorithm is a hybrid of the MEAS algorithm (Efstratiadis and Koutsoyiannis, 2005) by using the directional search method based on the simplexes of the objective space and the epsilon-NGSA-II algorithm with the method of classification of the parameter vectors archiving management by epsilon-dominance (Reed and Devireddy, 2004).

The main function of the package is caRamel().

This function uses all the other functions of the package.

An example of an hydrological optimization is available on the following presentation: useR! 2019

Author(s)

Fabrice Zaoui, Nicolas Le Moine, Celine Monteil (EDF R&D - LNHE)

References

Efstratiadis, A. and Koutsoyiannis, D. (2005) The multi-objective evolutionary annealing-simplex method and its application in calibration hydrological models, in EGU General Assembly 2005, Geophysical Research Abstracts, Vol. 7, Vienna, 04593, European Geophysical Union. doi:10.13140/ RG.2.2.32963.81446.

Le Moine, N. (2009) Description d’un algorithme génétique multi-objectif pour la calibration d’un modèle pluie-débit (in French). Post-Doctoral Status Rep. 2, UPMC/EDF, 13 pp.

Reed, P. and Devireddy, D. (2004) Groundwater monitoring design: a case study combining epsilon-dominance archiving and automatic parameterization for the NSGA-II, in Coello-Coello C, editor. Applications of multi-objective evolutionary algorithms, Advances in natural computation series, vol. 1, pp. 79-100, World Scientific, New York. doi:10.1142/9789812567796_0004.


Box numbering for each points individual of the population

Description

This function returns a box number for each points individual of the population

Usage

boxes(points, prec)

Arguments

points

: matrix of the objectives

prec

: (double, length = nobj) desired accuracy for the objectives (edges of the boxes)

Value

vector of numbers for the boxes. boxes[i] gives the number of the box containing points[i].

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
points <- matrix(rexp(200), 100, 2)
prec <- c(1.e-3, 1.e-3)
# Call the function
res <- boxes(points, prec)

MAIN FUNCTION: multi-objective optimizer

Description

Multi-objective optimizer. It requires to define a multi-objective function (func) to calibrate the model and bounds on the parameters to optimize.

Usage

caRamel(
  nobj,
  nvar,
  minmax,
  bounds,
  func,
  popsize,
  archsize,
  maxrun,
  prec,
  repart_gene = c(5, 5, 5, 5),
  gpp = NULL,
  blocks = NULL,
  pop = NULL,
  funcinit = NULL,
  objnames = NULL,
  listsave = NULL,
  write_gen = FALSE,
  carallel = 1,
  numcores = NULL,
  graph = TRUE,
  sensitivity = FALSE,
  verbose = TRUE,
  worklist = NULL
)

Arguments

nobj

: (integer, length = 1) the number of objectives to optimize (nobj >= 2)

nvar

: (integer, length = 1) the number of variables

minmax

: (logical, length = nobj) the objective is either a minimization (FALSE value) or a maximization (TRUE value)

bounds

: (matrix, nrow = nvar, ncol = 2) lower and upper bounds for the variables

func

: (function) the objective function to optimize. Input argument is the number of parameter set (integer) in the x matrix. The function has to return a vector of at least 'nobj' values (Objectives 1 to nobj are used for optimization, values after nobj are recorded for information.).

popsize

: (integer, length = 1) the population size for the genetic algorithm

archsize

: (integer, length = 1) the size of the Pareto front

maxrun

: (integer, length = 1) the max. number of simulations allowed

prec

: (double, length = nobj) the desired accuracy for the optimization of the objectives

repart_gene

: (integer, length = 4) optional, number of new parameter sets for each rule and per generation

gpp

: (integer, length = 1) optional, calling frequency for the rule "Fireworks"

blocks

(optional): groups for parameters

pop

: (matrix, nrow = nset, ncol = nvar or nvar+nobj ) optional, initial population (used to restart an optimization)

funcinit

(function, optional): the initialization function applied on each node of cluster when parallel computation. The arguments are cl and numcores

objnames

(optional): names of the objectives

listsave

(optional): names of the listing files. Default: None (no output). If exists, fields to be defined: "pmt" (file of parameters on the Pareto Front), "obj" (file of corresponding objective values), "evol" (evolution of maximum objectives by generation). Optional field: "totalpop" (total population and corresponding objectives, useful to restart a computation)

