Package: bujar (via r-universe)

September 3, 2024

Type Package
Title Buckley-James Regression for Survival Data with High-Dimensional Covariates
Version 0.2-11
Date 2023-06-23
Author Zhu Wang https://orcid.org/0000-0002-0773-0052 and others (see COPYRIGHTS)
Maintainer Zhu Wang <zwang145@uthsc.edu></zwang145@uthsc.edu>
Description Buckley-James regression for right-censoring survival data with high-dimensional covariates. Implementations for survival data include boosting with componentwise linear least squares, componentwise smoothing splines, regression trees and MARS. Other high-dimensional tools include penalized regression for survival data. See Wang and Wang (2010) <doi:10.2202 1544-6115.1550="">.</doi:10.2202>
Imports mda, mpath, mboost, gbm, earth, elasticnet, rms, methods, modeltools, bst, parallel, survival
Depends R (>= $3.5.0$)
Suggests TH.data, R.rsp, gridExtra
VignetteBuilder R.rsp
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2023-06-25 02:40:02 UTC
Contents
bujar

Index 8

bujar	Buckley-James Regression	

Description

Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise P-splines, regression trees. Other Buckley-James methods including elastic net, MCP, SCAD, MARS and ACOSSO (ACOSSO not supported for the current version).

Usage

```
bujar(y, cens, x, valdata = NULL, degree = 1, learner = "linear.regression",
center=TRUE, mimpu = NULL, iter.bj = 20, max.cycle = 5, nu = 0.1, mstop = 50,
twin = FALSE, mstop2= 100, tuning = TRUE, cv = FALSE, nfold = 5, method = "corrected",
vimpint = TRUE,gamma = 3, lambda=NULL, whichlambda=NULL, lamb = 0, s = 0.5, nk = 4,
wt.pow = 1, theta = NULL, rel.inf = FALSE, tol = .Machine$double.eps, n.cores= 2,
rng=123, trace = FALSE)
## S3 method for class 'bujar'
print(x, ...)
## S3 method for class 'bujar'
predict(object, newx=NULL, ...)
## S3 method for class 'bujar'
plot(x, ...)
## S3 method for class 'bujar'
coef(object, ...)
## S3 method for class 'bujar'
summary(object, ...)
```

Arguments

У	survival time
cens	censoring indicator, must be 0 or 1 with 0=alive, 1=dead
X	covariate matrix
object	an object of class "bujar"
newx	covariate matrix for prediction
valdata	test data, which must have the first column as survival time, second column as censoring indicator, and the remaining columns similar to same x .
degree	mars/tree/linear regression degree of interaction; if 2, second-order interaction, if degree=1, additive model;
learner	methods used for BJ regression.
center	center covariates
mimpu	initial estimate. If TRUE, mean-imputation; FALSE, imputed with the marginal best variable linear regression; if NULL, 0.

iter.bj number of B-J iteration
max.cycle max cycle allowed

nu step-size boosting parameter

mstop boosting tuning parameters. It can be one number or have the length iter.bj+max.cycle.

If cv=TRUE, then mstop is the maximum number of tuning parameter

twin logical, if TRUE, twin boosting mstop2 twin boosting tuning parameter

tuning logical value. if TRUE, the tuning parameter will be selected by cv or AIC/BIC

methods. Ignored if twin=TRUE for which no tuning parameter selection is im-

plemented

cv logical value. if TRUE, cross-validation for tuning parameter, only used if

tuning=TRUE. If tuning=FALSE or twin=TRUE, then ignored

nfold number of fold of cv

method boosting tuning parameter selection method in AIC

vimpint logical value. If TRUE, compute variable importance and interaction measures

for MARS if learner="mars" and degree > 1.

