Package: bioPN (via r-universe)

August 21, 2024
Version 1.2.0
Date 2014-03-04

Title Simulation of deterministic and stochastic biochemical reaction
networks using Petri Nets

Author Roberto Bertolusso and Marek Kimmel
Maintainer Roberto Bertolusso <rbertolusso@rice.edu>

Description bioPN is a package suited to perform simulation of
deterministic and stochastic systems of biochemical reaction
networks. Models are defined using a subset of Petri Nets, in a
way that is close at how chemical reactions are defined. For
deterministic solutions, bioPN creates the associated system of
differential equations "~ on the fly", and solves it with a Runge
Kutta Dormand Prince 45 explicit algorithm. For stochastic
solutions, bioPN offers variants of Gillespie algorithm, or
SSA. For hybrid deterministic/stochastic, it employs the
Haseltine and Rawlings algorithm, that partitions the system in
fast and slow reactions. bioPN algorithms are developed in C to
achieve adequate performance.

NeedsCompilation yes

License GPL (>=2)

Repository CRAN

Date/Publication 2014-03-04 21:55:07

Contents
a)bioPN package
b) Simulation Functions
¢) Model Definition e
Index

2 a) bioPN package
a) bioPN package Simulation of deterministic and stochastic biochemical reaction net-
works using Petri Nets
Description
bioPN is a package of C functions that can be used to simulate time-dependent evolution of bio-
chemical reaction networks. The model is defined as a place/transition Petri Net, which is close to
how biochemical reactions are defined. The model can be either deterministically solved using an
explicit Runge Kutta Dormand Prince 45 method, simulated using four highly optimized variants of
the stochastic simulation algorithm, or as a deterministic/stochastic hybrid, according to the Hasel-
tine and Rawlings’ algorithm, or using the Partitioned Leaping Algorithm. The library has been
optimized for speed and flexibility.
bioPN has been tested only on 64 bits machines, relying on integers of 64 bits. The behavior on 32
bits architectures is untested and not supported.
Details
Package: bioPN
Type: Package
Version: 1.2.0
Date: 2014-03-04
License: GPL (>=2)
Author(s)
Roberto Bertolusso and Marek Kimmel
Maintainer: Roberto Bertolusso <rbertolusso@rice.edu>
References

The biological example presented in the functions is extracted from: Paszek, P. (2007) Modeling
stochasticity in gene regulation: characterization in the terms of the underlying distribution func-

tion, Bull Math Biol, 69, 1567-1601.

b) Simulation Functions 3

b) Simulation Functions
Simulation of a biochemical system

Description

These functions simulate a biochemical reacton system parameterized as a Petri Net. GillespieOptimDirect,
GillespieDirectGB, GibsonBruck, and GillespieDirectCR performs pure stochastic simula-

tions, RungeKuttaDormandPrince45 a pure deterministic integration, HaseltineRawlings a hy-

brid of the above. PartitionedLeaping a dynamic-repartitioning simulation. Multiple runs can be
performed at once.

See init for a way of defining the model that is close to the way reactions are written.

Usage

Exact stochastic simulation:
GillespieOptimDirect(model, timep, delta=1, runs=1)
GillespieDirectGB(model, timep, delta=1, runs=1)
GibsonBruck(model, timep, delta=1, runs=1)
GillespieDirectCR(model, timep, delta=1, runs=1)

Pure deterministic:

RungeKuttaDormandPrince45(model, timep, delta=1, ect = 1e-09)
Hybrid stochastic/deterministic:
HaseltineRawlings(model, timep, delta=1, runs=1, ect = 1e-09)

Dynamic re-partitioning:
PartitionedLeaping(model, timep, delta=1, runs=1, ect = 1e-09)

Arguments
model list containing named elements:
timep It can be either a numeric, indicating for how long (in the same time units as the
propensity constants) the process will run, or a functions (R or C), in which case
can be used to change the protocol at time intervals. See details.
delta Interval time at which the state will be saved.
runs How many runs will be performed.
ect Precision for the fast reactions.
Details

model is a list containing the following elements:

* model$pre: pre matrix, with as many rows as transitions (reactions), and columns as places
(reactants). It has the stoichiometrics of the left sides of the reactions.

b) Simulation Functions

* model$post: post matrix, with as many rows as transitions, and columns as places (products).
It has the stoichiometrics of the right sides of the reactions.

