--- title: "Using a Python function with caRamel" author: "Fabrice Zaoui" date: "September 29 2020" output: html_document vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{caRamel and Python function} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(python.reticulate = FALSE) ``` ## Short Description **caRamel** is a multiobjective evolutionary algorithm combining the MEAS algorithm and the NGSA-II algorithm. Download the package from CRAN or [GitHub](https://github.com/fzao/caRamel) and then install and load it. ```{r caRa, eval=F, echo=T} library(caRamel) ``` This example will use the **reticulate** package in order to call a Python function from R. Download the package from CRAN and then install and load it ```{r reti, eval=F, echo=T} library(reticulate) ``` [*Kursawe*](https://en.wikipedia.org/wiki/File:Kursawe_function.pdf) test function has two objectives of three variables. This function will be written in a Python script named *kursawe.py* with the following content: ```{python kursawe, eval=F, echo=T} import numpy as np def kursawe(x): k1 = -10 * np.exp(-0.2 * np.sqrt(x[0]**2 + x[1]**2)) - \ 10 * np.exp(-0.2 * np.sqrt(x[1]**2 + x[2]**2)) k2 = np.abs(x[0])**0.8 + 5 * np.sin(x[0]**3) + np.abs(x[1])**0.8 +\ 5 * np.sin(x[1]**3) + np.abs(x[2])**0.8 + 5 * np.sin(x[2]**3) return np.array([k1, k2]) ``` The Python function has to be loaded in R: ```{r load, eval=F, echo=T} use_python("/usr/local/bin/python3") source_python("kursawe.py") ``` This function is not directly called from **caRamel** but with a new wrapper function and finally all can be gathered in it (recommended): ```{r wrap, eval=F, echo=T} wrapperFunction <- function(i) { # load the package library(reticulate) # python path use_python("/usr/local/bin/python3") # source the Python function source_python("kursawe.py") # call the Python function and return the results return(kursawe(x[i,])) } ``` The variables lie in the range [-5, 5]: ```{r kursawe_variable, eval=F, echo=T} nvar <- 3 # number of variables bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds bounds[, 1] <- -5 * bounds[, 1] bounds[, 2] <- 5 * bounds[, 2] ``` Both functions are to be minimized: ```{r kursawe_objectives, eval=F, echo=T} nobj <- 2 # number of objectives minmax <- c(FALSE, FALSE) # min and min ``` Set algorithmic parameters and launch **caRamel**: ```{r kursawe_param, , eval=F, echo=T, fig.show="hide", results="hide"} popsize <- 100 # size of the genetic population archsize <- 100 # size of the archive for the Pareto front maxrun <- 1000 # maximum number of calls prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase results <- caRamel(nobj, nvar, minmax, bounds, wrapperFunction, # It's the wrapper function that will be called popsize, archsize, maxrun, prec) ``` Test if the convergence is successful and plot the optimal front: ```{r kursawe_OK_plot, eval=F, echo=T} print(results$success==TRUE) plot(results$objectives[,1], results$objectives[,2], main="Kursawe Pareto front", xlab="Objective #1", ylab="Objective #2") ``` Finally plot the convergences of the objective functions: ```{r kursawe_plot_conv, eval=F, echo=T} matplot(results$save_crit[,1],cbind(results$save_crit[,2],results$save_crit[,3]),type="l",col=c("blue","red"), main="Convergence", xlab="Number of calls", ylab="Objectives values") ```