Title: | The Stark-Parker algorithm for bounded-variable least squares |
---|---|
Description: | An R interface to the Stark-Parker implementation of an algorithm for bounded-variable least squares |
Authors: | Katharine M. Mullen |
Maintainer: | Katharine M. Mullen <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.4 |
Built: | 2025-01-14 06:23:13 UTC |
Source: | CRAN |
An R interface to the Stark-Parker implementation of an
algorithm for bounded-variable
least squares that solves
with the constraint
, where
and
is an
matrix.
Stark PB, Parker RL (1995). Bounded-variable least-squares: an algorithm and applications, Computational Statistics, 10, 129-141.
bvls, the method "L-BFGS-B"
for optim,
solve.QP, nnls
An R interface to the Stark-Parker implementation of bounded-variable
least squares that solves the least squares problem
with the constraint
, where
and
is an
matrix.
bvls(A, b, bl, bu, key=0, istate=rep(0,ncol(A)+1))
bvls(A, b, bl, bu, key=0, istate=rep(0,ncol(A)+1))
A |
numeric matrix with |
b |
numeric vector of length |
bl |
numeric vector of length |
bu |
numeric vector of length |
key |
If |
istate |
vector of length |
bvls
returns an object of class "bvls"
.
The generic assessor functions coefficients
,
fitted.values
, deviance
and residuals
extract
various useful features of the value returned by bvls
.
An object of class "bvls"
is a list containing the
following components:
x |
the parameter estimates. |
deviance |
the residual sum-of-squares. |
residuals |
the residuals, that is response minus fitted values. |
fitted |
the fitted values. |
This is an R interface to the Fortran77 code accompanying the article referenced below by Stark PB, Parker RL (1995), and distributed via the statlib on-line software repository at Carnegie Mellon University (URL http://lib.stat.cmu.edu/general/bvls). The code was modified slightly to allow compatibility with the gfortran compiler. The authors have agreed to distribution under GPL version 2 or newer.
Stark PB, Parker RL (1995). Bounded-variable least-squares: an algorithm and applications, Computational Statistics, 10, 129-141.
the method "L-BFGS-B"
for optim,
solve.QP, nnls
## simulate a matrix A ## with 3 columns, each containing an exponential decay t <- seq(0, 2, by = .04) k <- c(.5, .6, 1) A <- matrix(nrow = 51, ncol = 3) Acolfunc <- function(k, t) exp(-k*t) for(i in 1:3) A[,i] <- Acolfunc(k[i],t) ## simulate a matrix X X <- matrix(nrow = 50, ncol = 3) wavenum <- seq(18000,28000, length=nrow(X)) location <- c(25000, 22000) delta <- c(1000,1000) Xcolfunc <- function(wavenum, location, delta) exp( - log(2) * (2 * (wavenum - location)/delta)^2) for(i in 1:2) X[,i] <- Xcolfunc(wavenum, location[i], delta[i]) X[1:40,3] <- Xcolfunc(wavenum, 23000, 1000)[11:nrow(X)] X[41:nrow(X),3]<- - Xcolfunc(wavenum, 23000, 1000)[21:30] ## set seed for reproducibility set.seed(3300) ## simulated data is the product of A and X with some ## spherical Gaussian noise added matdat <- A %*% t(X) + .005 * rnorm(nrow(A) * nrow(X)) ## estimate the rows of X using BVLS criteria bvls_sol <- function(matdat, A) { X <- matrix(0, nrow = ncol(matdat), ncol = ncol(A) ) bu <- c(Inf,Inf,.75) bl <- c(0,0,-.75) for(i in 1:ncol(matdat)) X[i,] <- coef(bvls(A,matdat[,i], bl, bu)) X } X_bvls <- bvls_sol(matdat,A) matplot(X,type="p",pch=20) matplot(X_bvls,type="l",pch=20,add=TRUE) legend(10, -.5, c("bound <= zero", "bound <= zero", "bound <= -.75 <= .75"), col = c(1,2,3), lty=c(1,2,3), text.col = "blue") ## Not run: ## can solve the same problem with L-BFGS-B algorithm ## but need starting values for x bfgs_sol <- function(matdat, A) { startval <- rep(0, ncol(A)) fn1 <- function(par1, b, A) sum( ( b - A %*% par1)^2) X <- matrix(0, nrow = ncol(matdat), ncol = 3) bu <- c(1000,1000,.75) bl <- c(0,0,-.75) for(i in 1:ncol(matdat)) X[i,] <- optim(startval, fn = fn1, b=matdat[,i], A=A, upper = bu, lower = bl, method="L-BFGS-B")$par X } X_bfgs <- bfgs_sol(matdat,A) ## the RMS deviation under BVLS is less than under L-BFGS-B sqrt(sum((X - X_bvls)^2)) < sqrt(sum((X - X_bfgs)^2)) ## and L-BFGS-B is much slower system.time(bvls_sol(matdat,A)) system.time(bfgs_sol(matdat,A)) ## End(Not run)
## simulate a matrix A ## with 3 columns, each containing an exponential decay t <- seq(0, 2, by = .04) k <- c(.5, .6, 1) A <- matrix(nrow = 51, ncol = 3) Acolfunc <- function(k, t) exp(-k*t) for(i in 1:3) A[,i] <- Acolfunc(k[i],t) ## simulate a matrix X X <- matrix(nrow = 50, ncol = 3) wavenum <- seq(18000,28000, length=nrow(X)) location <- c(25000, 22000) delta <- c(1000,1000) Xcolfunc <- function(wavenum, location, delta) exp( - log(2) * (2 * (wavenum - location)/delta)^2) for(i in 1:2) X[,i] <- Xcolfunc(wavenum, location[i], delta[i]) X[1:40,3] <- Xcolfunc(wavenum, 23000, 1000)[11:nrow(X)] X[41:nrow(X),3]<- - Xcolfunc(wavenum, 23000, 1000)[21:30] ## set seed for reproducibility set.seed(3300) ## simulated data is the product of A and X with some ## spherical Gaussian noise added matdat <- A %*% t(X) + .005 * rnorm(nrow(A) * nrow(X)) ## estimate the rows of X using BVLS criteria bvls_sol <- function(matdat, A) { X <- matrix(0, nrow = ncol(matdat), ncol = ncol(A) ) bu <- c(Inf,Inf,.75) bl <- c(0,0,-.75) for(i in 1:ncol(matdat)) X[i,] <- coef(bvls(A,matdat[,i], bl, bu)) X } X_bvls <- bvls_sol(matdat,A) matplot(X,type="p",pch=20) matplot(X_bvls,type="l",pch=20,add=TRUE) legend(10, -.5, c("bound <= zero", "bound <= zero", "bound <= -.75 <= .75"), col = c(1,2,3), lty=c(1,2,3), text.col = "blue") ## Not run: ## can solve the same problem with L-BFGS-B algorithm ## but need starting values for x bfgs_sol <- function(matdat, A) { startval <- rep(0, ncol(A)) fn1 <- function(par1, b, A) sum( ( b - A %*% par1)^2) X <- matrix(0, nrow = ncol(matdat), ncol = 3) bu <- c(1000,1000,.75) bl <- c(0,0,-.75) for(i in 1:ncol(matdat)) X[i,] <- optim(startval, fn = fn1, b=matdat[,i], A=A, upper = bu, lower = bl, method="L-BFGS-B")$par X } X_bfgs <- bfgs_sol(matdat,A) ## the RMS deviation under BVLS is less than under L-BFGS-B sqrt(sum((X - X_bvls)^2)) < sqrt(sum((X - X_bfgs)^2)) ## and L-BFGS-B is much slower system.time(bvls_sol(matdat,A)) system.time(bfgs_sol(matdat,A)) ## End(Not run)