write_gen

: (logical, length = 1) optional, if TRUE, save files 'pmt' and 'obj' at each generation (FALSE by default)

carallel

: (integer, length = 1) optional, do parallel computations? (0: sequential, 1:parallel (default) , 2:user-defined choice)

numcores

: (integer, length = 1) optional, the number of cores for the parallel computations (all cores by default)

graph

: (logical, length = 1) optional, plot graphical output at each generation (TRUE by default)

sensitivity

: (logical, length = 1) optional, compute the first order derivatives of the pareto front (FALSE by default)

verbose

: (logical, length = 1) optional, verbosity mode (TRUE by default)

worklist

: optional values to be transmitted to the user's function (not used)

Details

The optimizer was originally written for Scilab by Nicolas Le Moine. The algorithm is a hybrid of the MEAS algorithm (Efstratiadis and Koutsoyiannis (2005) <doi:10.13140/RG.2.2.32963.81446>) by using the directional search method based on the simplexes of the objective space and the epsilon-NGSA-II algorithm with the method of classification of the parameter vectors archiving management by epsilon-dominance (Reed and Devireddy <doi:10.1142/9789812567796_0004>). Reference : "Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm" Celine Monteil (EDF), Fabrice Zaoui (EDF), Nicolas Le Moine (UPMC) and Frederic Hendrickx (EDF) June 2020 Hydrology and Earth System Sciences 24(6):3189-3209 DOI: 10.5194/hess-24-3189-2020 Documentation : "Principe de l'optimiseur CaRaMEL et illustration au travers d'exemples de parametres dans le cadre de la modelisation hydrologique conceptuelle" Frederic Hendrickx (EDF) and Nicolas Le Moine (UPMC) Report EDF H-P73-2014-09038-FR

Value

List of seven elements:

success

return value (logical, length = 1) : TRUE if successfull

parameters

Pareto front (matrix, nrow = archsize, ncol = nvar)

objectives

objectives of the Pareto front (matrix, nrow = archsize, ncol = nobj+nadditional)

derivatives

list of the Jacobian matrices of the Pareto front if the sensitivity parameter is TRUE or NA otherwise

save_crit

evolution of the optimal objectives

total_pop

total population (matrix, nrow = popsize+archsize, ncol = nvar+nobj+nadditional)

gpp

the calling period for the third generation rule (independent sampling with a priori parameters variance)

Author(s)

Fabrice Zaoui - Celine Monteil

Examples

# Definition of the test function
viennet <- function(i) {
  val1 <- 0.5*(x[i,1]*x[i,1]+x[i,2]*x[i,2])+sin(x[i,1]*x[i,1]+x[i,2]*x[i,2])
  val2 <- 15+(x[i,1]-x[i,2]+1)*(x[i,1]-x[i,2]+1)/27+(3*x[i,1]-2*x[i,2]+4)*(3*x[i,1]-2*x[i,2]+4)/8
  val3 <- 1/(x[i,1]*x[i,1]+x[i,2]*x[i,2]+1) -1.1*exp(-(x[i,1]*x[i,1]+x[i,2]*x[i,2]))
  return(c(val1,val2,val3))
}
# Number of objectives
nobj <- 3
# Number of variables
nvar <- 2
# All the objectives are to be minimized
minmax <- c(FALSE, FALSE, FALSE)
# Define the bound constraints
bounds <- matrix(data = 1, nrow = nvar, ncol = 2)
bounds[, 1] <- -3 * bounds[, 1]
bounds[, 2] <- 3 * bounds[, 2]

# Caramel optimization
results <-
  caRamel(nobj = nobj,
          nvar = nvar,
          minmax =  minmax,
          bounds = bounds,
          func = viennet,
          popsize = 100,
          archsize = 100,
          maxrun = 500,
          prec = matrix(1.e-3, nrow = 1, ncol = nobj),
          carallel = 0)

Extrapolation along orthogonal directions to the Pareto front in the space of the objectives

Description

gives n new candidates by extrapolation along orthogonal directions to the Pareto front in the space of the objectives

Usage

Cextrap(param, crit, directions, longu, n)

