
Package: binseqtest (via r-universe)
October 17, 2024

Type Package

Title Exact Binary Sequential Designs and Analysis

Version 1.0.4

Date 2023-08-24

Author Jenn Kirk, Michael P. Fay

Maintainer Michael P. Fay <mfay@niaid.nih.gov>

Description For a series of binary responses, create stopping boundary
with exact results after stopping, allowing updating for
missing assessments.

License GPL-3

Depends methods, graphics, stats, clinfun

Collate 'allFuncs.R'

NeedsCompilation no

Repository CRAN

Date/Publication 2023-08-24 15:30:02 UTC

Contents
binseqtest-package . 2
analyze . 3
analyze-methods . 4
binseqtest-internal . 4
bound-class . 6
designOBF . 7
EN . 9
getTSalpha . 10
modify . 11
plot-methods . 12
powerBsb . 13
prStop . 14
stopTable . 15
summary-methods . 16
unirootDiscrete . 17

1

2 binseqtest-package

Index 19

binseqtest-package Binary sequential tests

Description

Design and analyze binary sequential tests

Details

The package creates designs for testing a series of binary responses sequentially. It allows checking
after every response, or grouped sequential tests. Gives exact confidence intervals and p-values.
Has an option for non-binding futility boundaries.

There are functions for creating the binary sequential boundaries or binary grouped sequential
boundaries (see designOBF), creating tables of statistics (estimates, confidence intervals, and p-
values) at specific stopping points in the boundary (see link{stopTable}), modifying the bound-
aries (see modify), and plotting the boundaries (plot-methods).

For details see Kirk and Fay (2014).

Author(s)

Jenn Kirk, Michael P. Fay

References

Kirk, JL, and Fay, MP (2014). An Introduction to Practical Sequential Inferences via Single Arm
Binary Response Studies Using the binseqtest R Package. (to appear in American Statistician).

Examples

create an O'Brien-Fleming-type design, with 2.5 percent error on each side with max N of 50
B<-designOBF(50)
plot it
plot(B)
create a table for N (total samples) values between 20 and 25
stopTable(B,Nrange=c(20,25))
modify the boundary if you missed looks at N=30 through 35
Bmod<-modify(B,missN=30:35)
plot(Bmod)

analyze 3

analyze Methods for calculating estimates, confidence intervals, and p-values
from binary sequential boundaries

Description

For routine use, these functions will not need to be called directly but are called from within the
design functions (see designOBF). If needed, use analyze for any class representing a binary se-
quential boundary (see bound-class), and the appropriate function is called.

Usage

analyzeBound(object, theta0 = 0.5, stats = "all",
alternative = "two.sided", conf.level = 0.95,
tsalpha = NULL, ...)

analyzeBoundNBF(object, theta0 = 0.5, stats = "all",
alternative = "two.sided", conf.level = 0.95,
tsalpha = NULL, cipMatch = TRUE, ...)

Arguments

object a binary sequential boundary (for classes see bound-class)

theta0 probability of success under the null

stats character, either ’all’ or ’pval’

tsalpha vector of length 2, error on either side, if present overrides alternative and
conf.level (see details)

alternative character, either ’two.sided’, ’less’, or ’greater’

conf.level confidence level

cipMatch logical, for non-binding futility boundaries, should CI match the p-values on the
binding boundary

... further arguments to be passed

Value

if stats=’all’ returns an object of class ’boundEst’, otherwise returns a numeric vector of p-values

See Also

See analyze-methods

4 binseqtest-internal

analyze-methods Calculate estimates, confidence intervals and p-values from binary se-
quential boundary

Description

The method analyze calculates the estimate, confidence interval and p-values (both one-sided ones
and the two-sided one) from a binary sequential boundary. The methods works on any of the classes
that represent those boundaries (see bound-class).