» model$h: list of propensity constants or functions returning the propensity (with as many
elements as transitions).

» model$slow: vector of zeros for slow transitions and ones for fast transitions. Only needed
for HaseltineRawlings. Ignored otherwise.

» model$M: initial marking (state) of the system.

» model$place: vector with names of the places.

» model$transition: vector with names of the transitions.

Value

The functions return a list with the following elements:

place

transition

dt

run

run[[1]1I$M

vector with the names of the places if supplied. If not, the function creates names
as follows: P1, P2, ...

vector with the names of the transitions if supplied. If not, the function creates
names as follows: T1, T2, ...

vector containing the discretized times at which the state is saved (according to
delta)

list with as many elements as runs. We will describe the first element, run[[1]],
as the rest have exactly the same structure. It is also a list, with the following
elements:

list with as many elements as places, each of them containing the state of the
system sampled according to delta.

run[[1]]$transitions

vector with as many elements as transitions, with the total of time each slow
reaction fired.

run[[1]]$tot.transitions

See Also

init, atr

Examples

numeric with the summ of run[[1]]$transitions.

bioPN has been tested only on 64 bits machines.
It may fail in 32 bits architecture.
if (.Machine$sizeof.pointer == 8) {

#i#t##### Reaction constants

H<- 10
K<-6
r <- .25
c<-3
b <-2

b) Simulation Functions

i

Gi <- 1

Ga <- 2

mRNA <- 3
Protein <- 4

model <- list(

pre=matrix(c(1,0,0,0, 0,1,0,0, 0,1,0,0,
0,0,1,0, 0,0,1,0, 0,0,0,1),
ncol=4, byrow=TRUE),

post=matrix(c(o,1,0,0, 1,0,0,0, 0,1,1,0,
0,0,0,0, 0,0,1,1, 0,0,0,0),
ncol=4, byrow=TRUE),

h=1list(c, b, H, 1, K, r),

M=c(1,0,0,0))

timep <- 200
delta <- 1

HHHHHHAEEEE AR
Completely Deterministic #i#
HHHHHHHH A
Sim <- RungeKuttaDormandPrince45(model, timep, delta)

Note, it could also be done as follows
slow <- rep(@, transitions)
Sim <- HaseltineRawlings(model, timep, delta, runs = 1)

mRNA. run <= Sim$run[[11I$MLLmRNA]]
protein.run <- Sim$run[[1]]1$M[[Protein]]

Theoretical results (red lines in following plots)
Mean.mRNA <- c/(c+b)*H
Mean.protein <- Mean.mRNA * K/r

par(mfrow=c(1,2))

par(mar=c(2, 4, 2, 1) + 0.1)

plot(Sim$dt, mRNA.run,type="1", ylab="Mean",main="mRNA")
legend(x="bottom", paste("Deterministic run"))
abline(h=Mean.mRNA, col="red"”, lwd=1)

plot(Sim$dt, protein.run,type="1", ylab="Mean”,main="Protein")
legend(x="bottom", paste(”Deterministic run"))
abline(h=Mean.protein,col="red”, lwd=1)

runs <- 100 ## Increase to 10000 for better fit
HEHHHHHHHEEHE AR

Completely Stochastic

HHHEHHHEHEE A

set.seed(19761111) ## Set a seed (for reproducible results)
Sim <- GillespieOptimDirect(model, timep, delta, runs)

b) Simulation Functions

Note, it could also be done as follows
slow <- rep(1, transitions)
Sim <- HaseltineRawlings(model, timep, delta, runs)

mRNA. run <- sapply(Sim$run, function(run) {run$M[[mRNA]]})
protein.run <- sapply(Sim$run, function(run) {run$M[[Protein]]})