gamma MCP, or SCAD gamma tuning parameter lambda MCP, or SCAD lambda tuning parameter

whichlambda which lambda used for MCP or SCAD lambda tuning parameter lamb elastic net lambda tuning parameter, only used if learner="enet"

s the second enet tuning parameter, which is a fraction between (0, 1), only used

if learne="enet"

nk number of basis function for learner="mars"

wt.pow not used but kept for historical reasons, only for learner=ACOSSO. This is a

parameter (power of weight). It might be chosen by CV from c(0, 1.0, 1.5, 2.0,

2.5, 3.0). If wt.pow=0, then this is COSSO method

theta For learner="acosso", not used now. A numerical vector with 0 or 1. 0 means

the variable not included and 1 means included. See Storlie et al. (2009).

rel.inf logical value. if TRUE, variable importance measure and interaction importance

measure computed

tol convergency criteria

n.cores The number of CPU cores to use. The cross-validation loop will attempt to send

different CV folds off to different cores. Used for learner="tree"

rng a number to be used for random number generation in boosting trees

trace logical value. If TRUE, print out interim computing results

.. additional arguments used in estimation methods, for instance, trees.

Details

Buckley-James regression for right-censoring survival data with high-dimensional covariates. Including L_2 boosting with componentwise linear least squares, componentwise P-splines, regression trees. Other Buckley-James methods including elastic net, SCAD and MCP. learner="enet" and learner="enet2" use two different implementations of LASSO. Some of these methods are discussed in Wang and Wang (2010) and the references therein. Also see the references below.

Value

x original covariatesy survival time

cens censoring indicator

ynew imputed y

yhat estimated y from ynew

pred.bj estimated y from the testing sample

res.fit model fitted with the learner

learner original learner used

degree =1, additive model, degree=2, second-order interaction

mse MSE at each BJ iteration, only available in simulations, or when valdata pro-

vided

mse.bj MSE from training data at the BJ termination

mse.bj.val MSE with valdata

mse.all a vector of MSE for uncensoring data at BJ iteration nz.bj.iter number of selected covariates at each BJ iteration

nz.bj number of selected covariates at the claimed BJ termination

xselect a vector of dimension of covariates, either 1 (covariate selected) or 0 (not se-

lected)

coef.bj estimated coefficients with linear model

vim a vector of length of number of column of x, variable importance, between 0 to

100

interactions measure of strength of interactions

ybstdiff largest absolute difference of estimated y. Useful to monitor convergency

ybstcon a vector with length of BJ iteration each is a convergency measure

cycleperiod number of cycle of BJ iteration

cycle.coef.diff

within cycle of BJ, the maximum difference of coefficients for BJ boosting

nonconv logical value. if TRUE, non-convergency

fnorm2 value of L_2 norm, can be useful to access convergency

mselect a vector of length of BJ iteration, each element is the tuning parameter mstop

contype 0 (converged), 1, not converged but cycle found, 2, not converged and max

iteration reached.

Author(s)

Zhu Wang

References

Zhu Wang and C.Y. Wang (2010), Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data. *Statistical Applications in Genetics and Molecular Biology*, Vol. 9: Iss. 1, Article 24

Peter Buhlmann and Bin Yu (2003), Boosting with the L2 loss: regression and classification. *Journal of the American Statistical Association*, **98**, 324–339.

Peter Buhlmann (2006), Boosting for high-dimensional linear models. *The Annals of Statistics*, **34**(2), 559–583.

Peter Buhlmann and Torsten Hothorn (2007), Boosting algorithms: regularization, prediction and model fitting. *Statistical Science*, **22**(4), 477–505.

- J. Friedman (1991), Multivariate Adaptive Regression Splines (with discussion). *Annals of Statistics*, **19**/1, 1–141.
- J.H. Friedman, T. Hastie and R. Tibshirani (2000), Additive Logistic Regression: a Statistical View of Boosting. *Annals of Statistics* **28**(2):337-374.
- C. Storlie, H. Bondell, B. Reich and H. H. Zhang (2009), Surface Estimation, Variable Selection, and the Nonparametric Oracle Property. *Statistica Sinica*, to appear.

