--- title: "Using caRamel on two benchmark tests" author: "Fabrice Zaoui" date: "January 19 2018" output: html_document vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Simple test functions} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # Short Description **caRamel** is a multiobjective evolutionary algorithm combining the MEAS algorithm and the NGSA-II algorithm. Download the package from CRAN or [GitHub](https://github.com/fzao/caRamel) and then install and load it. ```{r caRa} library(caRamel) ``` # Test functions ## Schaffer [*Schaffer*](https://en.wikipedia.org/wiki/File:Schaffer_function_2_-_multi-objective.pdf) test function has two objectives with one variable. ```{r schaffer} schaffer <- function(i) { if (x[i,1] <= 1) { s1 <- -x[i,1] } else if (x[i,1] <= 3) { s1 <- x[i,1] - 2 } else if (x[i,1] <= 4) { s1 <- 4 - x[i,1] } else { s1 <- x[i,1] - 4 } s2 <- (x[i,1] - 5) * (x[i,1] - 5) return(c(s1, s2)) } ``` Note that : * parameter _i_ is mandatory for the management of parallelism. * the variable __must be named__ _x_ and is a matrix of size [npopulation, nvariables]. The variable lies in the range [-5, 10]: ```{r schaffer_variable} nvar <- 1 # number of variables bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds bounds[, 1] <- -5 * bounds[, 1] bounds[, 2] <- 10 * bounds[, 2] ``` Both functions are to be minimized: ```{r schaffer_objectives} nobj <- 2 # number of objectives minmax <- c(FALSE, FALSE) # min and min ``` Before calling **caRamel** in order to optimize the Schaffer's problem, some algorithmic parameters need to be set: ```{r schaffer_param} popsize <- 100 # size of the genetic population archsize <- 100 # size of the archive for the Pareto front maxrun <- 1000 # maximum number of calls prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase ``` Then the minimization problem can be launched: ```{r schaffer_launch, fig.show="hide", results="hide"} results <- caRamel(nobj, nvar, minmax, bounds, schaffer, popsize, archsize, maxrun, prec, carallel=FALSE) # no parallelism ``` Test if the convergence is successful: ```{r schaffer_OK} print(results$success==TRUE) ``` Plot the Pareto front: ```{r schaffer_plot1} plot(results$objectives[,1], results$objectives[,2], main="Schaffer Pareto front", xlab="Objective #1", ylab="Objective #2") ``` ```{r schaffer_plot2} plot(results$parameters, main="Corresponding values for X", xlab="Element of the archive", ylab="X Variable") ``` ## Kursawe [*Kursawe*](https://en.wikipedia.org/wiki/File:Kursawe_function.pdf) test function has two objectives of three variables. ```{r kursawe} kursawe <- function(i) { k1 <- -10 * exp(-0.2 * sqrt(x[i,1] ^ 2 + x[i,2] ^ 2)) - 10 * exp(-0.2 * sqrt(x[i,2] ^2 + x[i,3] ^ 2)) k2 <- abs(x[i,1]) ^ 0.8 + 5 * sin(x[i,1] ^ 3) + abs(x[i,2]) ^ 0.8 + 5 * sin(x[i,2] ^3) + abs(x[i,3]) ^ 0.8 + 5 * sin(x[i,3] ^ 3) return(c(k1, k2)) } ``` The variables lie in the range [-5, 5]: ```{r kursawe_variable} nvar <- 3 # number of variables bounds <- matrix(data = 1, nrow = nvar, ncol = 2) # upper and lower bounds bounds[, 1] <- -5 * bounds[, 1] bounds[, 2] <- 5 * bounds[, 2] ``` Both functions are to be minimized: ```{r kursawe_objectives} nobj <- 2 # number of objectives minmax <- c(FALSE, FALSE) # min and min ``` Set algorithmic parameters and launch **caRamel**: ```{r kursawe_param, fig.show="hide", results="hide"} popsize <- 100 # size of the genetic population archsize <- 100 # size of the archive for the Pareto front maxrun <- 1000 # maximum number of calls prec <- matrix(1.e-3, nrow = 1, ncol = nobj) # accuracy for the convergence phase results <- caRamel(nobj, nvar, minmax, bounds, kursawe, popsize, archsize, maxrun, prec, carallel=FALSE) # no parallelism ``` Test if the convergence is successful and plot the optimal front: ```{r kursawe_OK_plot} print(results$success==TRUE) plot(results$objectives[,1], results$objectives[,2], main="Kursawe Pareto front", xlab="Objective #1", ylab="Objective #2") ``` Finally plot the convergences of the objective functions: ```{r kursawe_plot_conv} matplot(results$save_crit[,1],cbind(results$save_crit[,2],results$save_crit[,3]),type="l",col=c("blue","red"), main="Convergence", xlab="Number of calls", ylab="Objectives values") ``` # References * Efstratiadis, A. and Koutsoyiannis, D., _The multiobjective evolutionary annealing-simplex method and its application in calibrating hydrological models_, EGU General Assembly 2005, Geophysical Research Abstracts, vol.7, Vienna, European Geophysical Union * Reed, P. and Devireddy, D., _Groundwater monitoring design: a case study combining epsilon-dominance archiving and automatic parameterization for the NGSA-II_, Coello-Coello C editor, Applications of multiobjective evolutionary algorithms, Advances in natural computation series, vol. 1, pp. 79-100, Word Scientific, New-York, 2004