Package: breakpoint (via r-universe)

September 14, 2024

Type Package

Title An R Package for Multiple Break-Point Detection via the Cross-Entropy Method

Version 1.2

Date 2016-01-11

Author Priyadarshana W.J.R.M. and Georgy Sofronov

Maintainer Priyadarshana W.J.R.M. <mjayawardana@swin.edu.au>

Description Implements the Cross-Entropy (CE) method, which is a model based stochastic optimization technique to estimate both the number and their corresponding locations of break-points in continuous and discrete measurements (Priyadarshana and Sofronov (2015), Priyadarshana and Sofronov (2012a), Priyadarshana and Sofronov (2012b)).

License GPL (>= 2)

Depends R (>= 2.5)

Imports ggplot2 (>= 1.0.0), MASS, msm (>= 1.0.1), foreach (>= 1.2.0), parallel, doParallel (>= 1.0.10)

URL https://github.com/madawaweer/breakpoint

NeedsCompilation no

Repository CRAN

Date/Publication 2016-01-13 14:39:45

Contents

breakpoint-package						 																		2
CE.NB						 																		3
CE.NB.Init					•	 •																		5
CE.Normal.Init.Mean .						 																		8
CE.Normal.Init.MeanVa	ır					 																		10
CE.Normal.Mean		•		•	•	 •	•	•	•			•	•	•	•	•	•	•	•	•	•	•		13
CE.Normal.MeanVar .						 																		15

x	-																	26	
	profilePlot	 							 						 			 24	
	ch1.GM03563	 							 						 			 23	
	CE.ZINB.Init	 							 						 			 20	
	CE.ZINB	 			•				 						 	•		17	

Index

breakpoint-package Multiple Break-Point Detection via the Cross-Entropy Method

Description

The breakpoint package implements variants of the Cross-Entropy (CE) method proposed in Priyadarshana and Sofronov (2015, 2012a and 2012b) to estimate both the number and the corresponding locations of break-points in biological sequences of continuous and discrete measurements. The proposed method primarily built to detect multiple break-points in genomic sequences. However, it can be easily extended and applied to other problems.

Details

Package:	breakpoint
Type:	Package
Version:	1.2
Date:	2016-01-11
License:	GPL 2.0

"breakpoint"" package provides estimates on both the number as well as the corresponding locations of break-points. The algorithms utilize the Cross-Entropy (CE) method, which is a model-based stochastic optimization procedure to obtain the estimates on locations. Model selection procedures are used to obtain the number of break-points. Current implementation of the methodology works as an exact search method in estimating the number of break-points. However, it supports calculations if the initial locations are provided. A parallel implementation of the procedures can be carried-out in Unix/Linux/MAC OSX and WINDOWS OS with the use of "parallel" and "doParallel" packages.

Author(s)

Priyadarshana, W.J.R.M. and Sofronov, G.

Maintainer: Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M., Sofronov G. (2015). Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2), pp.487-498.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a). A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data. In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b). The Cross-Entropy Method and Multiple Change-Points Detection in Zero-Inflated DNA read count data. In: Y. T. Gu, S. C. Saha (Eds.) The 4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

CE.NB

Multiple Break-point Detection via the CE Method with Negative Binomial Distribution

Description

Performs calculations to estimate both the number of break-points and their corresponding locations of discrete measurements with the CE method. Negative binomial distribution is used to model the over-dispersed discrete (count) data. This function supports for the simulation of break-point locations in the CE algorithm based on the four parameter beta distribution or truncated normal distribution. User can select either BIC or AIC to select the optimal number of break-points.

Usage

CE.NB(data, Nmax = 10, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8, b = 0.8, distyp = 1, penalty = "BIC", parallel = FALSE)

Arguments

data	data to be analysed. A single column array or a dataframe.
Nmax	maximum number of break-points. Default value is 10.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
а	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal distribution, this value is used to smooth the estimates of the mean values. Default is 0.8.

b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distribution to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select either BIC or AIC to obtain the number of break-points. Options: "BIC", "AIC". Default is "BIC".
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

The negative binomial (NB) distribution is used to model the discrete (count) data. NB model is preferred over the Poission model when over-dispersion is observed in the count data. A performance function score (BIC or AIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points from no break-point to the user provided maximum number of break-points (default is 10). The solution that minimizes the BIC/AIC with respect to the number of break-points is reported as the optimal solution. Finally, a list containing a vector of break-point locations, number of break-points, BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

The number of break-points in the data that is estimated by the CE method
A vector of break-point locations
BIC/AIC value
Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b) The Cross-Entropy Method and Multiple Change-Points Detection in Zero-Inflated DNA read count data, In: Y. T. Gu, S. C. Saha (Eds.) The 4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

CE.NB.Init

Schwarz, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6(2), 461-464.

