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binGroup-package Statistical Methods for Group Testing.

Description

This package provides methods for estimation and hypothesis testing of proportions in group testing
designs. It involves methods for estimating a proportion in a single population (assuming sensitivity
and specificity 1 in designs with equal group sizes), as well as hypothesis tests and functions for ex-
perimental design for this situation. For estimating one proportion or the difference of proportions,
a number of confidence interval methods are included, which can deal with various different pool
sizes. Further, regression methods are implemented for simple pooling and matrix pooling designs.

This package also provides methods for identification of positive items in a number of group testing
algorithms. Optimal testing configurations can be found for hierarchical and array-based algo-
rithms. Operating characteristics can be calculated for testing configurations across a wide variety
of situations.

Details

Package: binGroup
Type: Package
Version: 2.2-1
Date: 2018-07-07
License: GPL (>=3)
LazyLoad: no

1) One-sample case

Methods for calculating confidence intervals for a single population proportion from designs with
equal group sizes (as described by Tebbs and Bilder, 2004 and Schaarschmidt, 2007) are imple-
mented in the function bgtCI.



4 binGroup-package

For the problem of choosing an adequate experimental design in the one-sample case with only one
group size, the functions estDesign, sDesign, nDesign implement different iterative approaches,
as examplified by Swallow (1985) and Schaarschmidt (2007).

If a confidence interval for a single proportion shall be calculated based on a design involving
groups of different group sizes, a number of methods described by Hepworth (1999) is available in
the function pooledBin. The exact method described by Hepworth (1996) is implemented in the
function bgtvs.

2) Two-sample case

The function pooledBinDiff provides a number of confidence interval methods for estimating the
difference of proportions from two independent samples, allowing for groups of different group size
(Biggerstaff, 2008).

3) Regression models

Two approaches (by Vansteelandt et al., 2000 and Xie, 2001) to estimate parameters of group testing
regression models can be applied by calling gtreg. Once fitted, corresponding methods to extract
residuals, calculate predictions and summarize the parameter estimates (including hypotheses tests)
are available in the S3 methods residuals.gt, predict.gt and summary.gt.

Group testing regression models in settings with matrix pooling (Xie, 2001) can be fit using gtreg.mp.

4) Identification using hierarchical and array-based group testing algorithms

The function OTC implements a number of group testing algorithms, described in Hitt et al. (2018),
which calculate the operating characteristics and find the optimal testing configuration over a range
of possible initial pool sizes and/or testing configurations (sets of subsequent pool sizes).

Author(s)

Boan Zhang, Christopher Bilder, Brad Biggerstaff, Brianna Hitt, Frank Schaarschmidt

Maintainer: Frank Schaarschmidt <schaarschmidt@biostat.uni-hannover.de>

References

Biggerstaff, B.J. (2008): Confidence interval for the difference of proportions estmimated from
pooled samples. Journal of Agricultural Biological and Environmental Statistics, 13(4), 478-496.

Hepworth, G. (1996) Exact confidence intervals for proportions estimated by group testing. Bio-
metrics 52, 1134-1146.

Hepworth, G. (1999): Estimation of proportions by group testing. PhD Dissertation. Melbourne,
Australia: The University of Melbourne.

Hitt, B., Bilder, C., Tebbs, J. & McMahan, C. (2018) The Optimal Group Size Controversy for
Infectious Disease Testing: Much Ado About Nothing?!. Manuscript submitted for publication.
http://www.chrisbilder.com/grouptesting

Schaarschmidt, F. (2007) Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40.
http://agrobiol.sggw.waw.pl/cbcs/

Swallow, W.H. (1985) Group testing for estimating infection rates and probabilities of disease trans-
mission. Phytopathology 75 (8), 882-889.
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Tebbs, J.M. & Bilder, C.R. (2004) Confidence interval procedures for the probability of disease
transmission in multiple-vector-transfer designs. Journal of Agricultural, Biological and Environ-
mental Statistics 9 (1), 75-90.

Vansteelandt, S., Goetghebeur, E., and Verstraeten, T. (2000) Regression models for disease preva-
lence with diagnostic tests on pools of serum samples, Biometrics, 56, 1126-1133.

Xie, M. (2001) Regression analysis of group testing samples, Statistics in Medicine, 20, 1957-1969.

Examples

# 1) One-sample problem

# 1.1) Confidence intervals for designs with equal group size (pool size),
# where
# n denotes the number of groups (pools),
# s denotes the common group size (number of individuals pooled per group),
# y denotes the number of groups tested positive.

# The following call reproduces the example given
# by Tebbs and Bilder (2004) for the two-sided 95-percent
# exact (Clopper-Pearson) interval:

bgtCI(n=24, y=3, s=7, conf.level=0.95,
alternative="two.sided", method="CP")

# 1.2) Confidence intervals for designs with unequal group size (pool size):
# Keeping notation as above but allowing for (a limited number of) different
# group size s, the examples given in Hepworth (1996), Table 5 can be
# reproduced by calling:

bgtvs(n=c(2,3), s=c(5,2), y=c(0,0))
bgtvs(n=c(2,3), s=c(5,2), y=c(0,1))

# The function pooledBin provides different methods for the same problem,
# where x is the number of positive groups, m is the size of the groups and
# n is the number of groups with the correesponding sizes:

pooledBin(x=c(0,1), m=c(5,2), n=c(2,3), ci.method="score")
pooledBin(x=c(0,1), m=c(5,2), n=c(2,3), ci.method="lrt")
pooledBin(x=c(0,1), m=c(5,2), n=c(2,3), ci.method="bc-skew-score")

# 1.3) For experimental design based on the bias of the point estimate,
# as proposed by Swallow (1985): The values in Table 1 (Swallow, 1985),
# p.885 can be reproduced by calling:

estDesign(n=10, smax=100, p.tr=0.001)
estDesign(n=10, smax=100, p.tr=0.01)

# 2) Two-sample comparison

# Assume a design, where pools 5, 1, 1, 30, and 20 pools of size 10, 4, 1, 25, 50,
# respectively, are used to estimate the prevalence in two populations.
# In population 1, one out of 5 pools with 10 units is positive,
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# while in population 2, two out of five pools with 10 units is positive as well as
# the one pool with only 1 unit.
# The difference of proportions is to be estimated.

x1 <- c(1,0,0,0,0)
m1 <- c(10,4,1,25,50)
n1 <- c(5,1,1,30,20)

x2 <- c(2,0,1,0,0)
m2 <- c(10,4,1,25,50)
n2 <- c(5,1,1,30,20)

pooledBinDiff(x1=x1, m1=m1,x2=x2, m2=m2, n1=n1, n2=n2, ci.method="lrt")

# 3) Regression models

# 3.1) Fitting a regression model
# A HIV surveillance data (used by Vansteelandt et al. 2000)
# can be analysed for the dependence of HIV prevalence
# on covariates AGE and EDUC., with sensitivity and specificity
# assumed to be 0.9 each.

