Package: bspline (via r-universe)

July 3, 2024
Type Package
Title B-Spline Interpolation and Regression
Version 2.2.2
Author Serguei Sokol sokol@insa-toulouse.fr
Maintainer Serguei Sokol sokol@insa-toulouse.fr
Description Build and use B-splines for interpolation and regression. In case of regression, equality constraints as well as monotonicity and/or positivity of B-spline weights can be imposed. Moreover, knot positions (not only spline weights) can be part of optimized parameters too. For this end, 'bspline' is able to calculate Jacobian of basis vectors as function of knot positions. User is provided with functions calculating spline values at arbitrary points. These functions can be differentiated and integrated to obtain B -splines calculating derivatives/integrals at any point. B-splines of this package can simultaneously operate on a series of curves sharing the same set of knots. 'bspline' is written with concern about computing performance that's why the basis and Jacobian calculation is implemented in $\mathrm{C}++$. The rest is implemented in R but without notable impact on computing speed.
URL https://github.com/MathsCell/bspline
BugReports https://github.com/MathsCell/bspline/issues
License GPL-2
Encoding UTF-8
Imports Rcpp (>= 1.0.7), nlsic (>= 1.0.2), arrApply
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.3.1
Suggests RUnit
Copyright INRAE/INSA/CNRS
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-07-02 15:00:02 UTC

Contents

bcurve 2
bsc 3
bsp 4
bspline 5
bsppar 6
dbsp 6
diffn 7
dmat 8
ibsp 8
iknots 9
ipk 10
jacw 10
par2bsp 11
parr 11
pbsc 12
smbsp 13
Index 16
bcurve $n D B$-curve governed by (x, y, \ldots) control points.

Description

nD B-curve governed by ($\mathrm{x}, \mathrm{y}, \ldots$) control points.

Usage

bcurve(xy, $n=3$)

Arguments

$$
x y
$$

xy
Real matrix of ($\mathrm{x}, \mathrm{y}, \ldots$) coordinates, one control point per row.
n Integer scalar, polynomial order of B-spline (3 by default)

Details

The curve will pass by the first and the last points in ' $x y$ '. The tangents at the first and last points will coincide with the first and last segments of control points. Example of signature is inspired from this blog.

Value

Function of one argument calculating B-curve. The argument is supposed to be in $[0,1]$ interval.

Examples

```
    # simulate doctor's signature ;)
    set.seed(71);
    xy=matrix(rnorm(16), ncol=2)
    tp=seq(0,1,len=301)
    doc_signtr=bcurve(xy)
    plot(doc_signtr(tp), t="l", xaxt='n', yaxt='n', ann=FALSE, frame.plot=FALSE,
            xlim=range(xy[,1]), ylim=range(xy[,2]))
    # see where control points are
    text(xy, labels=seq(nrow(xy)), col=rgb(0, 0, 0, 0.25))
    # join them by segments
    lines(bcurve(xy, n=1)(tp), col=rgb(0, 0, 1, 0.25))
    # randomly curved wire in 3D space
## Not run:
    if (requireNamespace("rgl", quietly=TRUE)) {
        xyz=matrix(rnorm(24),ncol=3)
        tp=seq(0,1,len=201)
            curv3d=bcurve(xyz)
            rgl::plot3d(curv3d(tp), t="l", decorate=FALSE)
    }
## End(Not run)
``` and higher

\section*{Description}

This function is analogous but not equivalent to splines:bs() and splines2::bSpline(). It is also several times faster.

\section*{Usage}
bsc(x, xk, n = 3L, cjac = FALSE)

\section*{Arguments}
x
xk Numeric vector, knots
\(\mathrm{n} \quad\) Integer scalar, polynomial order (3 by default)
cjac Logical scalar, if TRUE makes to calculate Jacobian of basis vectors as function of knot positions (FALSE by default)

\section*{Details}

For \(n==0\), step function is defined as constant on each interval \([x k[i]\); \(x k[i+1][\), i.e. closed on the left and open on the right except for the last interval which is closed on the right too. The Jacobian for step function is considered 0 in every x point even if in points where \(\mathrm{x}=\mathrm{xk}\), the derivative is not defined.
For \(n==1\), Jacobian is discontinuous in such points so for these points we take the derivative from the right.