See Also

CE.NB.Init for CE with Negative binomial with initial locations,

CE.ZINB for CE with zero-inflated negative binomial,

CE. ZINB. Init for CE with zero-inflated negative binomial with initial locations,

profilePlot to obtain mean profile plot.

Examples

```
#### Simulated data example ###
segs <- 6 # Number of segements
M <- c(1500, 2200, 800, 2500, 1000, 2000) # Segment width
#true.locations <- c(1501, 3701, 4501, 7001, 8001) # True break-point locations</pre>
seg <- NULL
p <- c(0.45, 0.25, 0.4, 0.2, 0.3, 0.6) # Specification of p's for each segment
for(j in 1:segs){
 seg <- c(seg, rnbinom(M[j], size =10, prob = p[j]))</pre>
}
simdata <- as.data.frame(seg)</pre>
rm(p, M, seg, segs, j)
#plot(data[, 1])
## Not run:
## CE with the four parameter beta distribution with BIC as the selection criterion ##
obj1 <- CE.NB(simdata, distyp = 1, penalty = BIC, parallel = TRUE) # Parallel computation
obj1
profilePlot(obj1, simdata) # To obtain the mean profile plot
## CE with truncated normal distribution with BIC as the selection criterion ##
obj2 <- CE.NB(simdata, distyp = 2, penalty = BIC, parallel = TRUE) # Parallel computation
obj2
profilePlot(obj1, simdata) # To obtain the mean profile plot
## End(Not run)
```

CE.NB.Init

Multiple Break-point Detection via the CE Method with Negative Binomial Distribution with initial locations

Description

Performs calculations to estimate the break-point locations when their initial values are given. Negative binomial distribution is used to model the over-dispersed discrete (count) data. This function supports for the simulation of break-point locations in the CE algorithm based on the four parameter beta distribution or truncated normal distribution. User can select either BIC or AIC to select the optimal number of break-points.

Usage

```
CE.NB.Init(data, init.locs, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8, b = 0.8, distyp = 1, penalty = "BIC", var.init = 1e+05, parallel = FALSE)
```

Arguments

data	data to be analysed. A single column array or a dataframe.
init.locs	Initial break-point locations.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
a	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal distribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distribution to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select either BIC or AIC to obtain the number of break-points. Options: "BIC", "AIC". Default is "BIC".
var.init	Initial variance value to facilitate the search process. Default is 100000.
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

The negative binomial (NB) distribution is used to model the discrete (count) data. NB model is preferred over the Poission model when over-dispersion is observed in the count data. A performance function score (BIC or AIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution) with respect to the user

CE.NB.Init

provided initial locations. Finally, a list containing a vector of break-point locations, number of break-points, BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
BIC/AIC	BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b) The Cross-Entropy Method and Multiple Change-Points Detection in Zero-Inflated DNA read count data, In: Y. T. Gu, S. C. Saha (Eds.) The 4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Schwarz, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6(2), 461-464.

See Also

CE.NB for CE with Negative binomial,

CE.ZINB for CE with zero-inflated negative binomial,

CE.ZINB.Init for CE with zero-inflated negative binomial with initial locations,

profilePlot to obtain mean profile plot.

Examples

```
#### Simulated data example ###
segs <- 6 # Number of segements
M <- c(1500, 2200, 800, 2500, 1000, 2000) # Segment width
#true.locations <- c(1501, 3701, 4501, 7001, 8001) # True break-point locations
seg <- NULL
p <- c(0.45, 0.25, 0.4, 0.2, 0.3, 0.6) # Specification of p's for each segment
for(j in 1:segs){
    seg <- c(seg, rnbinom(M[j], size =10, prob = p[j]))
}</pre>
```

```
simdata <- as.data.frame(seg)
rm(p, M, seg, segs, j)
#plot(data[, 1])
## Not run:
## CE with the four parameter beta distribution with BIC as the selection criterion ##
##Specification of initial locations
init.locations <- c(1400, 3400, 4650, 7100, 8200)
obj1 <- CE.NB.Init(simdata, init.locs = init.locations, distyp = 1, penalty = BIC, parallel = TRUE)
obj1
profilePlot(obj1, simdata) # To obtain the mean profile plot
## CE with truncated normal distribution with BIC as the selection criterion ##
obj2 <- CE.NB.Init(simdata, init.locs = init.locations, distyp = 2, penalty = BIC, parallel = TRUE)
obj2
profilePlot(obj1, simdata) # To obtain the mean profile plot
## End(Not run)</pre>
```