Methods

signature(object = "ANY") Generic function: see analyze

signature(object = "abparms") Calculate estimates, confidence intervals and p-values from ’ab-
parms’ object.

signature(object = "bound") Calculate estimates, confidence intervals and p-values from ’bound’
object.

signature(object = "boundNBF") Calculate estimates, confidence intervals and p-values from
’boundNBF’ object.

binseqtest-internal Internal functions

Description

Internal functions, not to be called by user

Usage

validAbparms(object)
validBound(object)
validBoundEst(object)
validBoundNBF(object)

abBindBothCalcK(object)
abtoBound(from)

pCalc(S,N,K,order,theta0=.5,alternative="two.sided",ponly=FALSE)
ciCalc(S,N,K,order,type="upper",alpha=0.025)

missNAbparms(ab,missN=NULL,...)

binseqtest-internal 5

Arguments

object object, usually a boundary of some class

from an object of class abparms

S vector of number of successes

N vector of number of trials

K vector of number of ways to reach each bounary point

order vector of ordering of boundary points

theta0 null value of probability of success each binary random variable

alternative character, either ’two.sided’, ’less’, or ’greater’

ponly logical, should only the specific p-value type given by alternative be calculated

type character, type of one-sided confidence interval to calculate, either ’upper’ or
’lower’

alpha numeric, amount of error to allow on the one side of the confidence interval

ab object of class ’abparms’

missN numeric vector, the N values where assessments are missed

... arguments passed to other functions, not used

Details

The validXX functions check that the object is a valid member of the class XX. For example, valid-
Bound checks that a bound object is OK by sum the probability distribution using the N,S, and K
values and checking that it is within computer error of 1. The validity checks are run automatically
by the new() function as part of the S4 implementation.

The function abBindBothCalcK takes an abparms object and creates a bound object. It requires
calculating K, which is the number of ways to reach each boundary point. It ignores the binding
argument and assumes all boundaries are binding. The abtoBound function uses the binding argu-
ment to create either a bound object (for binding=’both’) or a boundNBF object otherwise. Users
can use the as function to coerce an abparms object to a bound object.

The function pCalc takes a boundary and calculates p-values, and outputs a vector of p-values
(ponly=TRUE) or list of 3 vectors (plower,pupper, pval).

The function cCalc takes a boundary and calculates one of the one sided confidence intervals as
directed by the type argument (either ’upper’ or ’lower’).

The functions analyzeBound and analyzeBoundNBF take objects of the bound and boundNBF
classes and create ones of the boundEst and boundNBFEst classes. This means basically that the
confidence intervals and p-values are calculated that go with those bounds.

The functions getAlternative and getTSalpha get those parameters from the inputs.

The function missNAbparms modifies abparms objects to reflect missing assessments. This is the
working function for the missN option in modify.

6 bound-class

bound-class Classes for binary sequential boundaries

Description

There are several classes that represent binary sequential boundaries. The most simple is the
abparms class, then comes the bounds class (which contains abparms), then comes boundNBF
class (which contains bound class), or boundEst class (which contains bounds class), then comes
boundNBFEst (which contains boundNBF). See details for which slots go with which classes.

Details

The simplest representation of a binary sequential boundary is the abparms class, represented by
a vector of the total number of trials (Nk) where to stop, and denoting stopping when number of
sucesses, S, is S>=b or S<= a. One sided boundaries can be represented by all NA values for either
a or b. Often times a two-sided boundary treats one side as a superiority boundary which must be
stopped if crossed (a binding boundary), while the other side of the boundary is a futility boundary
which may be ignored (a non-binding boundary). For example when binding=’upper’, then p-values
for the upper boundary are calculated as if the lower boundaries are ignored if crossed and stopping
happens on the lower side at max(Nk) instead, while the p-values for the lower and end boundary
points are calculated using all (lower,upper and end) boundaries.

Next is the bound class which adds the slots N (number of trials at each boundary point), S (number
of sucesses at each point), K (number of ways to get to each point), order (ordering of points for
p-value calculations), UL(’upper’,’lower’ or ’end’).

Slots

Nk: vector of number of samples at boundary stopping points

a: vector for lower bound, stop if S out of Nk is less than or equal a. NA denotes do not stop.

b: vector for upper bound, stop if S out of Nk is greater than or equal b. NA denotes do not stop.

binding: character specifying which boundary section is binding, either ’both’, ’upper’, or ’lower’

alternative: character specifying alternative, ’two.sided’, ’less’, or ’greater’

N: vector of number of samples at boundary stopping points

S: vector of number of sucesses at boundary stopping points

K: vector of number of ways to get to each boundary point

order: vector of ordering of points

UL: character vector denoting part of boundary, either ’lower’ or ’upper’ or ’end’

estimate: vector of estimates of theta, probability of success

lower: vector of lower confidence intervals for theta

upper: vector of upper confidence intervals for theta

conf.level: confidence level associated with confidence intervals

alpha: error on either side

designOBF 7

theta0: null value for theta

plower: vector of lower p-values

pupper: vector of upper p-values

pval: vector of p-values as directed by alternative slot

Methods

There is a plot and a points method for boundEst objects.