Arguments

param

: matrix [ NPoints , NPar ] of already evaluated parameters

crit

: matrix [ Npoints , NObj ] of associated criteria

directions

: matrix [ NDir, 2 ] the starting and ending points of the candidate vectors

longu

: matrix [ NDir , 1 ] giving the length of each segment thus defined in the OBJ space (measure of the probability of exploring this direction)

n

: number of new vectors to generate

Value

xnew : matrix [ n , NPar ] of new vectors

pcrit : matrix [ n , NObj ] estimated positions of new sets in the goal space

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
param <- matrix(rexp(100), 100, 1)
crit <- matrix(rexp(200), 100, 2)
directions <- matrix(c(1,3,2,7,13,40), nrow = 3, ncol = 2)
longu <- runif(3)
n <- 5
# Call the function
res <- Cextrap(param, crit, directions, longu, n)

Interpolation in simplexes of the objective space

Description

proposes n new candidates by interpolation in simplexes of the objective space

Usage

Cinterp(param, crit, simplices, volume, n)

Arguments

param

: matrix [ NPoints , NPar ] of already evaluated parameters

crit

: matrix [ Npoints , NObj ] of associated criteria

simplices

: matrix [ NSimp , NObj+1 ] containing all or part of the triangulation of the space of the objectives

volume

: matrix [ NSimp , 1 ] giving the volume of each simplex (measure of the probability of interpolating in this simplex)

n

: number of new vectors to generate

Value

xnew : matrix [ n , NPar ] of new vectors

pcrit : matrix [ n , NObj ] estimated positions of new sets in the goal space

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
param <- matrix(rexp(100), 100, 1)
crit <- matrix(rexp(200), 100, 2)
simplices <- matrix(c(15,2,1,15,22,1,18,15,2,17,13,14), nrow = 4, ncol = 3)
volume <- runif(4)
n <- 5
# Call the function
res <- Cinterp(param, crit, simplices, volume, n)

Recombination of the sets of parameters

Description

performs a recombination of the sets of parameters

Usage

Crecombination(param, blocks, n)

Arguments

param

: matrix [ . , NPar ] of the population of parameters

blocks

: list of integer vectors: list of variable blocks for recombination

n

: number of new vectors to generate

Value

xnew : matrix [ n , NPar ] of new vectors

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
param <- matrix(rexp(15), 15, 1)
blocks <- NULL
n <- 5
# Call the function
res <- Crecombination(param, blocks, n)

New parameter vectors generation respecting a covariance structure

Description

proposes new parameter vectors respecting a covariance structure

Usage

Cusecovar(xref, amplif, n)

Arguments

xref

: matrix [ . , NPar ] of the reference population whose covariance structure is to be used

amplif

: amplification factor of the standard deviation on each parameter

n

: number of new vectors to generate

Value

xnew : matrix [ n , NPar ] of new vectors

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
xref <- matrix(rexp(35), 35, 1)
amplif <- 2.
n <- 5
# Call the function
res <- Cusecovar(xref, amplif, n)

Decreasing of the population of parameters sets

Description

decreases the population of parameters sets

Usage

decrease_pop(matobj, minmax, prec, archsize, popsize)

Arguments

matobj

: matrix of objectives, dimension (ngames, nobj)

minmax

: vector of booleans, of dimension nobj: TRUE if maximization of the objective, FALSE otherwise

prec

: nobj dimension vector: accuracy

archsize

: integer: archive size

popsize

: integer: population size

Value

A list containing two elements:

ind_arch

indices of individuals in the updated Pareto front

ind_pop

indices of individuals in the updated population

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
matobj <- matrix(rexp(200), 100, 2)
prec <- c(1.e-3, 1.e-3)
archsize <- 100
minmax <- c(FALSE, FALSE)
popsize <- 100
# Call the function
res <- decrease_pop(matobj, minmax, prec, archsize, popsize)

Determination of directions for improvement

Description

determines directions for improvement

Usage

Dimprove(o_splx, f_splx)

Arguments

o_splx

: matrix of objectives of simplexes (nrow = npoints, ncol = nobj)

f_splx

: vector (npoints) of associated Pareto numbers (1 = dominated)

Value

list of elements "oriedge": oriented edges and "ledge": length

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
o_splx <- matrix(rexp(6), 3, 2)
f_splx <- c(1,1,1)
# Call the function
res <- Dimprove(o_splx, f_splx)

Successive Pareto fronts of a population

Description

calculates the successive Pareto fronts of a population (classification "onion peel"), when objectives need to be maximized.