Sijian Wang, Bin Nan, Ji Zhu, and David G. Beer (2008), Doubly penalized Buckley-James Method for Survival Data with High-Dimensional Covariates. *Biometrics*, **64**:132-140.

H. Zou and T. Hastie (2005), Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society*, Series B, **67**, 301-320.

Examples

```
data("wpbc", package = "TH.data")
wpbc2 <- wpbc[, 1:12]</pre>
wpbc2$status <- as.numeric(wpbc2$status) - 1</pre>
fit <- bujar(y=log(wpbc2$time),cens=wpbc2$status, x= wpbc2[, -(1:2)])</pre>
print(fit)
coef(fit)
pr <- predict(fit)</pre>
plot(fit)
fit <- bujar(y=log(wpbc2$time),cens=wpbc2$status, x= wpbc2[, -(1:2)], tuning = TRUE)</pre>
## Not run:
fit <- bujar(y=log(wpbc2$time),cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="pspline")</pre>
fit <- bujar(y=log(wpbc2$time),cens=wpbc2$status, x=wpbc2[, -(1:2)],</pre>
learner="tree", degree=2)
### select tuning parameter for "enet"
tmp <- gcv.enet(y=log(wpbc2$time), cens=wpbc2$status, x=wpbc2[, -(1:2)])</pre>
fit <- bujar(y=log(wpbc2$time),cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="enet",</pre>
lamb = tmp$lambda, s=tmp$s)
fit <- bujar(y=log(wpbc2$time),cens=wpbc2$status, x=wpbc2[, -(1:2)], learner="mars",</pre>
degree=2)
summary(fit)
## End(Not run)
```

6 rchop

chop

Survival of CHOP for diffuse large B cell lymphoma

Description

Microarray data for DLBCL patients undergoing CHOP treatment.

Usage

```
data(chop)
```

Format

The format is: num [1:181, 1:3835]

Details

Microarray data of DLBCL of 181 patients treated with a combination chemotherapy with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). The original data have 54675 probe sets or covariates. Due to the nature of high-dimensional data, a preselection procedure was conducted to filter out the genes with lower variations if a sample variance for a gene was smaller than the 10th percentile for that gene. The first column if the survival times. The second column is an indicator whether an the survival time was observed or right censoring occurred. 0=alive, 1=dead. There are 3833 genes after the filtering process.

Source

Lenz, et al. (2008). Stromal gene signatures in large-B-cell lymphomas. *New England Journal of Medicine*, **359(22)**, 2313–2323

Examples

```
data(chop)
str(chop)
```

rchop

Survival of R-CHOP for diffuse large B cell lymphoma

Description

Microarray data for DLBCL patients undergoing R-CHOP treatment.

Usage

```
data(rchop)
```

rchop 7

Format

The format is: num [1:233, 1:3835]

Details

Microarray data of DLBCL of 233 patients treated with the current gold standard R-CHOP including rituxima immunotherapy in addition to the chemotherapy CHOP. The original data have 54675 probe sets or covariates. Due to the nature of high-dimensional data, a preselection procedure was conducted to filter out the genes to match those in chop. The first column if the survival times. The second column is an indicator whether an the survival time was observed or right censoring occurred. 0=alive, 1=dead. There are 3833 same genes as in chop. The data set is used to validate the prediction accuracy for models developed using training data chop.

Source

Lenz, et al. (2008). Stromal gene signatures in large-B-cell lymphomas. *New England Journal of Medicine*, **359(22)**, 2313–2323

Examples

data(rchop)
str(rchop)

Index

```
* datasets
chop, 6
rchop, 6
bujar, 2
chop, 6
coef.bujar (bujar), 2
plot.bujar (bujar), 2
predict.bujar (bujar), 2
print.bujar (bujar), 2
rchop, 6
summary.bujar (bujar), 2
```