Package: binomialRF (via r-universe)

September 14, 2024

Type Package

Title Binomial Random Forest Feature Selection

Version 0.1.0

URL https://www.biorxiv.org/content/10.1101/681973v1.abstract

Description The 'binomialRF' is a new feature selection technique for decision trees that aims at providing an alternative approach to identify significant feature subsets using binomial distributional assumptions (Rachid Zaim, S., et al. (2019))
 <doi:10.1101/681973>. Treating each splitting variable selection as a set of exchangeable correlated Bernoulli trials, 'binomialRF' then tests whether a feature is selected more often than by random chance.

License GPL-2

Encoding UTF-8

LazyData true

biocViews Software, GenePrediction, StatisticalMethod, DecisionTree, DimensionReduction, ExperimentalDesign

Imports randomForest, data.table, stats, rlist

Suggests foreach, knitr, rmarkdown, correlbinom

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Author Samir Rachid Zaim [aut, cre]

Maintainer Samir Rachid Zaim <samirrachidzaim@math.arizona.edu>

Repository CRAN

Date/Publication 2020-03-26 17:00:13 UTC

Contents

.cv_binomialRF	2
binomialRF	3
calculateBinomialP	4
calculateBinomialP_Interaction	5
geneset_binomialRF	6
k_binomialRF	6
pmf_list	8
	9

Index

.cv_binomialRF random forest feature selection based on binomial exact test

Description

cv.binomialRF is the cross-validated form of the binomialRF, where K-fold crossvalidation is conducted to assess the feature's significance. Using the cvFolds=K parameter, will result in a K-fold cross-validation where the data is 'chunked' into K-equally sized groups and then the averaged result is returned.

Usage

```
.cv_binomialRF(X, y, cvFolds = 5, fdr.threshold = 0.05,
fdr.method = "BY", ntrees = 2000, keep.both = FALSE)
```

Arguments

Х	design matrix
У	class label
cvFolds	how many times should we perform cross-validation
fdr.threshold	fdr.threshold for determining which set of features are significant
fdr.method	<pre>how should we adjust for multiple comparisons (i.e., p.adjust.methods =c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))</pre>
ntrees	how many trees should be used to grow the randomForest? (Defaults to 5000)
keep.both	should we keep the naive binomialRF as well as the correlated adjustment

Value

a data.frame with 4 columns: Feature Name, cross-validated average for Frequency Selected, CV Median (Probability of Selecting it randomly), CV Median(Adjusted P-value based on fdr.method), and averaged number of times selected as significant.

References

Zaim, SZ; Kenost, C.; Lussier, YA; Zhang, HH. binomialRF: Scalable Feature Selection and Screening for Random Forests to Identify Biomarkers and Their Interactions, bioRxiv, 2019.

binomialRF

Examples

set.seed(324)

```
binomialRF
```

random forest feature selection based on binomial exact test

Description

binomialRF is the R implementation of the feature selection algorithm by (Zaim 2019)

Usage

Arguments

Х	design matrix		
У	class label		
fdr.threshold	fdr.threshold for determining which set of features are significant		
fdr.method	<pre>how should we adjust for multiple comparisons (i.e., p.adjust.methods =c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))</pre>		
ntrees	how many trees should be used to grow the randomForest?		
percent_features			
	what percentage of L do we subsample at each tree? Should be a proportion between $(0,1)$		
keep.both	should we keep the naive binomialRF as well as the correlated adjustment		
user_cbinom_dist			
	insert either a pre-specified correlated binomial distribution or calculate one via the R package correlbinom.		
sampsize	how many samples should be included in each tree in the randomForest		

Value

a data.frame with 4 columns: Feature Name, Frequency Selected, Probability of Selecting it randomly, Adjusted P-value based on fdr.method

References

Zaim, SZ; Kenost, C.; Lussier, YA; Zhang, HH. binomialRF: Scalable Feature Selection and Screening for Random Forests to Identify Biomarkers and Their Interactions, bioRxiv, 2019.

Examples

```
set.seed(324)
### Generate simulation data
X = matrix(rnorm(1000), ncol=10)
trueBeta= c(rep(10,5), rep(0,5))
z = 1 + X %*% trueBeta
pr = 1/(1+exp(-z))
y = as.factor(rbinom(100,1,pr))
### Run binomialRF
require(correlbinom)
rho = 0.33
ntrees = 250
cbinom = correlbinom(rho, successprob = calculateBinomialP(10, .5), trials = ntrees,
                          precision = 1024, model = 'kuk')
binom.rf <-binomialRF(X,y, fdr.threshold = .05,fdr.method = 'BY',</pre>
                  ntrees = ntrees,percent_features = .5,
                  keep.both=FALSE, user_cbinom_dist=cbinom,
                  sampsize=round(nrow(X)*rho))
print(binom.rf)
```

calculateBinomialP calculate the probability, p, to conduct a binomial exact test

Description

calculateBinomialP returns a probability of randomly selecting a feature as the root node in a decision tree. This is a generic function that is called internally in binomialRF but that may also be called directly if needed. The arguments ... should be, L= Total number of features in X, and percent_features= what percent of L is subsampled in the randomForest call.

Usage

calculateBinomialP(L, percent_features)

Arguments

the total number of features in X. Should be a positive integer >1

```
percent_features
```

what percentage of L do we subsample at each tree? Should be a proportion between (0,1)

Value

If L is an integeter returns a probability value for selecting predictor Xj randomly

Examples

```
calculateBinomialP(110, .4)
calculateBinomialP(13200, .5)
```

calculateBinomialP_Interaction

calculate the probability, p, to conduct a binomial exact test

Description

calculateBinomialP_Interaction returns a probability of randomly selecting a feature as the root node in a decision tree. This is a generic function that is called internally in binomialRF but that may also be called directly if needed. The arguments ... should be, L= Total number of features in X, and percent_features= what percent of L is subsampled in the randomForest call.

Usage

```
calculateBinomialP_Interaction(L, percent_features, K = 2)
```

Arguments

L the total number of features in X. Should be a positive integer >1
percent_features
what percentage of L do we subsample at each tree? Should be a proportion
between (0,1)
K interaction level

Value

If L is an integeter returns a probability value for selecting predictor Xj randomly

Examples

calculateBinomialP_Interaction(110, .4,2)

geneset_binomialRF random forest feature selection based on binomial exact test

Description

binomialRF is the R implementation of the feature selection algorithm by (Zaim 2019)

Usage

```
geneset_binomialRF(binomialRF_object, gene_ontology, cutoff = 0.2)
```

Arguments

binomialRF_object

	the binomialRF object output
gene_ontology	a two- or three-column representation of a gene ontology with gene and geneset names
cutoff	a real-valued number between 0 and 1, used as a p-value threshold

Value

a data.frame with 4 columns: Geneset Name, P-value, Adjusted P-value based on fdr.method

References

Zaim, SZ; Kenost, C.; Lussier, YA; Zhang, HH. binomialRF: Scalable Feature Selection and Screening for Random Forests to Identify Biomarkers and Their Interactions, bioRxiv, 2019.

k_binomialRF

random forest feature selection based on binomial exact test

Description

k_binomialRF is the R implementation of the interaction feature selection algorithm by (Zaim 2019). k_binomialRF extends the binomialRF algorithm by searching for k-way interactions.

Usage

```
k_binomialRF(X, y, fdr.threshold = 0.05, fdr.method = "BY",
ntrees = 2000, percent_features = 0.3, K = 2, cbinom_dist = NULL,
sampsize = nrow(X) * 0.4)
```

k_binomialRF

Arguments

Х	design matrix	
У	class label	
fdr.threshold	fdr.threshold for determining which set of features are significant	
fdr.method	<pre>how should we adjust for multiple comparisons (i.e., p.adjust.methods =c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"))</pre>	
ntrees	how many trees should be used to grow the randomForest? (Defaults to 5000)	
percent_features		
	what percentage of L do we subsample at each tree? Should be a proportion between $(0,1)$	
К	for multi-way interactions, how deep should the interactions be?	
cbinom_dist	user-supplied correlated binomial distribution	
sampsize	user-supplied sample size for random forest	

Value

a data.frame with 4 columns: Feature Name, Frequency Selected, Probability of Selecting it randomly, Adjusted P-value based on fdr.method

References

Zaim, SZ; Kenost, C.; Lussier, YA; Zhang, HH. binomialRF: Scalable Feature Selection and Screening for Random Forests to Identify Biomarkers and Their Interactions, bioRxiv, 2019.

Examples

```
set.seed(324)
### Generate simulation data
X = matrix(rnorm(1000), ncol=10)
trueBeta= c(rep(10,5), rep(0,5))
z = 1 + X %*% trueBeta
pr = 1/(1+exp(-z))
y = rbinom(100, 1, pr)
### Run interaction model
require(correlbinom)
rho = 0.33
ntrees = 250
cbinom = correlbinom(rho, successprob = calculateBinomialP_Interaction(10, .5,2),
                       trials = ntrees, precision = 1024, model = 'kuk')
```

pmf_list

A prebuilt distribution for correlated binary data

Description

This data contains probability mass functions (pmf's) for correlated binary data for various parameters. The sum of correlated exchangeable binary data is a generalization of the binomial distribution that deals with correlated trials. The correlation in decision trees occurs as the subsampling and bootstrapping step in random forests touch the same data, creating a co-dependency. This data contains some pre-calculated distributions for random forests with 500, 1000, and 2000 trees with 10, 100, and 1000 features. For more distributions, they can be calculated via the correlbinom R package.

Usage

pmf_list

Format

A list of lists

References

Witt, Gary. "A Simple Distribution for the Sum of Correlated, Exchangeable Binary Data." Communications in Statistics-Theory and Methods 43, no. 20 (2014): 4265-4280.

Index

* datasets
 pmf_list, 8
.cv_binomialRF, 2

binomialRF, 3

calculateBinomialP,4
calculateBinomialP_Interaction,5

 ${\tt geneset_binomialRF, 6}$

k_binomialRF, 6

pmf_list, 8