Usage

dominate(matobj)

Arguments

matobj

: matrix [ NInd , NObj ] of objectives

Value

f : vector of dimension NInd of dominances

Author(s)

Alban de Lavenne, Fabrice Zaoui

Examples

# Definition of the parameters
matobj <- matrix(runif(200), 100, 2)
# Call the function
pareto_rank <- dominate(matobj)

Rows domination of a matrix by a vector

Description

indicates which rows of the matrix Y are dominated by the vector (row) x

Usage

dominated(x, Y)

Arguments

x

: row vecteur

Y

: matrix

Value

D : vector of booleans

Author(s)

Alban de Lavenne, Fabrice Zaoui

Examples

# Definition of the parameters
Y <- matrix(rexp(200), 100, 2)
x <- Y[1,]
# Call the function
res <- dominated(x, Y)

Downsizing of a population to only one individual per box up to a given accuracy

Description

reduces the number of individuals in a population to only one individual per box up to a given accuracy

Usage

downsize(points, Fo, prec)

Arguments

points

: matrix of objectives

Fo

: rank on the front of each point (1: dominates on the Pareto)

prec

: (double, length = nobj) desired accuracy for sorting objectives

Value

vector indices

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
points <- matrix(rexp(200), 100, 2)
prec <- c(1.e-3, 1.e-3)
Fo <- sample(1:100, 100)
# Call the function
res <- downsize(points, Fo, prec)

Calculation of the variances-covariances matrix on the reference population

Description

calculates the variances-covariances matrix on the reference population

Usage

matvcov(x, g)

Arguments

x

: population

g

: center of reference population (in the parameter space)

Value

rr : variances-covariances matrix on the reference population

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
x <- matrix(rexp(30), 30, 1)
g <- mean(x)
# Call the function
res <- matvcov(x, g)

Generation of a new population of parameter sets following the five rules of caRamel

Description

generates a new population of parameter sets following the five rules of caRamel

Usage

newXval(param, crit, isperf, sp, bounds, repart_gene, blocks, fireworks)

Arguments

param

: matrix [ Nvec , NPar ] of parameters of the current population

crit

: matrix [ Nvec , NObj ] of associated criteria

isperf

: vector of Booleans of length NObj, TRUE if maximization of the objective, FALSE otherwise

sp

: variance a priori of the parameters

bounds

: lower and upper bounds of parameters [ NPar , 2 ]

repart_gene

: matrix of length 4 giving the number of games to be generated with each rule: 1 Interpolation in the simplexes of the front, 2 Extrapolation according to the directions of the edges "orthogonal" to the front, 3 Random draws with prescribed variance-covariance matrix, 4 Recombination by functional blocks

blocks

: list of integer vectors containing function blocks of parameters

fireworks

: boolean, TRUE if one tests a random variation on each parameter and each maximum of O.F.

Value

xnew : matrix of new vectors [ sum(Repart_Gene) + eventually (nobj+1)*nvar if fireworks , NPar ]

project_crit: assumed position of the new vectors in the criteria space: [ sum(Repart_Gene)+ eventually (nobj+1)*nvar if fireworks , NObj ];

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
param <- matrix(rexp(100), 100, 1)
crit <- matrix(rexp(200), 100, 2)
isperf <- c(FALSE, FALSE)
bounds <- matrix(data = 1, nrow = 1, ncol = 2)
bounds[, 1] <- -5 * bounds[, 1]
bounds[, 2] <- 10 * bounds[, 2]
sp <- (bounds[, 2] - bounds[, 1]) / (2 * sqrt(3))
repart_gene <- c(5, 5, 5, 5)
fireworks <- TRUE
blocks <- NULL
# Call the function
res <- newXval(param, crit, isperf, sp, bounds, repart_gene, blocks, fireworks)

Indicates which rows are Pareto

Description

indicates which rows of the X criterion matrix are Pareto, when objectives need to be maximized

Usage

pareto(X)

Arguments

X

: matrix of objectives [NInd * NObj]

Value

Ft : vector [NInd], TRUE when the set is on the Pareto front.