data(hivsurv)
fit1 <- gtreg(formula = groupres ~ AGE + EDUC., data = hivsurv,

groupn = gnum, sens = 0.9, spec = 0.9, method = "Xie")
summary(fit1)

# 3.2) Fitting a regression model for matrix pooling data
# The function sim.mp is used to simulate a matrix pooling data set:

set.seed(9128)
sa1a<-sim.mp(par=c(-7,0.1), n.row=c(5,4), n.col=c(6,5),
sens=0.95, spec=0.95)

str(sa1a)
sa1<-sa1a$dframe

## Not run:
fit2 <- gtreg.mp(formula = cbind(col.resp, row.resp) ~ x, data = sa1,

coln = coln, rown = rown, arrayn = arrayn,
sens = 0.95, spec = 0.95, n.gibbs = 2000, trace = TRUE)

fit2
summary(fit2)

## End(Not run)

# 4) Identification using hierarchical and array-based group testing algorithms

# 4.1) Finding the optimal testing configuration over a range of initial
# group sizes, using non-informative three-stage hierarchical testing, where
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# p denotes the overall prevalence of disease,
# Se denotes the sensitivity of the diagnostic test,
# Sp denotes the specificity of the diagnostic test,
# group.sz denotes the range of initial pool sizes for consideration, and
# obj.fn specifies the objective functions for which to find results.

# The following call reproduces results given by Hitt et al. (2018) for
# informative three-stage hierarchical testing with an overall disease
# prevalence of E(p_i) = 0.01 and sensitivity and specificity equal to 0.95.

# This example takes approximately 2.5 minutes to run.

## Not run:
set.seed(1002)
results1 <- OTC(algorithm="ID3", p=0.01, Se=0.95, Sp=0.95, group.sz=3:40,
obj.fn=c("ET", "MAR"), alpha=2)
results1$opt.ET$OTC
results1$opt.ET$ET/results1$opt.ET$OTC$Stage1
results1$opt.MAR$OTC
results1$opt.MAR$ET/results1$opt.MAR$OTC$Stage1

## End(Not run)

# 4.2) Finding the optimal testing configuration using non-informative
# array testing without master pooling

# The following call reproduces results given by Hitt et al. (2018) for
# non-informative array testing without master pooling with an overall
# disease prevalence of p=0.01 and sensitivity and specificity equal
# to 0.90.

# This example takes approximately 7 minutes to run.

## Not run:
results2 <- OTC(algorithm="A2", p=0.01, Se=0.90, Sp=0.90, group.sz=3:40,
obj.fn=c("ET", "MAR"))
results2$opt.ET$OTC
results2$opt.ET$ET/results2$opt.ET$OTC$Array.sz
results2$opt.MAR$OTC
results2$opt.MAR$ET/results2$opt.MAR$OTC$Array.sz

## End(Not run)

accuracy.dorf Accuracy measures for informative Dorfman testing

Description

Calculate the accuracy measures for each individual in a pool used with informative Dorfman test-
ing.
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Usage

accuracy.dorf(p, se, sp)

Arguments

p a vector of each individual’s probability of infection.
se the sensitivity of the diagnostic test.
sp the specificity of the diagnostic test.

Details

This function calculates the pooling sensitivity, pooling specificity, pooling positive predictive
value, and pooling negative predictive value for each individual belonging to a pool of size greater
than or equal to one used with informative Dorfman testing. Calculations of these measures are
done using the equations presented in McMahan et al. (2012).

Value

a list containing:

PSe a vector containing each individual’s pooling sensitivity.
PSp a vector containing each individual’s pooling specificity.
PPV a vector containing each individual’s pooling positive predictive value.
NPV a vector containing each individual’s pooling negative predictive value.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

http://chrisbilder.com/grouptesting

Other Informative Dorfman functions: characteristics.pool, inf.dorf.measures, opt.info.dorf,
opt.pool.size, pool.specific.dorf, thresh.val.dorf

Examples

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8135)
p.vec <- p.vec.func(p=0.02, alpha=1, grp.sz=10)
accuracy.dorf(p=p.vec[1:3], se=0.90, sp=0.90)

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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Array.Measures Operating characteristics for array testing without master pooling

Description

Calculate the expected number of tests and accuracy measures for each individual using array testing
without master pooling

Usage

Array.Measures(p, se, sp)

Arguments

p matrix of probabilities corresponding to each individual’s risk of disease.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

Details

This function calculates the operating characteristics for array testing without master pooling. Oper-
ating characteristics calculated are expected number of tests, pooling sensitivity, pooling specificity,
pooling positive predictive value, and pooling negative predictive value for each individual.

Value

A list containing:

T the expected number of tests for the array.

PSe a matrix containing each individual’s pooling sensitivity, corresponding to the
input matrix of individual probabilities.

PSp a matrix containing each individual’s pooling specificity, corresponding to the
input matrix of individual probabilities.

PPV a matrix containing each individual’s pooling positive predictive value, corre-
sponding to the input matrix of individual probabilities.

NPV a matrix containing each individual’s pooling negative predictive value, corre-
sponding to the input matrix of individual probabilities.

Note

This function returns the pooling positive and negative predictive values for all individuals in the
array even though these measures are diagnostic specific; i.e., PPV (NPV) should only be considered
for those individuals who have tested positive (negative).
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Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68(3), 793–804. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01726.x.

See Also

MasterPool.Array.Measures for calculating operating characteristics under non-informative ar-
ray testing with master pooling, hierarchical.desc2 for three-stage hierarchical and non-informative
two-stage hierarchical testing, and inf.dorf.measures for informative two-stage hierarchical test-
ing. See p.vec.func for generating a vector of individual risk probabilities for informative group
testing and Informative.array.prob for arranging individual risk probabilities in a matrix for
informative array testing.

http://chrisbilder.com/grouptesting

Other Operating characteristic functions: MasterPool.Array.Measures, hierarchical.desc2,
inf.dorf.measures

Examples

# Calculate the operating characteristics for
# non-informative array testing without master
# pooling, with a 5x5 array and an overall disease
# risk of p = 0.02.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
p.mat <- matrix(data=0.02, ncol=5, nrow=5)
Array.Measures(p=p.mat, se=0.95, sp=0.95)

# Calculate the operating characteristics for
# informative array testing without master
# pooling, with a 3x3 array and an overall disease
# risk of p = 0.03 and alpha = 2.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8791)
p.vec <- p.vec.func(p=0.03, alpha=2, grp.sz=9)
p.mat <- Informative.array.prob(prob.vec=p.vec, nr=3,
nc=3, method="gd")
Array.Measures(p=p.mat, se=0.99, sp=0.99)

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01726.x
http://chrisbilder.com/grouptesting
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beta.dist Expected value of order statistics from a beta distribution

Description

Get the expected value of order statistics, E(p(i)), from a beta distribution by specifying an average
probability and shape parameters for the beta distribution.