Author(s)

Jenn Kirk, Michael P. Fay

Examples

new("abparms",Nk=200)

designOBF Design Sequential Binary Boundary

Description

There are several functions that create binary sequential boundaries. The function designAb allows
great flexibility in creating user defined boundaries. The functions designOBF and designOBFpower
create boudaries of the O-Brien-Fleming type, extending those boundaries to allow looks after
every observation. The former (designOBF) uses a user defined maximum number of observa-
tions (Nmax), while the latter (designOBFpower) uses the power argument to try to find a de-
sign with a smaller maximum that achieves the desired power. The functions designFixed and
designFixedpower are analogous for fixed sample designs. The function designSimon uses the
ph2simon from the clinfun package to create boundaries using Simon’s (1989) two-stage design.

Usage

designAb(Nk, a = NULL, b = NULL, theta0 = NULL,
tsalpha = NULL, alternative = "two.sided",
conf.level = 0.95, binding = "both")

designOBF(Nmax,theta0 = 0.5, k = Inf, tsalpha = NULL,
alternative = "two.sided", conf.level = 0.95,
binding = "both")

designOBFpower(theta0 = 0.5, theta1=.6, k=Inf,
power=.9, tsalpha = NULL, alternative = "two.sided",
conf.level = 0.95, binding = "both", allNgreater=FALSE,
checkmax=10, maxNmax=2*ss)

designFixed(Nmax, theta0 = 0.5, tsalpha = NULL,
alternative = "two.sided", conf.level = 0.95)

8 designOBF

designFixedpower(theta0 = 0.5, theta1 = 0.6, power = 0.8,
maxNmax = Inf, tsalpha = NULL, alternative = NULL,
conf.level = 0.95, allNgreater = FALSE)

designSimon(theta0, theta1, alpha = 0.05, beta = 0.2,
type = c("optimal", "minimax"), nmax=100)

Arguments

Nk vector of unique N values where there is stopping

a numeric vector with length(a)=length(Nk)-1, stop if number of successes out of
Nk[i] is less than or equal to a[i] (see details)

b numeric vector with length(a)=length(Nk)-1, stop if number of successes out of
Nk[i] is greater than or equal to b[i] (see details)

Nmax maximum number of observations for the design

maxNmax maximum number for Nmax (see details)

k number of looks at the data, Inf denotes looking after each observation

theta0 probability of success under the null

tsalpha vector of length 2 with nominal significance levels for each side, if not NULL
overrides conf.level and alternative (see getTSalpha)

conf.level confidence level, ignored if tsalpha is not NULL

alternative character, alternative hypothesis, either ’less’, ’greater’ or ’two.sided’

binding character, which sides are binding: ’both’, ’upper’, or ’lower’

theta1 probability of success under alternative for power calculations

power nominal power, boundary strives to have power under the alternative at least
equal to power

allNgreater logical, if TRUE max(N) will be at least as large as the fixed sample size for
which all greater N have power>power

checkmax integer, on the iteration checkmax, check that Nmax has power at least power

alpha one sided alpha level for test theta>theta0

beta 1-power, for theta1

type character, type of 2-stage design, either ’optimal’ or ’minimax’

nmax maximum total sample size, cannot be higher than 1000

Details

The tsalpha, alternative, and conf.level are input into the getTSalpha function to output a
tsalpha vector. The tsalpha vector allows the nominal error to be different on each side. For
details see getTSalpha.

For designAb, when you do not want to stop on the lower or upper boundary at any value of Nk,
the associated value of a (lower) or b (upper) should be NA.

EN 9

The designOBF function calculates a boundary that stops whenever the B-value (Lan and Wittes,
1988) is larger than one cutoff value or smaller than a different cutoff value. The cutoff values are
chosen so that the probability of spending alpha on the appropriate side is almost all spent while
still rejecting at at least one end value of the boundary.