Histograms of protein at different time points.
par(mfrow=c(2,2))
par(mar=c(2, 4, 2.5, 1) + 0.1)

hist(protein.run[Sim$dt == 1,], main="Protein Distribution at t=1sec"”)
hist(protein.run[Sim$dt == 2,], main="Protein Distribution at t=2sec")
hist(protein.run[Sim$dt == 10,1, main="Protein Distribution at t=10sec")

hist(protein.run[Sim$dt == 200,], main="Protein Distribution at t=200sec")

Theoretical results (red lines in following plots)

Mean.mRNA <- c/(c+b)*H

Var.mRNA <- b/(c*(1+c+b))*Mean.mRNA*2 + Mean.mRNA

Mean.protein <- Mean.mRNA * K/r

Var.protein <- r*b*(1+c+b+r)/(c*(1+r)*x(1+ctb)*(r+ctb))*Mean.protein*2 +
r/(1+r)*Mean.protein*2/Mean.mRNA + Mean.protein

if (runs > 1) {
par(mfrow=c(2,2))
} else {
par (mfrow=c(1,2))
3
par(mar=c(2, 4, 2, 1) + 0.1)
plot(Sim$dt, apply(mRNA.run,1,function(tpt) {mean(tpt)}),type="1", ylab="Mean"”,main="mRNA")
legend(x="bottom", paste(”Gene, mRNA and Protein Stochastic\nRuns :", runs))
abline(h=Mean.mRNA,col="red", lwd=1)
plot(Sim$dt, apply(protein.run,1,function(tpt) {mean(tpt)3}),type="1", ylab="Mean"” ,main="Protein")
legend(x="bottom", paste(”Gene, mRNA and Protein Stochastic\nRuns :", runs))
abline(h=Mean.protein,col="red"”, lwd=1)
if (runs > 1) {
par(mar=c(2, 4, @, 1) + 0.1)
plot(Sim$dt, apply(mRNA.run,1,function(tpt) {var(tpt)}),type="1", ylab="Var")
abline(h=Var.mRNA,col="red"”, 1lwd=1)
plot(Sim$dt, apply(protein.run,1,function(tpt) {var(tpt)}),type="1", ylab="Var")
abline(h=Var.protein,col="red"”, 1lwd=1)

HHHHHHHEHEEE AR AR A
Hybrid: mRNA and protein fast, gene activation/inactivation slow
B s s S S R
model$slow <- ¢(1,1,0,0,0,0)

Sim <- HaseltineRawlings(model, timep, delta, runs)

mRNA.run <- sapply(Sim$run, function(run) {run$M[LmRNAII})
protein.run <- sapply(Sim$run, function(run) {run$M[[Protein]]})

¢) Model Definition 7

Mean.mRNA <- c/(c+b)*H

Var.mRNA <- b/(cx(1+c+b))*Mean.mRNA*2

Mean.protein <- Mean.mRNA * K/r

Var.protein <- r*bx(1+c+b+r)/(c*(1+r)*x(1+ctb)*(r+c+b))*Mean.protein*2

if (runs > 1) {
par(mfrow=c(2,2))
} else {
par(mfrow=c(1,2))
}
par(mar=c(2, 4, 2, 1) + 0.1)
plot(Sim$dt, apply(mRNA.run,1,function(tpt) {mean(tpt)}),type="1", ylab="Mean"”,main="mRNA")
legend(x="bottom", paste(”Only Gene Stochastic\nRuns :", runs))
abline(h=Mean.mRNA, col="red"”, lwd=1)
plot(Sim$dt, apply(protein.run,1,function(tpt) {mean(tpt)3}),type="1", ylab="Mean"” ,main="Protein")
legend(x="bottom", paste(”Only Gene Stochastic\nRuns :", runs))
abline(h=Mean.protein,col="red”, lwd=1)
if (runs > 1) {
par(mar=c(2, 4, @, 1) + 0.1)
plot(Sim$dt, apply(mRNA.run,1,function(tpt) {var(tpt)}),type="1", ylab="Var")
abline(h=Var.mRNA,col="red"”, lwd=1)
plot(Sim$dt, apply(protein.run,1,function(tpt) {var(tpt)}),type="1", ylab="Var")
abline(h=Var.protein,col="red"”, 1lwd=1)

c) Model Definition Helper functions for model definition

Description

These functions are used to define models. They become more useful as the model has more places
and transitions, as pre and post are sparse matrices so their direct manipulation may be error prone.
See example of use below.