Usage

beta.dist(p = 0.05, alpha = 1, beta = NULL, grp.sz = 10,
simul = FALSE, plot = FALSE, rel.tol = ifelse(a >= 1,
.Machine$double.eps^0.25, .Machine$double.eps^0.1))

Arguments

p average probability, α
α+β .

alpha the alpha parameter for the beta distribution. The details of the specification of
alpha are given under ’Details’.

beta the beta parameter for the beta distribution, which is calculated from the average
probability, p, if it is not specified. The details of the specification of beta are
given under ’Details’.

grp.sz the number of individuals in the group.

simul a logical value indicating whether to use simulation. If simulation is used, the
vector of probabilities is found by simulating 10,000 values from a beta distri-
bution with the specified shape parameters. If simulation is not used, the vector
of individual probabilities is found using integration.

plot a logical value indicating whether to plot the distribution with p(i) marked.

rel.tol relative tolerance used for integration.

Details

If alpha = 0, this function uses an extreme value distribution based on a Bernoulli(p) distribution
to find the individual probabilities, p_i. If alpha is infinite, this function uses pi = p for all i.

If beta is not specified, it is calculated from the average probability p as b = a ∗ 1
p−1 . If beta is

specified, this function ignores p unless alpha is infinite.

Depending on the specified probability, alpha level, and overall group size, simulation may be
necessary in order to generate the vector of individual probabilities. In this case, the user should
specify simul=TRUE and set a seed in order to reproduce results. See Black et al. (2015) for
additional details.

Value

A vector of ordered probabilities, p_i.
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Author(s)

This function was originally written by Michael S. Black for Black et al. (2015). The function was
obtained from http://chrisbilder.com/grouptesting.

References

Black, M., Bilder, C., Tebbs, J. (2015). “Optimal retesting configurations for hierarchical group
testing.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 64(4), 693–710.
ISSN 14679876, doi: 10.1111/rssc.12097.

See Also

http://chrisbilder.com/grouptesting

p.vec.func for generating a vector of individual risk probabilities for informative group testing
(after checking whether simulation is needed) and Informative.array.prob for arranging a vector
of individual risk probabilities in a matrix for informative array testing without master pooling.

Other Individual risk probability functions: Informative.array.prob, p.vec.func

Examples

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8791)
beta.dist(p=0.05, alpha=1, grp.sz=30)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(1002)
beta.dist(p=0.02, alpha=2, grp.sz=50, simul=TRUE)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(5732)
beta.dist(alpha=2, beta=5, grp.sz=15, plot=TRUE)

bgtCI Confidence Intervals for One Proportion in Binomial Group Testing

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/rssc.12097
http://chrisbilder.com/grouptesting
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Description

Calculates the point estimate, the exact Clopper-Pearson and Blaker CI, the Score test derived Wil-
son and Agresti-Coull CI, the asymptotic second-order corrected interval fo Cai and the Wald CI for
a single binomial proportion estimated from a binomial group testing trial. Assumes equal group
sizes, an assay method classifying a group as positive if at least one unit in the group is positive,
individuals units randomly assigned to the groups.

Usage

bgtCI(n, s, y, conf.level = 0.95,
alternative = "two.sided", method = "CP")

Arguments

n integer, specifying the number of groups (i.e. assays i.e. observations)

s integer, specifying the common size of groups i.e. the number of individual units
in each group

y integer, specifying the number of positive groups

conf.level nominal confidence level of the interval

alternative character string defining the alternative hypothesis, either ’two.sided’, ’less’ or
’greater’ where ’less’ gives the only an upper bound with confidence level=conf.level
’greater’ gives the only a lower bound with confidence level=conf.level and
’two.sided’ gives a two-sided confidence interval with confidence level=conf.level

method character string defining the method for CI calculation, where: "CP" is Clopper-
Pearson, an exact tail interval showing symmetric coverage probability (inver-
sion of two one-sided tests), "Blaker" is the Blaker interval, an exact interval,
inversion of one two.sided test, therefore defined only two.sided, but shorter than
the two-sided Clopper-Pearson CI. Both guarantee to contain the true parameter
with at least conf.level*100 percent probability, "AC" is the Agresti-Coull (gen-
eralized Agresti-Coull) interval, asymptotic method, "Score" is Wilson Score,
asymptotic method derived from inversion of the Score test, "SOC" is the second
order corrected interval, asymptotic method for one-sided problems (for details
see Cai, 2005), and "Wald" the Wald interval, which cannot be recommended.

Details

This function allows the computation of confidence intervals for binomial group testing as described
in Tebbs & Bilder (2004) and Schaarschmidt (2007). If an actual confidence level greater or equal to
that specified in the conf.level argument shall always be guaranteed, the exact method of Clopper-
Pearson (method="CP") can be recommended for one-sided and the improved method of Blaker
(2000) (method="Blaker") can be recommended for two-sided hypotheses. If a mean confidence
level close to that specified in the argument conf.level is required, but moderate violation of this
level is acceptable, the Second-Order corrected (method="SOC"), Wilson Score (method="Score")
or Agresti-Coull (method="AC") might be used (Brown, Cai, DasGupta, 2001; Cai 2005).
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Value

A list containing:

conf.int a confidence interval for the proportion

estimate the point estimator of the proportion

Author(s)

Frank Schaarschmidt

References

Blaker H (2000). Confidence curves and improved exact confidence intervals for discrete distribu-
tions. The Canadian Journal of Statistics 28 (4), 783-798.

Brown LD, Cai TT, DasGupta A (2001). Interval estimation for a binomial proportion. Statistical
Science 16 (2), 101-133.

Cai TT (2005). One-sided confidence intervals in discrete distributions. Journal of Statistical Plan-
ning and Inference 131, 63-88.

Schaarschmidt F (2007). Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40.
http://agrobiol.sggw.waw.pl/cbcs/

Tebbs JM & Bilder CR (2004). Confidence interval procedures for the probability of disease trans-
mission in multiple-vector-transfer designs. Journal of Agricultural, Biological and Environmental
Statistics, 9 (1), 75-90.