CE.Normal.Init.Mean Multiple break-point detection via the CE method for continuous data with initial locations (mean levels)

Description

Performs calculations to estimate the break-point locations when their initial values are given. Normal distribution is used to model the observed continous data. Accross the segments standard deviation is assumed to be the same. This function supports for the simulation of break-point locations based on the four parameter beta distribution or truncated normal distribution. User can select from the modified BIC (mBIC) proposed by Zhang and Siegmund (2007), BIC or AIC to obtain the optimal number of break-points.

Usage

```
CE.Normal.Init.Mean(data, init.locs, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8,
b = 0.8, distyp = 1, penalty = "mBIC", var.init = 1e+05, parallel = FALSE)
```

Arguments

data	data to be analysed. A single column array or a dataframe.
init.locs	Initial break-point locations.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01 .

8

rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
a	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal dis- tribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distribution to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select from mBIC, BIC or AIC to obtain the optimal number of break- points. Options: "mBIC", "BIC" and "AIC". Default is "mBIC".
var.init	Initial variance value to facilitate the search process. Default is 100000.
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

The normal distribution is used to model the continuous data. A performance function score (mBIC/BIC/AIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points from the user provided initial locations. The solution that maximizes the selection criteria with respect to the number of break-points is reported as the optimal solution. Finally, a list containing a vector of break-point locations, number of break-points, mBIC/BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
mBIC/BIC/AIC	mBIC/BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M., Sofronov G. (2015). Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2), pp.487-498.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

See Also

CE.Normal.Mean for CE with normal,

CE.Normal.MeanVar for CE with normal to detect break-points in both mean and variance,

CE.Normal.Init.MeanVar for CE with normal to detect break-points in both mean and variance with initial locations,

profilePlot to obtain mean profile plot.

Examples

Not run:

simdata <- as.data.frame(c(rnorm(200,100,5),rnorm(100,300,5),rnorm(300,150,5)))</pre>

CE with four parameter beta distribution with mBIC as the selection criterion
obj1 <- CE.Normal.Init.Mean(simdata, init.locs = c(150, 380), distyp = 1, parallel =TRUE)
profilePlot(obj1, simdata)</pre>

CE with truncated normal distribution with mBIC as the selection criterion
obj2 <- CE.Normal.Init.Mean(simdata, init.locs = c(150, 380), distyp = 2, parallel =TRUE)
profilePlot(obj2, simdata)</pre>

End(Not run)

CE.Normal.Init.MeanVar

Multiple break-point detection via the CE method for continuous data with initial locations (both mean and variance changes)

Description

Performs calculations to estimate the break-point locations when their initial values are given. The normal distribution is used to model the observed continous data. Both changes in mean and variance are estimated. This function supports for the simulation of break-point locations based on the four parameter beta distribution or truncated normal distribution. User can select either from the general BIC or AIC to obtain the optimal number of break-points.

Usage

```
CE.Normal.Init.MeanVar(data, init.locs, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8, b = 0.8, distyp = 1, penalty = "BIC", var.init = 1e+05, parallel = FALSE)
```

Arguments

data	data to be analysed. A single column array or a dataframe.
init.locs	Initial break-point locations.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
а	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal distribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distribution to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select either from BIC or AIC to obtain the optimal number of break- points. Options: "BIC" and "AIC". Default is "BIC".
var.init	Initial variance value to facilitate the search process. Default is 100000.
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

The normal distribution is used to model the continuous data. A performance function score (BIC/AIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points

from the user provided initial locations. Changes in both mean and variances are estimated. The solution that maximizes the selection criteria with respect to the number of break-points is reported as the optimal solution. Finally, a list containing a vector of break-point locations, number of break-points, BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
BIC/AIC	BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M., Sofronov G. (2015). Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2), pp.487-498.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

See Also

CE.Normal.Init.Mean for CE with normal with initial locations,

CE.Normal.Mean for CE with normal to detect break-points in mean levels,

CE.Normal.MeanVar for CE with normal to detect break-points in both mean and variance,

profilePlot to obtain mean profile plot.