Usage

init(place)
atr(trans.name=NULL)
load.cfn(place, code)
unload.cfns()

Arguments
place Places
trans.name Name of the transition (reaction)

code C code that returns the propensity

Details

¢) Model Definition

Function init accesses the frame of the calling function, creating variables with the names "model",
"L","R", and "h", that are considered reserved to bioPN. It also creates a variable for each element in
the place vector submitted to the function init. Function atr creates a variable for each transition
name sent. load.cfn and unload.cfns are used on cases where the transitions are of a special
form, and a C function wants to be used to compute it for increase performance.

Value

The functions do not return values.

See Also

GillespieOptimDirect, HaseltineRawlings

Examples

bioPN has been tested only on 64 bits machines.
It may fail in 32 bits architecture.
if (.Machine$sizeof.pointer == 8) {

#ittHH# Constants definition (convenient but not required)

H<- 10
K<-6

r <- .25
c<-3

b <-2
HHHHHHH

place <- c("Gi", "Ga", "mRNA", "Protein")

WARNING:
#it
#it
#it
#it
#it
#it
#i#t

function init() accesses the frame

of the calling function, creating variables
with the names "model”, "L", "R", and "h",
that are considered reserved to bioPN.

It also creates a variable for each element
in the place vector submitted to the function
init(). Function atr() creates a variable

for each transition name sent.

#itHHHE Initialization

init(place)

#itHHH#HE Start of model definition

Gi -> Ga
h <-c¢
L[Gi] <- 1
R[Ga] <- 1

atr("gene_activation”) ## Add this reaction

¢) Model Definition

Ga —> Gi
h<-b
L[Gal <- 1
R[Gi] <- 1

atr("gene_inactivation")

Ga -> Ga + mRNA

h <- H

L[Gal <- 1

R[Ga]l <- 1; RLmRNA] <- 1
atr("transcription”)

mRNA -> mRNA + Protein

h <- K

LLmRNAT <- 1

RLmMRNA] <- 1; R[Protein] <- 1
atr("mRNA_degradation”)

mRNA -> 0
h <=1
LLmRNAT <- 1

atr("translation”)

Protein -> 0

h <-r

L[Protein] <- 1
atr("protein_degradation”)

#i##HH#E End of model definition

model$M=rep (@, model$places)
model$M[Gi] <- 1

timep <- 200
delta <- 1

Completely Deterministic
Sim <- RungeKuttaDormandPrince45(model, timep, delta)

runs <- 100

Completely Stochastic
set.seed(19761111) ## Set a seed (for reproducible results)
Sim <- GillespieOptimDirect(model, timep, delta, runs)

Hybrid run
model$slow <- rep(@, model$transitions)
model$slow[c(gene_activation, gene_inactivation)] <- 1

set.seed(19761111) ## Set a seed (for reproducible results)
Sim <- HaseltineRawlings(model, timep, delta, runs)

}

Index

a) bioPN package, 2
atr, 4
atr (c) Model Definition), 7

b) Simulation Functions, 3
bioPN-package (a) bioPN package), 2

c) Model Definition,7

GibsonBruck (b) Simulation Functions), 3

GillespieDirectCR (b) Simulation
Functions), 3

GillespieDirectGB (b) Simulation
Functions), 3

GillespieOptimDirect, 8

GillespieOptimDirect (b) Simulation
Functions), 3

HaseltineRawlings, 8
HaseltineRawlings (b) Simulation
Functions), 3

init, 3, 4
init (c) Model Definition), 7

load.cfn (c) Model Definition), 7

PartitionedLeaping (b) Simulation
Functions), 3

RungeKuttaDormandPrince45 (b)
Simulation Functions), 3

unload.cfns (c) Model Definition), 7

10

	a) bioPN package
	b) Simulation Functions
	c) Model Definition
	Index