See Also

pooledBin for asymptotic confidence intervals and bgtvs for an exact confidence interval when
designs with different group sizes are used

bgtTest: for hypothesis tests in binomial group testing

Examples

# See the example in Tebbs and Bilder (2004)
# the two.sided 95-percent
# Clopper-Pearson as default method:

bgtCI(n=24,y=3,s=7)
bgtCI(n=24,y=3,s=7,conf.level=0.95,
alternative="two.sided", method="CP")

# other methods:
# Blaker CI is exact but shorter
# than Clopper-Pearson, only two.sided

bgtCI(n=24,y=3,s=7, alternative="two.sided",
method="Blaker")

# the asymptotic Wilson CI might even
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# be shorter:

bgtCI(n=24,y=3,s=7, alternative="two.sided",
method="Score")

# one-sided confidence intervals:

bgtCI(n=24,y=3,s=7, alternative="less", method="CP")

# Wilson Score interval is less conservative
bgtCI(n=24,y=3,s=7, alternative="less", method="Score")

# the second-order corrected CI is even shorter
# in this situation:
bgtCI(n=24,y=3,s=7, alternative="less", method="SOC")

bgtPower Power to Reject a Hypothesis in Binomial Group Testing for One Pro-
portion

Description

Closed calculation of the Power to reject a hypothesis in a binomial group testing experiment using
confidence intervals for decision. Closed calculation of bias of the point estimator for a given
experimental design n, s and the true, unknown proportion.

Usage

bgtPower(n, s, delta, p.hyp, conf.level = 0.95,
method = "CP", alternative = "two.sided")

Arguments

n integer, giving the number of groups i.e. assays i.e. observations, a vector of
integers is also allowed

s integer, giving the common size of groups i.e. the number of individual units in
each group, a vector of integers is also allowed

delta absolute difference between the threshold and the true proportion which shall be
detectable with specified power, a vector is also allowed

p.hyp number between 0 and 1, specifying the threshold proportion in the hypotheses

conf.level confidence level required for the decision on the hypotheses

method character string, specifying the Confidence interval method (see bgtCI) to be
used
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alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’ or
’greater’ where ’less’ calculates the probability that p.hyp is excluded by an
upper confidence limit for a true proportion p.hyp-delta, ’greater’ calculates the
probability that p.hyp is excluded by a lower confidence limit for a true propor-
tion p.hyp+delta, ’two.sided’ calculates min(power(p.hyp-delta, p.hyp+delta))
for a two-sided CI, thus can result in much lower power.

Details

The power of a confidence interval here is defined as the probability that a confidence interval or
limit excludes the threshold parameter (p.hyp) of the null hypothesis, as described in Schaarschmidt(2007).
I.e., the null hypothesis H0: p >= p.hyp might be rejected, if an upper confidence limit for p does not
contain p.hyp. Due to discreteness, the power does not increase monotone for increasing number
of groups n or group size s, but exhibits local maxima and minima, depending on n,s, conf.level,
p.hyp. The power can be identical for different methods, depending on the particular combination
of n, s, p.hyp, conf.level. Note that coverage probability and power are not necessarily symmetric
for upper and lower bounds of binomial CI, especially for Wald, Wilson Score and Agresti-Coull
CI.

Additional to the power, bias of the point estimator is calculated according to Swallow (1985).

If vectors are specified for n, s, and (or) delta, a matrix will be constructed and power and bias are
calculated for each line in this matrix.

Value

A matrix containing the columns

ns a vector of total sample size n*s resulting from the latter

n a vector of number of groups

s a vector of group sizes

delta a vector of delta

power the power to reject the given null hypothesis, with the specified method and
parameters of the first 4 columns

bias the bias of the estimator for the specified n, s, and the true proportion

References

Schaarschmidt F (2007). Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40.
http://agrobiol.sggw.waw.pl/cbcs/

Swallow WH (1985). Group testing for estimating infection rates and probabilities of disease trans-
mission. Phytopathology Vol.75, N.8, 882-889.

See Also

nDesign: stepwise increasing n (for a fixed group size s) until a certain power is reached within a
restriction of bias of the estimator sDesign: stepwise increasing s (for a fixed number of groups)
until a certain power is reached within a restriction of bias of the estimator estDesign: selection of
an appropriate design to achieve minimal mean square error of the estimator
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Examples

# Calculate the power for the design
# in the example given in Tebbs and Bilder(2004):
# n=24 groups each containing 7 insects
# if the true proportion of virus vectors
# in the population would be 0.04 (4 percent),
# the power to reject H0: p>=0.1 using an
# upper Clopper-Pearson ("CP") confidence interval
# can be calculated using the following call:

bgtPower(n=24, s=7, delta=0.06, p.hyp=0.1,
conf.level=0.95, alternative="less", method="CP")

# c(), seq() or rep() might be used to explore development
# of power and bias for varying n, s, delta. How much can
# we decrease the number of groups (costly assays to be performed)
# by pooling the same number of 320 individuals to groups of
# increasing size without largely decreasing power?

bgtPower(n=c(320,160,80,64,40,32,20,10,5),
s=c(1,2,4,5,8,10,16,32,64),
delta=0.01, p.hyp=0.02)

# How does power develop for increasing differences
# delta between the true proportion and the threshold proportion?

bgtPower(n=50, s=10, delta=seq(from=0, to=0.01, by=0.001),
p.hyp=0.01, method="CP")

# use a more liberal method:

bgtPower(n=50, s=10, delta=seq(from=0, to=0.01, by=0.001),
p.hyp=0.01, method="SOC")

bgtTest Hypothesis Test for One Proportion in Binomial Group Testing

Description

Calculates p values for hypotheses tests of binomial proportions estimated from binomial group
testing experiments against a threshold proportion in the hypotheses. Exact test, Score test and
Wald test are available methods. Assumes equal group sizes, 100 percent sensitivity and specificity
of the assays to test the groups, and individuals units randomly assigned to the groups with identical
true probability of success.
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Usage

bgtTest(n, y, s, p.hyp, alternative = "two.sided",
method = "Exact")

Arguments

n integer, number of groups (i.e. assays i.e. observations)

y integer, number of positive groups

s integer, common size of groups i.e. the number of individual units in each group

p.hyp number between 0 and 1, specifying the hypothetical threshold proportion to test
against

alternative character string defining the alternative hypothesis, either ’two.sided’, ’less’ or
’greater’

method character string defining the test method to be used: can be one of ’Exact’ for an
exact test corresponding to the Clopper-Pearson confidence interval ’Score’ for
a Score test, corresponding to the Wilson confidence interval ’Wald’ for a Wald
test corresponding to the Wald confidence interval, not recommended

Value

A list containing:

p.value the p value of the test

estimate the estimated proportion

p.hyp as input

alternative as input

method as input

References

Swallow WH (1985) Group testing for estimating infection rates and probabilities of disease trans-
mission. Phytopathology 75 (8), 882-889.

Blyth, C and Still, H. (1983) Binomial confidence intervals. Journal of the American Statistical
Association 78, 108-116.

Santner TJ and Duffy DE (1989) The statistical analysis of discrete data. Springer New York.

Remund KM, Dixon DA, Wright DL, Holden LR (2001) Statistical considerations on seed purity
testing on transgenic traits. Seed Science Research (11), 101-119.