\section*{Value}

Numeric matrix (for cjac=FALSE), each column correspond to a B-spline calculated on x ; or List (for cjac=TRUE) with components
mat basis matrix of dimension \(n x x n w\), where \(n x\) is the length of \(x\) and \(n w=n k-n-1\) is the number of basis vectors
jac array of dimension \(n \times x(n+2) \times n w\) where \(n+2\) is the number of support knots for each basis vector

\section*{See Also}
[splines::bs()], [splines2::bSpline()]

\section*{Examples}
```

    x=seq(0, 5, length.out=101)
    # cubic basis matrix
    n=3
    m=bsc(x, xk=c(rep(0, n+1), 1:4, rep(5, n+1)), n=n)
    matplot(x, m, t="l")
    stopifnot(all.equal.numeric(c(m), c(splines::bs(x, knots = 1:4, degree = n, intercept = TRUE))))

```

\section*{Description}

Calculate B-spline values from their coefficients qw and knots xk

\section*{Usage}
bsp(x, xk, qw, n = 3L)

\section*{Arguments}
\(x \quad\) Numeric vector, abscissa points at which B-splines should be calculated. They are supposed to be non decreasing.
xk Numeric vector, knots of the B-splines. They are supposed to be non decreasing.
qw Numeric vector or matrix, coefficients of B-splines. NROW(qw) must be equal to length (xk) \(-\mathrm{n}-1\) where n is the next parameter
\(\mathrm{n} \quad\) Integer scalar, polynomial order of B-splines, by default cubic splines are calculated.

\section*{Details}

This function does nothing else than calculate a dot-product between a B-spline basis matrix calculated by \(\operatorname{bsc}()\) and coefficients qw. If qw is a matrix, each column corresponds to a separate set of coefficients. For x values falling outside of xk range, the B -splines values are set to 0 . To get a function calculating spline values at arbitrary points from \(x k\) and qw, cf. par2bsp().

\section*{Value}

Numeric matrix (column number depends on qw dimensions), B-spline values on x .

\section*{See Also}
[bsc], [par2bsp]
bspline bspline: build and use B-splines for interpolation and regression.

\section*{Description}

Build and use B-splines for interpolation and regression. In case of regression, equality constraints as well as monotonicity requirement can be imposed. Moreover, knot positions (not only spline coefficients) can be part of optimized parameters too. User is provided with functions calculating spline values at arbitrary points. This functions can be differentiated to obtain B-splines calculating derivatives at any point. B-splines of this package can simultaneously operate on a series of curves sharing the same set of knots. 'bspline' is written with concern about computing performance that's why the basis calculation is implemented in \(\mathrm{C}++\). The rest is implemented in R but without notable impact on computing speed.

\section*{bspline functions}
"bsc:" basis matrix (implemented in \(\mathrm{C}++\))
"bsp:" values of B-spline from its coefficients
"dbsp:" derivative of B-spline
'par2bsp:" build B-spline function from parameters
"bsppar:" retrieve B-spline parameters from its function
"smbsp:" build smoothing B-spline
"fitsmbsp:" build smoothing B-spline with optimized knot positions
"diffn:" finite differences

\section*{See Also}

Useful links:
- https://github.com/MathsCell/bspline
- Report bugs at https://github.com/MathsCell/bspline/issues
\begin{tabular}{ll}
\hline bsppar \(\quad\) Retrieve parameters of \(B\)-splines \\
\hline
\end{tabular}

\section*{Description}

Retrieve parameters of B-splines

\section*{Usage}
bsppar (f)

\section*{Arguments}
f Function, B-splines such that returned by \(\operatorname{par} 3 \mathrm{bsp}(), \operatorname{smbsp}(), \ldots\)

\section*{Value}

List having components: n - polynomial order, qw - coefficients, xk - knots
dbsp \(\quad\) Derivative of \(B\)-spline

\section*{Description}

Derivative of B-spline

\section*{Usage}
\[
\text { dbsp(f, nderiv }=1 \mathrm{~L} \text {, same_xk = FALSE) }
\]

\section*{Arguments}
f Function, B-spline such as returned by \(\operatorname{smbsp}()\) or par2bsp()
nderiv Integer scalar \(>=0\), order of derivative to calculate (1 by default)
same_xk Logical scalar, if TRUE, indicates to calculate derivative on the same knot grid as original function. In this case, coefficient number will be incremented by 2. Otherwise, extreme knots are removed on each side of the grid and coefficient number is maintained (FALSE by default).

\section*{Value}

Function calculating requested derivative

\section*{Examples}
```

x=seq(0., 1., length.out=11L)
y=sin(2*pi*x)
f=smbsp(x, y, nki=2L)
d_f=dbsp(f)
xf=seq(0., 1., length.out=101) \# fine grid for plotting
plot(xf, d_f(xf)) \# derivative estimated by B-splines
lines(xf, 2.*pi*cos(2*pi*xf), col="blue") \# true derivative
xk=bsppar(d_f)\$xk
points(xk, d_f(xk), pch="x", col="red") \# knot positions

```
```

diffn Finite differences

```

\section*{Description}

Calculate \(d y / d x\) where \(x, y\) are first and the rest of columns in the entry matrix ' \(m\) '

\section*{Usage}
diffn(m, ndiff = 1L)

\section*{Arguments}
\[
\begin{array}{ll}
\mathrm{m} & \text { 2- or more-column numeric matrix } \\
\text { ndiff } & \text { Integer scalar, order of finite difference (1 by default) }
\end{array}
\]

\section*{Value}

Numeric matrix, first column is midpoints of \(x\), the second and following are \(d y / d x\)

\section*{Description}

Calculate matrix for obtaining coefficients of first-derivative B-spline. They can be calculated as \(\mathrm{dqw}=\mathrm{Md} \% * \% \mathrm{qw}\). Here, dqw are coefficients of the first derivative, Md is the matrix returned by this function, and qw are the coefficients of differentiated B-spline.

\section*{Usage}
dmat (nqw \(=\) NULL, \(x k=\) NULL, \(n=\) NULL, \(f=\) NULL, same_xk \(=\) FALSE)

\section*{Arguments}
nqw Integer scalar, row number of qw matrix (i.e. degree of freedom of a B-spline)
xk Numeric vector, knot positions
\(\mathrm{n} \quad\) Integer scalar, B-spline polynomial order
\(\mathrm{f} \quad\) Function from which previous parameters can be retrieved. If both f and any of previous parameters are given then explicitly set parameters take precedence over those retrieved from \(f\).
same_xk Logical scalar, the same meaning as in dbsp

\section*{Value}

Numeric matrix of size nqw-1 x nqw
```

ibsp
Indefinite integral of $B$-spline

```

\section*{Description}

Indefinite integral of B-spline

\section*{Usage}
ibsp(f, const \(=0\), nint \(=1 \mathrm{~L})\)

\section*{Arguments}
f
const Numeric scalar or vector of length ncol(qw) where qw is weight matrix of f . Defines starting value of weights for indefinite integral (0 by default).
nint Integer scalar \(>=0\), defines how many times to take integral (1 by default)

\section*{Details}

If f is B -spline, then following identity is held: \(\operatorname{Dbsp}(\operatorname{ibsp}(f))\) is identical to f . Generally, it does not work in the other sens: \(\operatorname{ibsp}(\operatorname{Dbsp}(f))\) is not \(f\) but not very far. If we can get an appropriate constant \(\mathrm{C}=\mathrm{f}(\min (\mathrm{x}))\) then we can assert that \(\operatorname{ibsp}(\operatorname{Dbsp}(\mathrm{f})\), const=C) is the same as f .

Value
Function calculating requested integral

\section*{Description}

Normalized total variation of \(n\)-th finite differences is calculated for each column in \(y\) then averaged. These averaged values are fitted by a linear spline to find knot positions that equalize the jumps of n-th derivative.
NB. This function is used internally in (fit) \(\operatorname{smbsp}(\)) and a priori has no interest to be called directly by user.

\section*{Usage}
iknots(x, y, nki = 1L, \(n=3 L\))

\section*{Arguments}
x
Numeric vector
\(y \quad\) Numeric vector or matrix
nki Integer scalar, number of internal knots to estimate (1 by default)
n Integer scalar, polynomial order of B-spline (3 by default)

\section*{Value}

Numeric vector, estimated knot positions

\section*{Description}

Find first and last+1 indexes iip s.t. \(x[i i p]\) belongs to interval starting at \(x k[i i k]\)

\section*{Usage}
ipk(x, xk)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{x} & \text { Numeric vector, abscissa points (must be non decreasing) } \\ \mathrm{xk} & \text { Numeric vector, knots (must be non decreasing) }\end{array}\)

\section*{Value}

Integer matrix of size (\(2 x\) length \((x k)-1\)). Indexes are 0 -based
\[
\text { jacw } \quad \text { Knot Jacobian of B-spline with weights }
\]

\section*{Description}

Knot Jacobian of B-spline with weights

\section*{Usage}
jacw(jac, qws)

\section*{Arguments}
jac Numeric array, such as returned by bsc(..., cjac=TRUE)
qws Numeric matrix, each column is a set of weights forming a B-spline. If qws is a vector, it is coerced to 1 -column matrix.

\section*{Value}

Numeric array of size \(n x \times n \operatorname{col}\) (qw) \(x n k\), where \(n x=\operatorname{dim}(j a c)\) [1] and \(n k\) is the number of knots \(\operatorname{dim}(j a c)[3]+n+1\) (\(n\) being polynomial order).

\section*{Description}

Convert parameters to B-spline function

\section*{Usage}
\(\operatorname{par} 2 \mathrm{bsp}(\mathrm{n}, \mathrm{qw}, \mathrm{xk}\), covqw \(=\mathrm{NULL}, \mathrm{sdy}=\mathrm{NULL}, \quad\) sdqw \(=\mathrm{NULL})\)

\section*{Arguments}
n
qw Numeric vector or matrix, coefficients of B-splines, one set per column in case of matrix
xk Numeric vector, knots
covqw Numeric Matrix, covariance matrix of qw (can be estimated in smbsp).
sdy Numeric vector, SD of each y column (can be estimated in smbsp).
sdqw Numeric Matrix, SD of qw thus having the same dimension as qw (can be estimated in smbsp).

\section*{Value}

Function, calculating B-splines at arbitrary points and having interface \(f(x\), select) where \(x\) is a vector of abscissa points. Parameter select is passed to qw[, select, drop=FALSE] and can be missing. This function will return a matrix of size length \((x) \times n c o l(q w)\) if select is missing. Elsewhere, a number of column will depend on select parameter. Column names in the result matrix will be inherited from qw.

\section*{Description}

Polynomial formulation of B-spline

\section*{Usage}
parr \((x k, n=3 L)\)

\section*{Arguments}
\begin{tabular}{ll}
xk & Numeric vector, knots \\
n & Integer scalar, polynomial order (3 by default)
\end{tabular}

\section*{Value}

Numeric 3D array, the first index runs through \(\mathrm{n}+1\) polynomial coefficients; the second - through \(\mathrm{n}+1\) supporting intervals; and the last one through nk-n-1 B-splines (here nk=length(xk)). Knot interval of length 0 will have corresponding coefficients set to 0 .
```

pbsc Polynomial B-spline Calculation of Basis Matrix

```

\section*{Description}

Polynomial B-spline Calculation of Basis Matrix

\section*{Usage}
pbsc (x, xk, coeffs)

\section*{Arguments}
\begin{tabular}{ll}
x & Numeric, vector, abscissa points \\
xk & Numeric vector, knots \\
coeffs & Numeric 3D array, polynomial coefficients such as calculated by parr
\end{tabular}

\section*{Details}

Polynomials are calculated recursively by Cox-de Boor formula. However, it is not applied to final values but to polynomial coefficients. Multiplication by a linear functions gives a raise of polynomial degree by 1 .
Polynomial coefficients stored in the first dimension of coeffs are used as in the following formula \(p[1] * x^{\wedge} n+p[1] * x^{\wedge}(n-1)+\ldots+p[n+1]\).
Resulting matrix is the same as returned by bsc (\(x, x k, n=\operatorname{dim}\) (coeffs)[1]-1)

\section*{Value}

Numeric matrix, basis vectors, one per column. Row number is length(\(x\)).

\section*{See Also}
bsc

\section*{Examples}
```

n=3
x=seq(0, 5, length.out=101)
xk=c(rep(0, n+1), 1:4, rep(5, n+1))
\# cubic polynomial coefficients
coeffs=parr(xk)
\# basis matrix

```
 \(m=p b s c(x, x k\), coeffs \()\)
 matplot (x, m, t="l")
 stopifnot(all.equal.numeric(c(m), c(bsc(x, xk))))
 smbsp \(\quad\) Smoothing \(B\)-spline of order \(n>=0\)

\section*{Description}

Optimize smoothing B-spline coefficients (smbsp) and knot positions (fitsmbsp) such that residual squared sum is minimized for all y columns.

\section*{Usage}
smbsp(
x ,
\(y\),
n = 3L,
xki \(=\) NULL,
nki \(=1 \mathrm{~L}\),
lieq \(=\) NULL,
monotone \(=0\),
positive \(=0\),
mat \(=\) NULL,
estSD = FALSE,
tol \(=1 \mathrm{e}-10\)
)
fitsmbsp(
x ,
\(y\),
\(\mathrm{n}=3 \mathrm{~L}\),
xki = NULL,
nki \(=1 \mathrm{~L}\),
lieq \(=\) NULL,
monotone \(=0\),
positive \(=0\),
control = list(),
estSD = FALSE,
tol \(=1 \mathrm{e}-10\)
)

\section*{Arguments}
x
y

Numeric vector, abscissa points
Numeric vector or matrix or data.frame, ordinate values to be smoothed (one set per column in case of matrix or data.frame)
\begin{tabular}{|c|c|}
\hline n & Integer scalar, polynomial order of B-splines (3 by default) \\
\hline xki & Numeric vector, strictly internal B-spline knots, i.e. lying strictly inside of \(x\) bounds. If NULL (by default), they are estimated with the help of iknots(). This vector is used as initial approximation during optimization process. Must be non decreasing if not NULL. \\
\hline nki & Integer scalar, internal knot number (1 by default). When nki==0, it corresponds to polynomial regression. If xki is not NULL, this parameter is ignored. \\
\hline lieq & List, equality constraints to respect by the smoothing spline, one list item per y column. By default (NULL), no constraint is imposed. Constraints are given as a 2-column matrix (xe, ye) where for each xe, an ye value is imposed. If a list item is NULL, no constraint is imposed on corresponding y column. \\
\hline monotone & Numeric scalar or vector, if monotone \(>0\), resulting B-spline weights must be increasing; if monotone \(<0\), B -spline weights must be decreasing; if monotone \(==0\) (default), no constraint on monotonicity is imposed. If 'monotone' is a vector it must be of length \(n \operatorname{col}(y)\), in which case each component indicates the constraint for corresponding column of \(y\). \\
\hline positive & Numeric scalar, if positive \(>0\), resulting B-spline weights must be \(>=0\); if positive \(<0\), \(B\)-spline weights must be decreasing; if positive \(==0\) (default), no constraint on positivity is imposed. If 'positive' is a vector it must be of length \(n \operatorname{col}(y)\), in which case each component indicates the constraint for corresponding column of \(y\). \\
\hline mat & Numeric matrix of basis vectors, if NULL it is recalculated by bsc(). If provided, it is the responsibility of the user to ensure that this matrix be adequate to xki vector. \\
\hline estSD & Logical scalar, if TRUE, indicates to calculate: SD of each y column, covariance matrix and SD of spline coefficients. All these values can be retrieved with bsppar() call (FALSE by default). These estimations are made under assumption that all y points have uncorrelated noise. Optional constraints are not taken into account of SD. \\
\hline tol & Numerical scalar, relative tolerance for small singular values that should be considered as 0 if \(s[i]<=t o l * s[1]\). This parameter is ignored if estSD=FALSE (1.e-10 by default). \\
\hline control & List, passed through to nlsic() call \\
\hline
\end{tabular}

\section*{Details}

If constraints are set, we use nlsic::lsie_ln() to solve a least squares problem with equality constraints in least norm sens for each y column. Otherwise, nlsic:: ls_ln_svd() is used for the whole y matrix. The solution of least squares problem is a vector of B-splines coefficients qw, one vector per y column. These vectors are used to define B-spline function which is returned as the result.

NB. When nki >= length(x)-n-1 (be it from direct setting or calculated from length(xki)), it corresponds to spline interpolation, i.e. the resulting spline will pass exactly by (\(\mathrm{x}, \mathrm{y}\)) points (well, up to numerical precision).

Border and external knots are fixed, only strictly internal knots can move during optimization. The optimization process is constrained to respect a minimal distance between knots as well as to bound them to x range. This is done to avoid knots getting unsorted during iterations and/or going outside of a meaningful range.

\section*{Value}

Function, smoothing B-splines respecting optional constraints (generated by par2bsp()).

\section*{See Also}
bsppar for retrieving parameters of B-spline functions; par2bsp for generating B-spline function; iknots for estimation of knot positions

\section*{Examples}
```

    x=seq(0, 1, length.out=11)
    y=sin(pi*x)+rnorm(x, sd=0.1)
    # constraint B-spline to be 0 at the interval ends
    fsm=smbsp(x, y, nki=1, lieq=list(rbind(c(0, 0), c(1, 0))))
    # check parameters of found B-splines
    bsppar(fsm)
    plot(x, y) # original "measurements"
    # fine grained x
    xfine=seq(0, 1, length.out=101)
    lines(xfine, fsm(xfine)) # fitted B-splines
    lines(xfine, sin(pi*xfine), col="blue") # original function
    # visualize knot positions
    xk=bsppar(fsm)$xk
    points(xk, fsm(xk), pch="x", col="red")
    
# fit broken line with linear B-splines

x1=seq(0, 1, length.out=11)
x2=seq(1, 3, length.out=21)
x3=seq(3, 4, length.out=11)
y1=x1+rnorm(x1, sd=0.1)
y2=-2+3*x2+rnorm(x2, sd=0.1)
y3=4+x3+rnorm(x3, sd=0.1)
x=c(x1, x2, x3)
y=c(y1, y2, y3)
plot(x, y)
f=fitsmbsp(x, y, n=1, nki=2)
lines(x, f(x))

```

\section*{Index}
bcurve, 2
bsc, 3, 12
bsp, 4
bspline, 5
bspline-package (bspline), 5
bsppar, 6
dbsp, 6, 8
diffn, 7
dmat, 8
fitsmbsp (smbsp), 13
ibsp, 8
iknots, 9
ipk, 10
jacw, 10
par2bsp, 11
parr, 11, 12
pbsc, 12
smbsp, 11, 13```