Examples

Not run:

simdata <- as.data.frame(c(rnorm(200,100,5),rnorm(1000,160,8),rnorm(300,120,10)))
initial.locs <- c(225, 1300)</pre>

CE with four parameter beta distribution with BIC as the selection criterion
obj1 <- CE.Normal.Init.MeanVar(simdata, init.locs = initial.locs, distyp = 1, parallel =TRUE)</pre>

CE.Normal.Mean

profilePlot(obj1, simdata)
CE with truncated normal distribution with BIC as the selection criterion
obj2 <- CE.Normal.Init.MeanVar(simdata, init.locs = initial.locs, distyp = 2, parallel =TRUE)
profilePlot(obj2, simdata)</pre>

End(Not run)

CE.Normal.Mean Multiple Break-point Detection via the CE Method for Continuous Data (Mean levels)

Description

This function performs calculations to estimate both the number of break-points and their corresponding locations of continuous measurements with the CE method. The normal distribution is used to model the observed continous data. Accross the segments standard deviation is assumed to be the same. This function supports for the simulation of break-point locations based on the four parameter beta distribution or truncated normal distribution. User can select from the modified BIC (mBIC) proposed by Zhang and Siegmund (2007), BIC or AIC to obtain the optimal number of break-points.

Usage

CE.Normal.Mean(data, Nmax = 10, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8, b = 0.8, distyp = 1, penalty = "mBIC", parallel = FALSE)

Arguments

data	data to be analysed. A single column array or a dataframe.
Nmax	maximum number of break-points. Default value is 10.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
a	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal dis- tribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distributions to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.

penalty	User can select from mBIC, BIC or AIC to obtain the optimal number of break- points. Options: "mBIC", "BIC" and "AIC". Default is "mBIC".
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

The normal distribution is used to model the continuous data. A performance function score (mBIC/BIC/AIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points from no break-point to the user provided maximum number of break-points. The solution that maximizes the selection criteria with respect to the number of break-points is reported as the optimal solution. Finally, a list containing a vector of break-point locations, number of break-points, mBIC/BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
mBIC/BIC/AIC	mBIC/BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M., Sofronov G. (2015). Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2), pp.487-498.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

CE.Normal.MeanVar

See Also

CE.Normal.Init.Mean for CE with normal with initial locations,

CE.Normal.MeanVar for CE with normal to detect break-points in both mean and variance,

CE.Normal.Init.MeanVar for CE with normal to detect break-points in both mean and variance with initial locations,

profilePlot to obtain mean profile plot.

Examples

```
data(ch1.GM03563)
## Not run:
## CE with four parameter beta distribution with mBIC as the selection criterion ##
obj1 <- CE.Normal.Mean(ch1.GM03563, distyp = 1, penalty = "mBIC", parallel =TRUE)
profilePlot(obj1, simdata)
## CE with truncated normal distribution with mBIC as the selection criterion ##
obj2 <- CE.Normal.Mean(ch1.GM03563, distyp = 2, penalty = "mBIC", parallel =TRUE)
profilePlot(obj2, simdata)
## End(Not run)</pre>
```

CE.Normal.MeanVar Multiple break-point detection via the CE method for continuous data (both mean and variance changes)

Description

This function performs calculations to estimate both the number of break-points and their corresponding locations of continuous measurements with the CE method. The normal distribution is used to model the observed continuous data. This function supports for the simulation of break-point locations based on the four parameter beta distribution or truncated normal distribution. User can select either from the genral BIC or AIC to obtain the optimal number of break-points.

Usage

```
CE.Normal.MeanVar(data, Nmax = 10, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8,
b = 0.8, distyp = 1, penalty = "BIC", parallel = FALSE)
```

Arguments

data	data to be analysed. A single column array or a dataframe.
Nmax	maximum number of break-points. Default value is 10.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.