Author(s)

Alban de Lavenne, Fabrice Zaoui

Examples

# Definition of the parameters
X <- matrix(runif(200), 100, 2)
# Call the function
is_pareto <- pareto(X)

Plotting of caRamel results

Description

Plot graphs of the Pareto front and a graph of optimization evolution

Usage

plot_caramel(caramel_results, nobj = NULL, objnames = NULL)

Arguments

caramel_results

: list resulting from the caRamel() function, with fields $objectives and $save_crit

nobj

: number of objectives (optional)

objnames

: vector of objectives names (optional)

Examples

# Definition of the test function
viennet <- function(i) {
  val1 <- 0.5*(x[i,1]*x[i,1]+x[i,2]*x[i,2])+sin(x[i,1]*x[i,1]+x[i,2]*x[i,2])
  val2 <- 15+(x[i,1]-x[i,2]+1)*(x[i,1]-x[i,2]+1)/27+(3*x[i,1]-2*x[i,2]+4)*(3*x[i,1]-2*x[i,2]+4)/8
  val3 <- 1/(x[i,1]*x[i,1]+x[i,2]*x[i,2]+1) -1.1*exp(-(x[i,1]*x[i,1]+x[i,2]*x[i,2]))
  return(c(val1,val2,val3))
}
nobj <- 3 # Number of objectives
nvar <- 2 # Number of variables
minmax <- c(FALSE, FALSE, FALSE) # All the objectives are to be minimized
bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # Define the bound constraints
bounds[, 1] <- -3 * bounds[, 1]
bounds[, 2] <- 3 * bounds[, 2]

# Caramel optimization
results <- caRamel(nobj, nvar, minmax, bounds, viennet, popsize = 100, archsize = 100,
          maxrun = 500, prec = matrix(1.e-3, nrow = 1, ncol = nobj), carallel = FALSE)

# Plot of results
plot_caramel(results)

Plotting of a population of objectives and Pareto front

Description

Plots graphs the population regarding each couple of objectives and emphasizes the Pareto front

Usage

plot_pareto(MatObj, nobj = NULL, objnames = NULL, maximized = NULL)

Arguments

MatObj

: matrix of the objectives [NInd, nobj]

nobj

: number of objectives (optional)

objnames

: vector, length nobj, of names of the objectives (optional)

maximized

: vector of logical, length nobj, TRUE if objective need to be maximized, FALSE if minimized

Author(s)

Celine Monteil

Examples

# Definition of the population
Pop <- matrix(runif(300), 100, 3)

# Definition of objectives to maximize (Obj1, Obj2) and to minimize (Obj3)
maximized <- c(TRUE, TRUE, FALSE)

# Call the function
plot_pareto(MatObj = Pop, maximized = maximized)

Plotting of a population of objectives

Description

Plot graphs the population regarding each couple of objectives

Usage

plot_population(
  MatObj,
  nobj,
  ngen = NULL,
  nrun = NULL,
  objnames = NULL,
  MatEvol = NULL,
  popsize = 0
)

Arguments

MatObj

: matrix of the objectives [NInd, nobj]

nobj

: number of objectives

ngen

: number of generations (optional)

nrun

: number of model evaluations (optional)

objnames

: vector of objectives names (optional)

MatEvol

: matrix of the evolution of the optimal objectives (optional)

popsize

: integer, size of the initial population (optional)

Author(s)

Celine Monteil

Examples

# Definition of the population
Pop <- matrix(runif(300), 100, 3)
# Call the function
plot_population(MatObj = Pop, nobj = 3, objnames = c("Obj1", "Obj2", "Obj3"))

Selection of n points

Description

performs a selection of n points in facp

Usage

rselect(n, facp)

Arguments

n

: number of points to select

facp

: vector of initial points

Value

ix : ranks of selected points (vector of dimension n)

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
n <- 5
facp <- runif(30)
# Call the function
res <- rselect(n, facp)

Converting the values of a vector into their rank

Description

converts the values of a vector into their rank

Usage

val2rank(X, opt)

Arguments

X

: vector to treat

opt

: integer which gives the rule to follow in case of tied ranks (repeated values): if opt = 1, one returns the average rank, if opt = 2, one returns the corresponding rank in the series of the unique values, if opt = 3, return the max rank

Value

R : rank vector

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
X <- matrix(rexp(100), 100, 1)
opt <- 3
# Call the function
res <- val2rank(X, opt)

Volume of a simplex

Description

calculates the volume of a simplex

Usage

vol_splx(S)

Arguments

S

: matrix (d+1) rows * d columns containing the coordinates in d-dim of d + 1 vertices of a simplex

Value

V : simplex volume

Author(s)

Fabrice Zaoui

Examples

# Definition of the parameters
S <- matrix(rexp(6), 3, 2)
# Call the function
res <- vol_splx(S)