The function designOBFpower repeatedly calls designOBF and finds the design that gives suffi-
cient power under a given alternative. Specifically, by setting Nmax to Nmaxi in designOBF, where
Nmaxi is increased by 1 at each iteration. The initial Nmaxi is either the first N that gives a large
enough power in the fixed sample size design (allNgreater==FALSE) or the first N such that all
larger N will give enough power for fixed samples (allNgreater==TRUE). On the (checkmax)th
iteration, check that the power will be large enough when Nmaxi equals Nmax (from designOBF-
power call). So if you set checkmax=1 then you will check the largest value of Nmax first, but this
may be inefficient since larger values of Nmax in the obf call are slower.

See Kirk and Fay (2014) for an introductory paper about exact binary sequential tests using the
binseqtest package.

Value

a object of class boundEst

References

Kirk, J, and Fay, MP (2014). An Introduction to Practical Sequential Inferences via Single Arm
Binary Response Studies Using the binseqtest R Package. (to appear in American Statistician).

Lan, KKG, and Wittes, J (1988). The B-Value: A Tool for Monitoring Data. Biometrics 44:579-
585.

Simon R. (1989). Optimal Two-Stage Designs for Phase II Clinical Trials. Controlled Clinical
Trials 10, 1-10.

EN Expected sample size for boundary.

Description

Calculate expected sample size for bound object, after inputing theta.

Usage

EN(object, theta = 0.6)

Arguments

object a object representing a binary sequential class (bound-class)

theta a vector of parameters representing the probability of a success

Value

a vector of expected sample sizes associated with the theta argument.

10 getTSalpha

See Also

See Also powerBsb

Examples

B<-designAb(Nk=c(20,40),a=c(5),b=c(15),theta0=.5)
En<-EN(B,theta=c(.1,.5,.6))
En

getTSalpha Two-sided alpha, alternative, and confidence level

Description

Two functions to find tsalpha and alternative.

Usage

getTSalpha(tsalpha = NULL, alternative = NULL, conf.level = NULL)
getAlternative(tsalpha)

Arguments

tsalpha vector of length 2 with nominal significance levels for each side, if not NULL
overrides conf.level and alternative (see details)

conf.level confidence level, ignored if tsalpha is not NULL

alternative character, alternative hypothesis, either ’less’, ’greater’ or ’two.sided’

Details

The tsalpha is a vector of length 2 giving the nominal error for each side of confidence intervals.
The function getTSalpha creates a tsalpha vector, allowing its creation either directly (non-null
input for the argument tsalpha simply outputs that same argument), or through the alternative
and conf.level arguments. The element tsalpha[1] is the nominal error on the lower side, so
for example if tsalpha=NULL, alternative='greater', andconf.level=.95, then getTSalpha
outputs the vector c(0.05,0). In other words, if on rejection you want to conclude that θ > θ0,
then you want all the nominal error to be on the lower side. Similarly tsalpha[2] is the nominal
error on the upper side, and tsalpha=NULL, alternative='less', andconf.level=.95, gives
c(0,0.05). If tsalpha=NULL, alternative='greater', and conf.level=.95, then outputs the
vector c(0.025,0.025). You must supply either tsalpha or both alternative and conf.level.

Value

getTSalpha returns a tsalpha vector (see details), and getAlternative gives the character vector
for the appropriate alternative.

modify 11

Examples

getTSalpha(conf.level=.95,alternative="two.sided")
getAlternative(c(0,.025))

modify Modify binary sequential boundary

Description

Modify several different aspects of a binary sequential boundary. Most modifications do not change
the stopping boundaries. The exceptions are ’missN’, which allows modifications for missing as-
sessments, and ’closeout’, which allows for early stopping of the trial for administrative reasons
(i.e., reasons that do not depend on the responses in the trial). Other modifications possible: level
of the confidence intervals (using tsalpha, conf.level, or alternative), which boundaries are binding
(i.e., can change from a boundary with binding futility boundaries to one with non-binding futility
boundaries), null hypothesis value (theta0), and whether the confidence intervals should match the
non-binding futility p-values on the superiority boundaries (cipMatch).

Usage

modify(b, missN = NULL, theta0 = NULL, tsalpha = NULL,
conf.level = NULL, alternative = NULL, cipMatch = TRUE,
binding = NULL, closeout=NULL, ...)

Arguments

b an object of class boundEst

missN a vector of missed assessments

theta0 null hypothesis probability of success

tsalpha vector of length 2 with nominal significance level, if not NULL overrides conf.level
and alternative

conf.level confidence level, ignored if tsalpha is not NULL

alternative character, alternative hypothesis, either ’less’, ’greater’ or ’two.sided’

cipMatch logical, for non-binding futility boundaries, should CI match the p-values on the
binding boundary

binding character, which sides are binding: ’both’, ’upper’, or ’lower’

closeout total number of trials at early closeout

... other parameters passed

Value

an object of class boundEst

12 plot-methods

Examples

b<-designOBF(50)
bmod<-modify(b,missN=30:36)
par(mfrow=c(2,1))
plot(b)
plot(bmod)

plot-methods Methods for Function plot and points in Package binseqtest

Description

Plot binary sequential boundaries for "boundEst" objects.

Usage

S4 method for signature 'boundEst,missing'
plot(x,

rcol = c(orange = "#E69F00", blue = "#56B4E9", green = "#009E73"),
rpch = c(openCircle=1, filledCircle=16, filledDiamond=18),
bplottype = "NS",
newplot = TRUE, dtext=NULL, grid=50, xlab=NULL, ylab=NULL, ...)

S4 method for signature 'boundEst'
points(x, ...)

Arguments

x an object of class "boundEst"

rcol rejection color vector, rcol[1]=fail to reject, rcol[2]=reject, conclude theta>theta0,
rcol[3]=reject, conclude theta< theta0 (see details)

rpch rejection pch vector, correspond to same categories as rcol vector

bplottype character, either ’NS’ (default), ’FS’, ’NB’, ’NZ’, or ’NE’ (see details)

newplot logical, should a new plot be started? if FALSE add to existing plot (only makes
sense to add to plot with the same bplottype)

dtext logical, add descriptive text? if NULL only adds text when newplot=TRUE
(used for bplottype=’NS’ or ’FS’)

grid numeric, if maximum possible total trials<=grid then add gridlines (used for
bplottype=’NS’ or ’FS’)

xlab title for x axis, if NULL value depends on bplottype

ylab title for y axis, if NULL value depends on bplottype

... other arguments to the plot function can be passed here.

powerBsb 13

Details

The default rcol vector are good colors for distinguishing for those with color blindness. Text is
printed on the unused portion of the plot, which uses the color names taken from the rcol vector
names.

Their are several different types of plots, selected by the bplottype argument, where the value is a
character string with 2 characters, the first representing the x-axis and the second representing the
y-axis. For example bplottype=’NS’ denotes N=total number of trials on the horizontal axis, and
S=number of successes on the vertical axis. Other plots are: ’FS’=failure by successes; ’NB’=total
by B-values; ’NZ’=total by Z-scores; ’NE’=total by estimates and confidence intervals. The type
’NE’ is only defined if there are only 1 value for each N on the upper and 1 value for each N on the
lower part of the boundary. Otherwise, the confidence intervals would overlap and be uninformative.
For ’NE’ the end of the boundary is not plotted because of that overlapping.

For some examples, see plot section of the vignette. The method points just calls plot(x,newPlot=FALSE,...).

Methods

signature(x = "ANY", y = "ANY") Generic function: see plot.

signature(x = "boundEst", y = "missing") Plot binary sequential boundaries for x.

signature(x = "ANY") Generic function: see points.

signature(x = "boundEst") Add points associated with the binary sequential boundaries for x to
a plot.

Examples

b<-designOBF(50,theta0=.5)
plot(b,bplottype="NE")
plot(b)
b2<-designFixed(49,theta0=.5)
points(b2,rpch=c(17,17,17))

powerBsb Power for binary sequential boundary

Description

Calculate power from boundEst object for vector of alternatives

Usage

powerBsb(object, theta = 0.6, alternative = NULL)

14 prStop

Arguments

object a ’boundEst’ object

theta vector of theta values, probability of success

alternative character, either ’two.sided’, ’less’, or ’greater’

Details

Power to reject. For alternative=’greater’ reject when pU<tsalpha[’alphaUpper’], and for alterna-
tive=’less’ reject when pL<tsalpha[’alphaLower’]. For alternative=’two.sided’ if theta[i]>theta0
reject when pU<tsalpha[’alphaUpper’], if theta[i]<theta0 reject when pL<tsalpha[’alphaLower’], if
theta[i]==theta0 and tsalpha[’alphaUpper’]<=tsalpha[’alphaLower’] reject when pU<tsalpha[’alphaUpper’],
and if theta[i]==theta0 and tsalpha[’alphaUpper’]>tsalpha[’alphaLower’] reject when pL<tsalpha[’alphaLower’].

Value

a vector with power associated with the parameter vector theta

Examples

B<-designAb(Nk=c(20,40),a=10,theta0=.4)
powerBsb(B,theta=c(.1,.4,.8),alternative="less")

prStop Probabilty of Stopping

Description

Calculates the probability of stopping at any point in a binary sequential boundary.

Usage

prStop(object, theta = NULL)

Arguments

object an object of class boundEst

theta probability of a positive response

Value

A list with the following elements

B the boundEst object inputted

Nupper vector of N values for stopping on upper boundary

dStopUpper vector of probabilities for stopping at each value of Nupper

pStopUpper vector of cumulative probabilities for stopping by each value of Nupper

stopTable 15

Nlower vector of N values for stopping on lower boundary

dStopLower vector of probabilities for stopping at each value of NLower

pStopLower vector of cumulative probabilities for stopping by each value of NLower

Nend N value at the end of the boundary, i.e., max(N)

dStopEnd probability of stopping at the end of the boundary

check check value, should be 1 or very close to it

See Also

powerBsb

Examples

b<-designOBF(20,theta0=.5)
prStop(b,theta=.5)

stopTable Create data frame with statistics for stopping boundary

Description

Takes boundEst object and creates data frame with p-values and confidence intervals for stopping
points between Nmin and Nmax.

Usage

stopTable(object, Nrange = c(0,Inf),
Srange=c(0,Inf),output="all",file="stopTableOutput.csv")

S3 method for class 'stopTable'
print(x,digits=c(3,5),maxnprint=Inf,...)

Arguments

object object of class boundEst

Nrange numeric vector, range of total trials to output boundary points (see details)

Srange numeric vector, range of successes to output boundary points (see details)

output character, type of output, ’all’,’csv’, or ’print’

file character, name of file to output comma separated file

x object of class ’stopTable’

digits vector of length 1 or 2, first element is digits to print for estimates and confidence
intervals (and p-values if length(digits)=1), second element is digits for p-values

maxnprint number of rows to print from the table

... additional arguments to be passed to print function, not needed

16 summary-methods

Details

Create table with statistics at selected stopping points. The arguments Nrange and Srange select
which points to output. If Nrange and Srange is of length 2, then the function selects output
within the ranges of the associated N and S values. If Nrange and Srange is of length 1, then the
function selects only output with exactly the specified values. Note that because Nrange is the only
argument that starts with ’N’, then stopTable(object,N=41) and stopTable(oject,Nrange=41)
are equivalent. Output is a stopTable object (default), a data.frame (output=’data.frame’), or a .csv
file (output=’csv’). The print.stopTable function is an S3 print function for stopTable objects,
i.e., it determines the default printing to screen for those objects.

Value

Either a stopTable object, a data.frame, or a .csv file. The stopTable object is a list with elements

conf.level confidence level=1-lowerError-upperError

lowerError c.i. error on lower side

upperError c.i. error on upper side

nullTheta probability of success under null hypothesis

binding character, which boundaries are binding: ’both’, ’lower’, or ’upper’

alternative character, alternative hypothesis either ’two.sided’, ’less’, or ’greater’

table a data.frame with variables, S,N, estimate, lower (confidence limit), upper (con-
fidence limit), pL (lower one-sided p-value), pU (upper one-sided p-value), pts
(two-sided p-value), and UL (character giving part of the boundary: ’lower’,
’upper’, or ’end’)

The data.frame (or .csv file) returns the table element of the stopTable with the other elements
added as variables (or columns).

summary-methods Methods for Function summary in Package binseqtest

Description

Objects of class boundEst have a summary method. It basically calls stopTable(object)

Methods

signature(object = "ANY") Gives a summary of object, usually a little more calculations than
associated with print or show

signature(object = "boundEst") calls stopTable(object, output='print')

unirootDiscrete 17

unirootDiscrete Identify where a non-increasing function changes sign

Description

Let f be a non-increasing (or non-decreasing) function that changes sign within the interval spec-
ified. If ’pos.side’=TRUE (or FALSE) then unirootDiscrete finds the value x such that f(x) is
closest to the sign change and is positive (or negative).

Usage

unirootDiscrete(f, interval, lower = min(interval),
upper = max(interval), tol = 10^-5, pos.side = FALSE,
print.steps = FALSE, maxiter = 1000, ...)

Arguments

f function for which a root is needed

interval an interval giving minimum and maximum allowable values for root

lower lower bound for root

upper upper bound for root

tol absolute tolerance, abs(true root-estimated root)<= tol

pos.side if TRUE finds value x closest to the sign change in f, such that f(x)>0

print.steps if true prints interations

maxiter maximum number of iterations

... additional arguments to f

Details

The algorithm evaluates f(x) iteratively, and the change in ’x’ is halved each iteration until the
change in ’x’ is less than tol. Then the root is returned according to the pos.side parameter.

Value

A list with the folllowing elements,

iter number of iterations (times f is evaluated)

f.root value of f(x), where x is the root

root the root x, where f(x)>=0 if pos.side=TRUE

...

Author(s)

M.P. Fay

18 unirootDiscrete

Examples

test<-function(x,parm=10.987654321){ ifelse(x>=parm,1,-1) }
unirootDiscrete(test,lower=0,upper=100,tol=10^-4,pos.side=FALSE,print.steps=TRUE)

Index

∗ htest
modify, 11

∗ math
unirootDiscrete, 17

∗ methods
analyze-methods, 4
plot-methods, 12
summary-methods, 16

∗ package
binseqtest-package, 2

abBindBothCalcK (binseqtest-internal), 4
abCalcK (binseqtest-internal), 4
abparms (bound-class), 6
abparms-class (bound-class), 6
abtoBound (binseqtest-internal), 4
analyze, 3, 4
analyze,abparms-method

(analyze-methods), 4
analyze,ANY-method (analyze-methods), 4
analyze,bound-method (analyze-methods),

4
analyze,boundNBF-method

(analyze-methods), 4
analyze-methods, 4
analyzeBound (analyze), 3
analyzeBoundNBF (analyze), 3

binseqtest (binseqtest-package), 2
binseqtest-internal, 4
binseqtest-package, 2
bound, 9
bound (bound-class), 6
bound-class, 6
boundEst, 9, 11, 13–16
boundEst (bound-class), 6
boundEst-class (bound-class), 6
boundNBF (bound-class), 6
boundNBF-class (bound-class), 6

ciCalc (binseqtest-internal), 4

designAb (designOBF), 7
designFixed (designOBF), 7
designFixedpower (designOBF), 7
designOBF, 2, 3, 7
designOBFpower (designOBF), 7
designSimon (designOBF), 7

EN, 9

getAlternative (getTSalpha), 10
getTSalpha, 8, 10

missNAbparms (binseqtest-internal), 4
modify, 2, 11

pCalc (binseqtest-internal), 4
ph2simon, 7
plot, 13
plot,boundEst,ANY-method

(plot-methods), 12
plot,boundEst,missing-method

(plot-methods), 12
plot-methods, 12
points, 13
points,ANY-method (plot-methods), 12
points,boundEst-method (plot-methods),

12
points-methods (plot-methods), 12
powerBsb, 10, 13, 15
print.stopTable (stopTable), 15
prStop, 14

stopTable, 15
summary,ANY-method (summary-methods), 16
summary,boundEst-method

(summary-methods), 16
summary-methods, 16

unirootDiscrete, 17

19

20 INDEX

validAbparms (binseqtest-internal), 4
validBound (binseqtest-internal), 4
validBoundEst (binseqtest-internal), 4
validBoundNBF (binseqtest-internal), 4

	binseqtest-package
	analyze
	analyze-methods
	binseqtest-internal
	bound-class
	designOBF
	EN
	getTSalpha
	modify
	plot-methods
	powerBsb
	prStop
	stopTable
	summary-methods
	unirootDiscrete
	Index

