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bvls-package The Stark-Parker algorithm for bounded-variable least squares

Description

An R interface to the Stark-Parker implementation of an algorithm for bounded-variable least
squares that solves min ∥ Ax− b ∥2 with the constraint l ≤ x ≤ u, where l, x, u ∈ Rn, b ∈ Rm

and A is an m× n matrix.

References

Stark PB, Parker RL (1995). Bounded-variable least-squares: an algorithm and applications, Com-
putational Statistics, 10, 129-141.

1



2 bvls

See Also

bvls, the method "L-BFGS-B" for optim, solve.QP, nnls

bvls The Stark-Parker implementation of bounded-variable least squares

Description

An R interface to the Stark-Parker implementation of bounded-variable least squares that solves the
least squares problem min ∥ Ax− b ∥2 with the constraint l ≤ x ≤ u, where l, x, u ∈ Rn, b ∈ Rm

and A is an m× n matrix.

Usage

bvls(A, b, bl, bu, key=0, istate=rep(0,ncol(A)+1))

Arguments

A numeric matrix with m rows and n columns

b numeric vector of length m

bl numeric vector of length n specifying the lower bound on each element of x

bu numeric vector of length n specifying the upper bound on each element of x

key If key > 0 the routine initializes using the user’s guess about which components
of x are active, i.e. are strictly within their bounds, which are at their lower
bounds, and which are at their upper bounds. This information is supplied
through the array istate.

istate vector of length ncol(A)+1. If key > 0, istate is as follows: the last contains
the total number of components at their bounds (the bound variables). The ab-
solute values of the first nbound <- tail(istate,1) entries of istate are the
indices of these bound components of x. The sign of istate[1:nbound] in-
dicates whether x(abs(istate[1:nbound])) is at its upper or lower bound.
istate[1:nbound] is positive if the component is at its upper bound, negative
if the component is at its lower bound. istate[(nbound+1):ncol(A)] con-
tain the indices of the components of x that are active (i.e. are expected to lie
strictly within their bounds). When key > 0, the routine initially sets the active
components to the averages of their upper and lower bounds.

Value

bvls returns an object of class "bvls".

The generic assessor functions coefficients, fitted.values, deviance and residuals extract
various useful features of the value returned by bvls.

An object of class "bvls" is a list containing the following components:

x the parameter estimates.
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deviance the residual sum-of-squares.

residuals the residuals, that is response minus fitted values.

fitted the fitted values.

Source

This is an R interface to the Fortran77 code accompanying the article referenced below by Stark
PB, Parker RL (1995), and distributed via the statlib on-line software repository at Carnegie Mellon
University (URL http://lib.stat.cmu.edu/general/bvls). The code was modified slightly to
allow compatibility with the gfortran compiler. The authors have agreed to distribution under GPL
version 2 or newer.

References

Stark PB, Parker RL (1995). Bounded-variable least-squares: an algorithm and applications, Com-
putational Statistics, 10, 129-141.

See Also

the method "L-BFGS-B" for optim, solve.QP, nnls

Examples

## simulate a matrix A
## with 3 columns, each containing an exponential decay
t <- seq(0, 2, by = .04)
k <- c(.5, .6, 1)
A <- matrix(nrow = 51, ncol = 3)
Acolfunc <- function(k, t) exp(-k*t)
for(i in 1:3) A[,i] <- Acolfunc(k[i],t)

## simulate a matrix X
X <- matrix(nrow = 50, ncol = 3)
wavenum <- seq(18000,28000, length=nrow(X))
location <- c(25000, 22000)
delta <- c(1000,1000)
Xcolfunc <- function(wavenum, location, delta)

exp( - log(2) * (2 * (wavenum - location)/delta)^2)
for(i in 1:2) X[,i] <- Xcolfunc(wavenum, location[i], delta[i])

X[1:40,3] <- Xcolfunc(wavenum, 23000, 1000)[11:nrow(X)]
X[41:nrow(X),3]<- - Xcolfunc(wavenum, 23000, 1000)[21:30]

## set seed for reproducibility
set.seed(3300)

## simulated data is the product of A and X with some
## spherical Gaussian noise added
matdat <- A %*% t(X) + .005 * rnorm(nrow(A) * nrow(X))

## estimate the rows of X using BVLS criteria

http://lib.stat.cmu.edu/general/bvls
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bvls_sol <- function(matdat, A) {
X <- matrix(0, nrow = ncol(matdat), ncol = ncol(A) )
bu <- c(Inf,Inf,.75)
bl <- c(0,0,-.75)
for(i in 1:ncol(matdat))

X[i,] <- coef(bvls(A,matdat[,i], bl, bu))
X

}
X_bvls <- bvls_sol(matdat,A)

matplot(X,type="p",pch=20)
matplot(X_bvls,type="l",pch=20,add=TRUE)
legend(10, -.5,
c("bound <= zero", "bound <= zero", "bound <= -.75 <= .75"),
col = c(1,2,3), lty=c(1,2,3),
text.col = "blue")

## Not run:
## can solve the same problem with L-BFGS-B algorithm
## but need starting values for x
bfgs_sol <- function(matdat, A) {

startval <- rep(0, ncol(A))
fn1 <- function(par1, b, A) sum( ( b - A %*% par1)^2)
X <- matrix(0, nrow = ncol(matdat), ncol = 3)
bu <- c(1000,1000,.75)
bl <- c(0,0,-.75)
for(i in 1:ncol(matdat))
X[i,] <- optim(startval, fn = fn1, b=matdat[,i], A=A,

upper = bu, lower = bl,
method="L-BFGS-B")$par

X
}
X_bfgs <- bfgs_sol(matdat,A)

## the RMS deviation under BVLS is less than under L-BFGS-B
sqrt(sum((X - X_bvls)^2)) < sqrt(sum((X - X_bfgs)^2))

## and L-BFGS-B is much slower
system.time(bvls_sol(matdat,A))
system.time(bfgs_sol(matdat,A))

## End(Not run)
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