М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
а	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal distribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distributions to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select from BIC or AIC to obtain the optimal number of break-points. Options: "BIC" and "AIC". Default is "BIC".
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

The normal distribution is used to model the continuous data. A performance function score (BIC/AIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points from no break-point to the user provided maximum number of break-points. Changes in both mean and variance are estimated. The solution that maximizes the selection criteria with respect to the number of break-points is reported as the optimal solution. Finally, a list containing a vector of break-point locations, number of break-points, BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
BIC/AIC	BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

CE.ZINB

References

Priyadarshana, W. J. R. M., Sofronov G. (2015). Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12 (2), pp.487-498.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Zhang, N.R., and Siegmund, D.O. (2007) A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63, 22-32.

See Also

CE.Normal.Init.Mean for CE with normal with initial locations,

CE.Normal.Mean for CE with normal to detect break-points in mean levels,

CE.Normal.Init.MeanVar for CE with normal to detect break-points in both mean and variance with initial locations,

profilePlot to obtain mean profile plot.

Examples

Not run:

```
simdata <- as.data.frame(c(rnorm(200,100,5),rnorm(1000,160,8),rnorm(300,120,10)))
```

CE with four parameter beta distribution with BIC as the selection criterion
obj1 <- CE.Normal.MeanVar(simdata, distyp = 1, penalty = "BIC", parallel =TRUE)
profilePlot(obj1, simdata)</pre>

CE with truncated normal distribution with BIC as the selection criterion
obj2 <- CE.Normal.MeanVar(simdata, distyp = 2, penalty = "BIC", parallel =TRUE)
profilePlot(obj2, simdata)</pre>

End(Not run)

CE.ZINB

Multiple Break-point Detection via the CE Method with Zero-Inflated Negative Binomial Distribution

Description

Performs calculations to estimate both the number of break-points and their corresponding locations of discrete measurements with the CE method. Zero-inflated negative binomial distribution is used to model the excess zero observations and to model over-dispersesion in the observed discrete (count) data. This function supports for the simulation of break-point locations in the CE algorithm based on the four parameter beta distribution and truncated normal distribution. The general BIC or AIC can be used to select the optimal number of break-points.

Usage

CE.ZINB(data, Nmax = 10, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8, b = 0.8, distyp = 1, penalty = "BIC", parallel = FALSE)

Arguments

data	data to be analysed. A single column array or a dataframe.
Nmax	maximum number of break-points. Default value is 10.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
М	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
а	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal dis- tribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distribution to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select either BIC or AIC to obtain the number of break-points. Options: "BIC", "AIC". Default is "BIC".
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

Zero-inflated negative binomial (ZINB) distribution is used to model the discrete (count) data. ZINB model is preferred over the NB model when both excess zero values and over-dispersion observed in the count data. A performance function score (BIC) is calculated for each of the solutions generated

CE.ZINB

by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points from no break-point to the user provided maximum number of break-points. The solution that minimizes the BIC/AIC with respect to the number of break-points is reported as the optimal solution. Finally, a list containing a vector of break-point, BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
BIC/AIC	BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b) The Cross-Entropy Method and Multiple Change-Points Detection in Zero-Inflated DNA read count data, In: Y. T. Gu, S. C. Saha (Eds.) The 4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Schwarz, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6(2), 461-464.

See Also

CE.NB for CE with negative binomial,

CE.NB.Init for CE with negative binomial with initial locations,

CE.ZINB.Init for CE with zero-inflated negative binomial with initial locations,

profilePlot to obtain mean profile plot.

Examples

```
#### Simulated data example ###
# gamlss R package is used to simulate data from the ZINB.
## Not run:
library(gamlss)
segs <- 6 # Number of segements</pre>
```

```
M <- c(1500, 2200, 800, 2500, 1000, 2000) # Segment width
seg <- NULL
p <- c(0.6, 0.1, 0.3, 0.05, 0.2, 0.4) # Specification of p's on each segment'
sigma.val <- c(1,2,3,4,5,6) # Specification of sigma vlaues</pre>
for(j in 1:segs){
 seg <- c(seg, rZINBI(M[j], mu = 300, sigma = sigma.val[j], nu = p[j]))</pre>
}
simdata <- as.data.frame(seg)</pre>
rm(p, M, seg, segs, j, sigma.val)
#plot(data[, 1])
## CE with the four parameter beta distribution with BIC as the selection criterion ##
obj1 <- CE.ZINB(simdata, distyp = 1, penalty = BIC, parallel = TRUE) # Parallel computation
obj1
profilePlot(obj1, simdata) # To obtain the mean profile plot
## CE with truncated normal distribution with BIC as the selection criterion ##
obj2 <- CE.ZINB(simdata, distyp = 2, penalty = BIC, parallel = TRUE) # Parallel computation
obj2
profilePlot(obj2, simdata) # To obtain the mean profile plot
## End(Not run)
```