See Also

bgtCI for confidence intervals in binomial group testing
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Examples

# Assume the experiment: Assays are performed on
# n=10 groups, each group is a bulk sample
# of s=100 individuals, aim is to show that
# less than 0.5 percent ('p<0.005') of the units
# of the population show a detrimental trait (positive assay).
# The assay is senstive to show a positive result if only 1
# unit in the bulk sample of 100 units is positive.
# y=1 positive assay and 9 negative assays are observed.

bgtTest(n=10,y=1,s=100,alternative="less",method="Exact",p.hyp=0.005)

# The exact test corresponds to the
# limits of the Clopper-Pearson confidence interval
# in the example of Tebbs and Bilder(2004):

bgtTest(n=24, y=3, s=7, alternative="two.sided",
method="Exact", p.hyp=0.0543)

bgtTest(n=24, y=3, s=7, alternative="two.sided",
method="Exact", p.hyp=0.0038)

# Further methods:

bgtTest(n=24, y=3, s=7, alternative="two.sided",
method="Score", p.hyp=0.0516)

bgtTest(n=24, y=3, s=7, alternative="two.sided",
method="Wald", p.hyp=0.0401)

bgtvs Confidence Interval for One Proportion in Group Testing with Vari-
able Group Sizes

Description

Calculates confidence intervals for a single proportion in binomial group testing if groups of differ-
ent size are evaluated

Usage

bgtvs(n, s, y, conf.level = 0.95, alternative = "two.sided",
maxiter = 100)

Arguments

n vector of integer values, specifying the number of groups of the different sizes

s vector of integer values, specifying the group sizes, must be of same length as n
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y vector of integer values, specifying the number of positive groups among the n
groups tested

conf.level a single numeric value, the confidence level of the interval

alternative a character string, with options "two.sided", "less", "greater"

maxiter maximal number steps in iteration of confidence limits

Details

Hepworth (1996) describes methods for constructing confidence intervals in binomial group testing,
if groups of different size are used. Currently, only the exact method (Hepworth, 1996, equation5,
Table.5) is implemented. Note, that the algorithm becomes computationally very expensive if the
number of different groups becomes larger than 3.

Value

A list containing

conf.int a numeric vector, the lower and upper limits of the confidence interval

estimate the point estimate

conf.level as input

alternative as imput

input a matrix containing the input values of n (number of groups), s (group size), and
y (number of positive pools)

moreover, some of the input arguments.

Author(s)

Frank Schaarschmidt

References

Hepworth, G (1996): Exact confidence intervals for proportions estimated by group testing. Bio-
metrics 52, 1134-1146.

See Also

pooledBin for asymptotic methods to calculate confidence intervals for one proportion in designs
with a number of different pool sizes. Note that pooledBin can handle larger number of different
pool sizes than bgtvs

Examples

# Consider a very simple example,
# given in Hepworth (1996), table 5:
# 2 groups each containing 5 units,
# and 3 groups, each containing 2 units

# In the first setting (n=2, s=5) y=1 positive group
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# has been observed, in the second setting (n=3, s=2),
# y=2 positive have been observed.

bgtvs(n=c(2,3), s=c(5,2), y=c(1,2))

###############################################

# Recalculate the example given in
# Hepworth (1996), table 5:

bgtvs(n=c(2,3), s=c(5,2), y=c(0,0))
bgtvs(n=c(2,3), s=c(5,2), y=c(0,1))
bgtvs(n=c(2,3), s=c(5,2), y=c(0,2))
bgtvs(n=c(2,3), s=c(5,2), y=c(0,3))
bgtvs(n=c(2,3), s=c(5,2), y=c(1,0))
bgtvs(n=c(2,3), s=c(5,2), y=c(1,1))
bgtvs(n=c(2,3), s=c(5,2), y=c(1,2))
bgtvs(n=c(2,3), s=c(5,2), y=c(1,3))
bgtvs(n=c(2,3), s=c(5,2), y=c(2,0))
bgtvs(n=c(2,3), s=c(5,2), y=c(2,1))
bgtvs(n=c(2,3), s=c(5,2), y=c(2,2))
bgtvs(n=c(2,3), s=c(5,2), y=c(2,3))

bgtWidth Expected Width of Confidence Intervals in Binomial Group Testing

Description

Calculation of expected value of the width of confidence intervals for one proportion in binomial
group testing, in dependence of the number of groups, group size, confidence level and an assumed
true proportion. Available for the confidence interval methods in bgtCI(binGroup).

Usage

bgtWidth(n, s, p, conf.level = 0.95, alternative = "two.sided",
method = "CP")

Arguments

n integer, giving the number of groups i.e. assays i.e. observations, vector of
integers is also allowed

s integer, giving the common size of groups i.e. the number of individual units in
each group, vector of integers is also allowed

p assumed true proportion of individuals showing the trait to be estimated, vector
is also allowed

conf.level required confidence level of the interval
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alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’
or ’greater’ where ’less’ calculates the expected width between the assumed
true proportion p and the upper conf.level*100 percent-bound of a one-sided
CI, ’greater’ calculates the expected width between the true assumed proportion
p and the lower conf.level*100 percent-bound of a one-sided CI, ’two.sided’
calculates the expected width between the lower and the upper bound of a two-
sided conf.level*100 percent-CI.

method character string as in the method argumnet in bgtCI

Details

For calculation of expected interval width in the standard binomial estimation see, e.g., Brown et al.
(2001). The calculation in case of binomial group testing is simply done by replacing the binomial
probabilities by the probabilities P(Y=y) for group testing (see Tebbs and Bilder, 2004)

Value

A matrix containing the columns

ns the resulting total number of units n*s

n number of groups

s group size

p the assumed true proportion

and the calculated

expCIWidth expected value of CI width as defined under argument alternative

Author(s)

Frank Schaarschmidt

References

Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a binomial proportion. Statistical
Science 16 (2), 101-133.

Schaarschmidt F (2007) Experimental design for one-sided confidence intervals or hypothesis tests
in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40. http://agrobiol.sggw.waw.pl/cbcs/

Tebbs JM & Bilder CR (2004) Confidence interval procedures for the probability of disease trans-
mission in multiple-vector-transfer designs. Journal of Agricultural, Biological and Environmental
Statistics 9 (1), 75-90.

Examples

# There is a minimal expected CI length, if
# group size s is increased (fixed other parameters)
# the corresponding group size might be chosen:

bgtWidth(n=20, s=seq(from=1, to=200, by=10),
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p=0.01, alternative="less", method="CP" )

# and this depends largely on the assumed proportion p:

bgtWidth(n=20, s=seq(from=1, to=200, by=10),
p=0.05, alternative="less", method="CP" )

bgtWidth(n=20, s=seq(from=1, to=200, by=10),
p=0.005, alternative="less", method="CP" )

binCI Confidence Intervals for One Binomial Proportion

Description

Calculates the exact Clopper-Pearson and Blaker, the asymptotic second-order corrected, Wilson,
Agresti-Coull and Wald confidence interval for a single binomial proportion

Usage

binCI(n, y, conf.level = 0.95, alternative = "two.sided",
method = "CP")

binCP(n, y, conf.level=0.95, alternative="two.sided")
binBlaker(n,y,conf.level=0.95, tolerance=1e-04, alternative="two.sided")
binAC(n, y, conf.level=0.95, alternative="two.sided")
binSOC(n, y,conf.level=0.95,alternative="two.sided")
binWald(n, y, conf.level=0.95, alternative="two.sided")
binWilson(n, y,conf.level=0.95,alternative="two.sided")

Arguments

n number of trials (number of individuals under observation)

y number of successes (number of individuals showing the trait of interest)

conf.level nominal confidence level

alternative character string defining the alternative hypothesis, either ’two.sided’, ’less’ or
’greater’ where ’less’ gives the only an upper bound with confidence level=conf.level
’greater’ gives the only a lower bound with confidence level=conf.level and
’two.sided’ gives a two-sided confidence interval with confidence level=conf.level

method character string defining the method for CI calculation: where "CP" is Clopper-
Pearson, an exact tail interval showing symmetric coverage probability (inver-
sion of two one-sided tests), "Blaker" is the Blaker interval, an exact interval,
inversion of one two.sided test, therefore defined only two.sided, but shorter
than the two-sided Clopper-Pearson CI. Both guarantee to contain the true pa-
rameter with at least conf.level*100 percent probability, "AC" is Agresti-Coull,
generalized Agresti-Coull interval, asymptotic method, "Score" is Wilson Score,
asymptotic method derived from inversion of the Score test, "SOC" is the second
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order corrected interval, asymptotic method for one-sided problems (for details
see Cai, 2005), and "Wald" the Wald interval, which cannot be recommended.

tolerance precision of computation for the bounds of the Blaker interval

Details

This function allows computation of confidence intervals for a binomial proportion from a standard
binomial experiment. If an actual confidence level greater or equal to that specified in the conf.level
argument shall always be guaranteed, the exact method of Clopper-Pearson (method="CP") can be
recommended for one-sided and the improved method of Blaker (method="Blaker") can be rec-
ommended for two-sided hypotheses. If a mean confidence level close to that specified in the
argument conf.level is required, but moderate violation of this level is acceptable, the Second-Order
corrected (method="SOC"), Wilson Score (method="Wilson") or Agresti-Coull (method="AC")
might be used, where SOC has the most symmetric coverage and Wilson and Agresti-Coull are in
tendency conservative for the upper bound and proportions close to 0 and for the lower bound and
proportions close to 1. The Wald CI might be used for large number of observations n>10000 or
intermediate proportions.

For discussion of CI for a single binomial proportion see Brown et al. (2001) for two-sided and Cai
(2005) for one-sided intervals.

Value

A list containing:

conf.int the estimated confidence interval

estimate the point estimator

And the method, conf.level and alternative specified in the function call.

Author(s)

Frank Schaarschmidt

References

Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distribu-
tions. The Canadian Journal of Statistics 28 (4), 783-798.

Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a binomial proportion. Statistical
Science 16 (2), 101-133.

Cai TT(2005) One-sided confidence intervals in discrete distributions. Journal of Statistical Plan-
ning and Inference 131, 63-88.

See Also

binom.test for the exact confidence interval and test, binTest to calculate p.values of the exact,
Score and Wald test.
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Examples

# Default method is the two-sided 95% Clopper-Pearson CI:

binCI(n=200, y=10)

# other methods might result in
# shorter intervals (but asymetric coverage):

binCI(n=200,y=10, method="Blaker")
binCI(n=200,y=10, method="Score")

binDesign Sample Size Iteration for One Parameter Binomial Problem

Description

This function increases the sample size until a maximal sample size or a prespecified power is
achieved.

Usage

binDesign(nmax, delta, p.hyp, conf.level = 0.95,
power = 0.8, method = "CP", alternative = "two.sided")

Arguments

nmax integer, maximal number of trials (individuals under observation) allowed in the
iteration

delta absolute difference between the threshold and the true proportion which shall be
detectable with the specified power

p.hyp threshold proportion to test against in the hypothesis, specify as a value between
0 and 1

conf.level Confidence level of the decision, default is 0.95

power Level of power to be achieved to be specified as a probability between 0 and 1

method character string specifying the CImethod to be used for evaluation, see argument
method in bgtCI

alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’
or ’greater’ where ’less’ calculates the probability that p.hyp is excluded by
an upper confidence limit given that the true proportion is p.hyp-delta, ’greater’
calculates the probability that p.hyp is excluded by a lower confidence limit
given that the true proportion is p.hyp+delta. ’two.sided’ calculates min(power(p.hyp-
delta, p.hyp+delta)) for a two-sided CI, thus can result in much lower power.
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Details

The power of a confidence interval here is defined as the probability that a confidence interval or
limit excludes the threshold parameter (p.hyp) of the hypothesis.

This function increases the number of trials (number of individuals under observation) until a pre-
specified power is reached. Since the power does not increase monotone with increasing n for
binomial proportions but oscillates between local maxima and minima, the simple iteration given
here will generally result in selecting those n, for which the given CI method shows a local mini-
mum of coverage if the null hypothesis is true. The power can be identical for different methods,
depending on the particular combination of n, p.hyp, conf.level.

Especially for large n, the calculation time may become large (particularly for Blaker). Then only
the range of sample size which is of interest can be specified in nmax, f.e. as: nmax=c(150,300).
Alternatively, the function binPower might be used instead to calculate power and bias only for
some particular combinations of n, delta, p.hyp,... .

Note that coverage probability and power are not necessarily symmetric for upper and lower bound
of binomial CI.

The results can be visualized by application of the function plot() to the returned object of this
function.

Value

a list

powerout power value, either the power of the first n exceeding the pre-specified power,
or the maximal power achieved in the specified range of n if the specified power
has not been reached

nout corresponding sample size n (the number of trials) for which the prespecified
power is reached, or the sample size n for which the maximal power has been
reached within the specified range, if pre-specified power has not been reached.

and additional input and iteration values needed only for the function plot.binDesign.

Author(s)

Frank Schaarschmidt

References

Schaarschmidt, F. (2007). Experimental design for one-sided confidence intervals or hypothe-
sis tests in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40.
http://agrobiol.sggw.waw.pl/cbcs/

See Also

binPower for calculation of power, plot.binDesign for plot of the results
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Examples

# Find a sample size for which the power to
# reject H0: p >= 0.1 in favor of HA: p < 0.1 is
# at least 0.9 (90 percent) in case that the
# true proportion is 0.04 (i.e. an absolute delta
# of 0.06 to the threshold proportion p.hyp=0.1)
# The exact one sided Clopper-Pearson CI shall be
# used with default confidence level = 0.95.

sasi<-binDesign( nmax=200, delta=0.06,
p.hyp=0.1, alternative="less", method="CP", power=0.9)

sasi

#### One can also plot the result:

plot(sasi)

# For larger sample sizes iteration can be very time consuming.
# Better to use only a smaller range of n then:

sasi<-binDesign( nmax=c(200,300), delta=0.03, p.hyp=0.1,
alternative="less", method="CP", power=0.9)

sasi

binPower Power Calculation for One Parameter Binomial Problem

Description

Closed calculation of the power to reject a hypothesis using confidence intervals for a single bino-
mial proportion, for specified sample size n, conf.level and an assumed absolute difference to the
threshold parameter under the null hypothesis.

Usage

binPower(n, delta, p.hyp, conf.level = 0.95,
alternative = "two.sided", method = "CP")

Arguments

n number of trials n in the binomial experiment, specify as a single integer

delta assumed absolute difference of the true proportion to the threshold proportion
under the null hypothesis

p.hyp threshold proportion under the null hypothesis
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conf.level nominal confidence level of the interval

alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’
or ’greater’ where ’less’ calculates the ’power of the upper confidence limit’
for a true proportion p.hyp - delta, ’greater’ calculates the ’power of the
lower confidece limit’ for a true proportion of p.hyp + delta. ’two.sided’
calculates min(power(p.hyp - delta, p.hyp + delta)) for a two-sided CI, thus
can result in much lower power.

method Character string, specifying the confidence interval method (see binCI) to be
used

Details

The power of a confidence interval here is defined as the probability that a confidence interval or
limit excludes the threshold parameter (p.hyp) of the null hypothesis. E.g., the null hypothesis H0:
p>= 0.005 can be rejected, if an upper confidence limit for p does not contain p.hyp=0.005. In case
that a delta of 0.002 shall be detectable, this function calculates the probability, that an interval of
a given method will exclude p.hyp=0.005 if the true proportion = 0.003. Due to discreteness, the
power does not increase monotone for increasing sample size (number of trials or indivoiduals under
observation) n, but exhibits local maxima and minima, depending on n, conf.level and p.hyp. The
power can be identical for different methods, depending on the particular combination of n, p.hyp,
conf.level. Note, that coverage probability and power are not necessarily symmetric for upper and
lower bound of binomial CI, especially for Wald, Wilson Score and Agresti-Coull CI.

Value

A list containing

power the power which is achieved for the specified parameters and method

Author(s)

Frank Schaarschmidt

See Also

binDesign for iteration of a sample size n for which a specified power is reached

Examples

# What is the probability to reject the null hypothesis
# H0: p >= 0.02 in order to show that the alternative
# hypothesis HA: p < 0.02 is very likely in the first
# example of if 200 seeds are taken from a seed lot and
# are checked for the proportion of defectives.
# Assume a true proportion under the alternative:
# p = 0.01, i.e. a absolute difference delta = 0.01
# to the threshold proportion p.hyp=0.02.
# The null hypothesis can be rejected if the threshold
# p.hyp=0.02 is excluded by an 95 percent upper bound of the
# Clopper-Pearson CI. What is the probability of this event?
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binPower(n=200, delta=0.01, p.hyp=0.02,
alternative="less", method="CP")

# Assuming a lower true proportion (if one is satisfied
# also with the situation that we can only reject H0
# in case that the seed lot has a very high purity, e.g.
# only a proportion of 0.001 defectives )

binPower(n=200, delta=0.019, p.hyp=0.02,
alternative="less", method="CP")

# Or use a higher sample size:

binPower(n=600, delta=0.01, p.hyp=0.02,
alternative="less", method="CP")

binTest Hypothesis tests for One Binomial Proportion

Description

Calculates p-values for hypothesis tests of a single binomial proportion.

Usage

binTest(n, y, p.hyp, alternative = "two.sided",
method = "Exact")

Arguments

n single integer value, number of trials (number of individuals under observation)

y single integer value, number of successes (number of individuals showing the
trait of interest)

p.hyp single numeric value between 0 and 1, specifying the hypothetical threshold
proportion to test against

alternative character string defining the alternative hypothesis, either ’two.sided’, ’less’ or
’greater’

method character string defining the test method to be used: can be one of "Exact"
for an exact test corresponding to the Clopper-Pearson confidence interval, uses
binom.test(stats) "Score" for a Score test, corresponding to the Wilson con-
fidence interval "Wald" for a Wald test corresponding to the Wald confidence
interval
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Value

A list containing:

p.value the p value of the test

estimate the estimated proportion

p.hyp as input

alternative as input

method as input

Author(s)

Frank Schaarschmidt

References

Santner, T.J. and Duffy, D.E. (1989) The statistical analysis of discrete data. Springer Verlag New
York Berlin Heidelberg. Chapter 2.1.

See Also

binom.test(stats) for the exact test and corresponding confindence interval

Examples

# 200 seeds are taken from a seed lot.
# 2 are found to be defective.
# H0: p >= 0.02 shall be rejected in favor of HA: p < 0.02.
# The exact test shall be used for decision:

binTest(n=200, y=2, p.hyp=0.02, alternative="less", method="Exact" )

binWidth Expected Confidence Interval Width for One Binomial Proportion

Description

Calculation of expected value of the width of confidence intervals in a binomial experiment, in
dependence of the number of trials (number of individuals under observation), confidence level and
an assumed true proportion. Available for the confidence interval methods in binCI(binGroup).

Usage

binWidth(n, p, conf.level = 0.95,
alternative = "two.sided", method = "CP")
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Arguments

n integer, giving the number of trials (i.e. number of individuals under observa-
tion)

p assumed true proportion of individuals showing the trait to be estimated

conf.level required confidence level of the interval

alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’
or ’greater’ where ’less’ calculates the expected width between the assumed
true proportion p and the upper conf.level*100 percent-bound of a one-sided
CI, ’greater’ calculates the expected width between the assumed true proportion
p and the lower conf.level*100 percent-bound of a one-sided CI, ’two.sided’
calculates the expected width between the lower and the upper bound of a two-
sided conf.level*100 percent-CI.

method character string defining the method for CI calculation: where "CP" is Clopper-
Pearson, an exact tail interval showing symmetric coverage probability (inver-
sion of two one-sided tests), "Blaker" is the Blaker interval, an exact interval,
inversion of one two.sided test, therefore defined only two.sided, but shorter than
the two-sided Clopper-Pearson CI. Both guarantee to contain the true parame-
ter with at least conf.level*100 percent probability, "AC" is Agresti-Coull, gen-
eralized Agresti-Coull interval, asymptotic method, "Score" is Wilson Score,
asymptotic method derived from inversion of the Score test, "SOC" is the second
order corrected interval, asymptotic method for one-sided problems (for details
see Cai, 2005), and "Wald" the simple Wald-type interval.

Details

For calculation of expected interval width in the standard binomial estimation see Brown et al.
(2001).

Value

A list containing:

expCIWidth the expected value of the width of the confidence interval for the specified argu-
ments

and the alternative, p and n which are specified in the function call.

Author(s)

Frank Schaarschmidt

See Also

binDesign for experimental design for hypothesis testing
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Examples

# methods differ slightly in length when sample sizes are large:

binWidth(n=200,p=0.02,alternative="two.sided",
method="CP")$expCIWidth

binWidth(n=200,p=0.02,alternative="two.sided",
method="Blaker")$expCIWidth

binWidth(n=200,p=0.02,alternative="two.sided",
method="Score")$expCIWidth

# but do more for small sample sizes and intermediate p:

binWidth(n=20,p=0.2,alternative="two.sided",
method="CP")$expCIWidth

binWidth(n=20,p=0.2,alternative="two.sided",
method="Blaker")$expCIWidth

binWidth(n=20,p=0.2,alternative="two.sided",
method="Score")$expCIWidth

characteristics.pool Testing expenditure for informative Dorfman testing

Description

Calculate the expectation and variation of the testing expenditure of a pool used with informative
Dorfman testing.

Usage

characteristics.pool(p, se, sp)

Arguments

p a vector of each individual’s probability of infection.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

Details

This function calculates the expected value and variance of the testing expenditure of a pool of size
greater than or equal to one used with informative Dorfman testing. Calculations of these measures
are done using the equations presented in McMahan et al. (2012).
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Value

a list containing:

e the expected testing expenditure of the pool.

v the variation of the testing expenditure of the pool.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

http://chrisbilder.com/grouptesting

Other Informative Dorfman functions: accuracy.dorf, inf.dorf.measures, opt.info.dorf,
opt.pool.size, pool.specific.dorf, thresh.val.dorf

Examples

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8135)
p.vec <- p.vec.func(p=0.02, alpha=1, grp.sz=10)
characteristics.pool(p=p.vec[1:3], se=0.90, sp=0.90)

estDesign Sample Size Iteration Depending on Minimal MSE in One-Parameter
Group Testing

Description

Find the group size s for a fixed number of assays n and an assumed true proportion p.tr for which
the mean squared error (mse) of the point estimator is minimal and bias is within a restriction.
For experimental design in binomial group testing as recommended by Swallow (1985), if main
objective is estimation.

Usage

estDesign(n, smax, p.tr, biasrest = 0.05)

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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Arguments

n integer, fixed sample size (number of assays)

smax integer, maximal group size allowed in planning of the design

p.tr assumed true proportion of the ’positive’ trait in the population to be tested,
specify as a value between 0 and 1

biasrest value between 0 and 1 specifying the absolute bias maximally allowed

Details

Swallow (1985) recommends to use the upper bound of the expected range of true proportion p.tr
for optimization of tzhe design. For further details see the reference. Up to now, specify n<1020.

Value

the group size s, for which the mse of the estimator is minimal for the given n, p.tr or the group size
s for which bias restriction biasrest is just not violated, and for this particular group size s: a list
containing:

varp the variance of the estimator

mse the mean square error of the estimator

bias the bias of the estimator

exp the expected value of the estimator

Author(s)

Frank Schaarschmidt

References

Swallow WH (1985) Group testing for estimating infection rates and probabilities of disease trans-
mission. Phytopathology Vol.75, N.8, 882-889.

See Also

nDesign, sDesign for choice of the binomial group testing design according to the power in a
hypothesis test

Examples

### Compare table 1 in Swallow(1985),885:

estDesign(n=10, smax=100, p.tr=0.001)

estDesign(n=10, smax=100, p.tr=0.01)

estDesign(n=25, smax=100, p.tr=0.05)

estDesign(n=40, smax=100, p.tr=0.25)
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estDesign(n=200, smax=100, p.tr=0.3)

gt.control Auxiliary for Controlling Group Testing Regression

Description

Auxiliary function to control fitting parameters of EM algorithm used internally in gtreg.mp and
EM.mp or gtreg, EM, and EM.ret.

Usage

gt.control(tol = 0.0001, n.gibbs = 1000, n.burnin = 20,
maxit = 500, trace = FALSE, time = TRUE)

Arguments

tol convergence criterion

n.gibbs the Gibbs sample size to be used in each E step for the EM algorithm (default is
1000), for matrix pooling

n.burnin the number of samples in the burn-in period (default is 20), for matrix pooling

maxit maximal number of iterations in the EM algorithm

trace logical indicating if output should be printed for each iteration, defaults to FALSE

time logical indicating if the length of time for the model fitting should be printed,
defaults to TRUE

Value

A list with components named as the arguments

Examples

# The default settings:
gt.control()
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gtreg Fitting Group Testing Models

Description

gtreg is a function to fit the group testing regression model specified through a symbolic description
of the linear predictor and descriptions of the group testing setting.

Usage

gtreg(formula, data, groupn, retest = NULL, sens = 1,
spec = 1, linkf = c("logit", "probit", "cloglog"),
method = c("Vansteelandt", "Xie"), sens.ind = NULL,
spec.ind = NULL, start = NULL, control = gt.control(...), ...)

gtreg.fit(Y, X, groupn, sens, spec, linkf, start=NULL)

EM(Y, X, groupn, sens, spec, linkf, start = NULL,
control = gt.control())

EM.ret(Y, X, groupn, ret, sens, spec, linkf, sens.ind,
spec.ind, start = NULL, control = gt.control())

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given under ’Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which gtreg is called.

groupn a vector, list or data frame of the group numbers that designates individuals to
groups.

retest a vector, list or data frame of individual retest results for Dorfman’s retesting
procedure. Default value is NULL for no retests. See ’Details’ for how to code it.

sens sensitivity of the test, set to be 1 by default.

spec specificity of the test, set to be 1 by default.

sens.ind sensitivity of the individual retests, set to be equal to sens if not specified oth-
erwise.

spec.ind specificity of the individual retests, set to be equal to spec if not specified oth-
erwise.

linkf a character string specifying one of the three link functions for a binomial model:
"logit" (default) or "probit" or "cloglog".
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method The method to fit the model, must be one of "Vansteelandt" (default) or
"Xie". The option "Vansteelandt" finds estimates by directly maximizing
the likelihood function based on the group responses while the option "Xie"
uses the EM algorithm to maximize the likelihood function in terms of the un-
observed individual responses.

start starting values for the parameters in the linear predictor.

control a list of parameters for controlling the fitting process in method "Xie". See the
documentation for gt.control for details.

Y For gtreg.fit, EM and EM.ret: the vector of the group responses.

X For gtreg.fit, EM and EM.ret: the design matrix of the covariates.

ret For EM.ret: a vector containing individual retest results.

... arguments to be passed by default to gt.control: see argument control

Details

A typical predictor has the form groupresp ~ covariates where response is the (numeric) group
response vector and covariates is a series of terms which specifies a linear predictor for individual
responses. