Title: | Confidence Intervals for a Binomial Proportion |
---|---|
Description: | Twelve confidence intervals for one binomial proportion or a vector of binomial proportions are computed. The confidence intervals are: Jeffreys, Wald, Wald corrected, Wald, Blyth and Still, Agresti and Coull, Wilson, Score, Score corrected, Wald logit, Wald logit corrected, Arcsine and Exact binomial. References include, among others: Vollset, S. E. (1993). "Confidence intervals for a binomial proportion". Statistics in Medicine, 12(9): 809-824. <doi:10.1002/sim.4780120902>. |
Authors: | Michail Tsagris [aut, cre] |
Maintainer: | Michail Tsagris <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.2 |
Built: | 2024-12-25 07:13:16 UTC |
Source: | CRAN |
Functions to compute 12 confidence intervals for a binomial proportion.
Package: | binomCI |
Type: | Package |
Version: | 1.2 |
Date: | 2024-11-25 |
License: | GPL-2 |
Michail Tsagris [email protected].
I would like to express my acknowledgements to Marc Girondot for spotting an error in the "Wilson" method in two extreme cases, when and when
. He also proposed a modification that exists in the package "Hmisc" and the relevant paper to cite is Agresti & Coull (1998).
Michail Tsagris [email protected].
Agresti, A. & Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4), 280–288.
Agresti, A. & Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician, 52(2): 119–126.
Brown, L. D., Cai, T. T. & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2): 101-133.
Brown, L. D., Cai, T. T. & DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30(1): 160-201.
Cameron, E. (2011). On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach. Publications of the Astronomical Society of Australia, 28(2): 128–139.
Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17(8): 857–872.
Pan, W. (2002). Approximate confidence intervals for one proportion and difference of two proportions. Computational statistics & Data Analysis, 40(1): 143-157.
Pires, A. M. & Amado, C. (2008). Interval estimators for a binomial proportion: Comparison of twenty methods. REVSTAT-Statistical Journal, 6(2): 165-197.
Ranucci, G. (2009). Binomial and ratio-of-Poisson-means frequentist confidence intervals applied to the error evaluation of cut efficiencies. arXiv preprint arXiv:0901.4845.
Sauro, J. & Lewis, J. R. (2005, September). Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 49, No. 24, pp. 2100-2103). Sage CA: Los Angeles, CA: SAGE Publications.
Somerville, M. C. & Brown, R. S. (2013). Exact likelihood ratio and score confidence intervals for the binomial proportion. Pharmaceutical Statistics, 12(3): 120-128.
Thulin, Mans. The cost of using exact confidence intervals for a binomial proportion. (2014): 817-840. Electronic Journal of Statistics 8(1): 817-840.
Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine, 12(9): 809-824.
Confidence Intervals for a Binomial Proportion.
binomCI(x, n, a = 0.05)
binomCI(x, n, a = 0.05)
x |
The number of successes. |
n |
The number of trials. |
a |
The significance level to compute the |
The confidence intervals are:
Jeffreys:
where denotes the
quantile of the Beta distribution with parameters
and
,
.
Wald:
where and
denotes the
quantile of the standard normal distribution. If
the interval becomes
and if
the interval becomes
.
Wald corrected:
and if or
the previous (Wald) adjustment applies.
Wald BS:
and if or
the previous (Wald) adjustment applies.
Agresti and Coull:
where .
Wilson:
where and
.
Score:
where .
Score corrected:
where ,
and
,
.
Wald-logit:
where and
. If
or
the previous (Wald) adjustment applies.
Wald-logit corrected:
where ,
,
and
.
Arcsine:
If or
the previous (Wald) adjustment applies.
Exact binomial:
where ,
,
,
and
denotes the
quantile of the F distribution with degrees of freedom
and
,
.
A list including:
prop |
The proportion. |
ci |
A matrix with 12 rows containing the 12 different |
Michail Tsagris.
R implementation and documentation: Michail Tsagris [email protected].
binomCI(45, 100)
binomCI(45, 100)
Confidence Intervals for many Binomial Proportions.
binomCIs(x, n, a = 0.05)
binomCIs(x, n, a = 0.05)
x |
A vector with the number of successes. |
n |
A vector with the number of trials. |
a |
The significance level to compute the |
A list with the the first element being the vector with the proportions and the rest 12 items
contain the confidence intervals.
Michail Tsagris.
R implementation and documentation: Michail Tsagris [email protected].
x <- sample(40, 10) n <- rep(40, 10) binomCIs(x, n)
x <- sample(40, 10) n <- rep(40, 10) binomCIs(x, n)