CE.ZINB.Init

Multiple Break-point Detection via the CE Method with Zero-Inflated Negative Binomial Distribution with initial locations

Description

Performs calculations to estimate the break-point locations when their initial values are given. Zeroinflated negative binomial distribution is used to model the excess zero observations and to model over-dispersesion in the observed discrete (count) data. This function supports for the simulation of break-point locations in the CE algorithm based on the four parameter beta distribution and truncated normal distribution. The general BIC or AIC can be used to select the optimal number of break-points.

Usage

```
CE.ZINB.Init(data, init.locs, eps = 0.01, rho = 0.05, M = 200, h = 5, a = 0.8, b = 0.8, distyp = 1, penalty = "BIC", var.init = 1e+05, parallel = FALSE)
```

20

CE.ZINB.Init

Arguments

data	data to be analysed. A single column array or a dataframe.
init.locs	Initial break-point locations.
eps	the cut-off value for the stopping criterion in the CE method. Default value is 0.01.
rho	the fraction which is used to obtain the best performing set of sample solutions (i.e., elite sample). Default value is 0.05.
Μ	sample size to be used in simulating the locations of break-points. Default value is 200.
h	minimum aberration width. Default is 5.
а	a smoothing parameter value. It is used in the four parameter beta distribution to smooth both shape parameters. When simulating from the truncated normal dis- tribution, this value is used to smooth the estimates of the mean values. Default is 0.8.
b	a smoothing parameter value. It is used in the truncated normal distribution to smooth the estimates of the standard deviation. Default is 0.8.
distyp	distribution to simulate break-point locations. Options: $1 =$ four parameter beta distribution, $2 =$ truncated normal distribution. Default is 1.
penalty	User can select either BIC or AIC to obtain the number of break-points. Options: "BIC", "AIC". Default is "BIC".
var.init	Initial variance value to facilitate the search process. Default is 100000.
parallel	A logical argument specifying if parallel computation should be carried-out (TRUE) or not (FALSE). By default it is set as 'FALSE'. In WINDOWS OS systems "snow" functionalities are used, whereas in Unix/Linux/MAC OSX "multicore" functionalities are used to carryout parallel computations with the maximum number of cores available.

Details

Zero-inflated negative binomial (ZINB) distribution is used to model the discrete (count) data. ZINB model is preferred over the NB model when both excess zero values and over-dispersion observed in the count data. A performance function score (BIC) is calculated for each of the solutions generated by the statistical distribution (four parameter beta distribution or truncated normal distribution), which is used to simulate break-points when the initial locations are provided. Finally, a list containing a vector of break-point locations, number of break-points, BIC/AIC values and log-likelihood value is returned in the console.

Value

A list is returned with following items:

No.BPs	The number of break-points
BP.Loc	A vector of break-point locations
BIC/AIC	BIC/AIC value
11	Loglikelihood of the optimal solution

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

References

Priyadarshana, W. J. R. M. and Sofronov, G. (2012a) A Modified Cross- Entropy Method for Detecting Multiple Change-Points in DNA Count Data, In Proc. of the IEEE Conference on Evolutionary Computation (CEC), 1020-1027, DOI: 10.1109/CEC.2012.6256470.

Priyadarshana, W. J. R. M. and Sofronov, G. (2012b) The Cross-Entropy Method and Multiple Change-Points Detection in Zero-Inflated DNA read count data, In: Y. T. Gu, S. C. Saha (Eds.) The 4th International Conference on Computational Methods (ICCM2012), 1-8, ISBN 978-1-921897-54-2.

Rubinstein, R., and Kroese, D. (2004) The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.

Schwarz, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6(2), 461-464.

See Also

CE.NB for CE with negative binomial,

CE.NB.Init for CE with negative binomial with initial locations,

CE.ZINB for CE with zero-inflated negative binomial,

profilePlot to obtain mean profile plot.

Examples

Simulated data example
gamlss R package is used to simulate data from the ZINB.

```
## Not run:
library(gamlss)
segs <- 6 # Number of segements
M <- c(1500, 2200, 800, 2500, 1000, 2000) # Segment width
#true.locations <- c(1501, 3701, 4501, 7001, 8001) # True break-point locations</pre>
seg <- NULL
p <- c(0.6, 0.1, 0.3, 0.05, 0.2, 0.4) # Specification of p's on each segment'
sigma.val <- c(1,2,3,4,5,6) # Specification of sigma vlaues</pre>
for(j in 1:segs){
 seg <- c(seg, rZINBI(M[j], mu = 300, sigma = sigma.val[j], nu = p[j]))</pre>
}
simdata <- as.data.frame(seg)</pre>
rm(p, M, seg, segs, j, sigma.val)
#plot(data[, 1])
## CE with the four parameter beta distribution with BIC as the selection criterion \, ##
init.loci <- c(1400, 3400, 4650, 7100, 8200)
```

```
obj1 <- CE.ZINB.Init(simdata, init.locs = init.loci, distyp = 1, penalty = BIC, parallel = TRUE)
obj1
profilePlot(obj1, simdata) # To obtain the mean profile plot
## CE with truncated normal distribution with BIC as the selection criterion ##
obj2 <- CE.ZINB.Init(simdata, init.locs = init.loci, distyp = 2, penalty = BIC, parallel = TRUE)
obj2
profilePlot(obj2, simdata) # To obtain the mean profile plot
## End(Not run)</pre>
```

ch1.GM03563

Fibroblast cell line (GM03563) data

Description

Chromosome 1 of cell line GM03563

Usage

data("ch1.GM03563")

Format

A single column data frame with 135 observations corresponds to chromosome 1 of cell line GM03563.

log2ratio normalized average of the log base 2 test over reference ratio data

Details

This data set is extracted from a single experiments on 15 fibroblast cell lines with each array containing over 2000 (mapped) BACs spotted in triplicate discussed in Snijders et al.(2001). Data corresponds to the chromosome 1 of cell line GM03563.

References

Snijders, A.M. et al. (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genetics, 29, 263-26.

Examples

```
data(ch1.GM03563)
## Not run:
## CE with four parameter beta distribution ##
obj1 <- CE.Normal.Mean(ch1.GM03563, distyp = 1, parallel =TRUE)
profilePlot(obj1, ch1.GM03563)
## CE with truncated normal distribution ##
obj2 <- CE.Normal.Mean(ch1.GM03563, distyp = 2, parallel =TRUE)
profilePlot(obj2, ch1.GM03563)
## End(Not run)</pre>
```

profilePlot Mean profile plot

Description

Plotting function to obtain mean profile plot of the testing dataset based on the estimates of the break-points. An R object created from the CE.Normal, CE.NB ot CE.ZINB is required. User can alter the axis names.

Usage

```
profilePlot(obj, data, x.label = "Data Sequence", y.label = "Value")
```

Arguments

obj	R object created from CE.Normal, CE.NB or CE.ZINB.
data	data to be analysed. A single column array or a dataframe.
x.label	x axis label. Default is "Data Sequence".
y.label	y axis label. Default is "Value".

Author(s)

Priyadarshana, W.J.R.M. <mjayawardana@swin.edu.au>

See Also

```
CE.Normal.Mean,
CE.NB,
CE.ZINB.
```

24

profilePlot

Examples

```
data(ch1.GM03563)
## Not run:
## CE with four parameter beta distribution ##
obj1 <- CE.Normal.Mean(ch1.GM03563, distyp = 1, penalty = "mBIC", parallel =TRUE)
profilePlot(obj1)</pre>
```

```
## CE with truncated normal distribution ##
obj2 <- CE.Normal.Mean(ch1.GM03563, distyp = 2, penalty = "mBIC", parallel =TRUE)
profilePlot(obj2)</pre>
```

End(Not run)

Index

* data ch1.GM03563,23

breakpoint(breakpoint-package), 2
breakpoint-package, 2

CE.NB, 3, 7, 19, 22, 24 CE.NB.Init, 5, 5, 19, 22 CE.Normal.Init.Mean, 8, 12, 15, 17 CE.Normal.Init.MeanVar, 10, 10, 15, 17 CE.Normal.Mean, 10, 12, 13, 17, 24 CE.Normal.MeanVar, 10, 12, 15, 15 CE.ZINB, 5, 7, 17, 22, 24 CE.ZINB.Init, 5, 7, 19, 20 ch1.GM03563, 23

profilePlot, 5, 7, 10, 12, 15, 17, 19, 22, 24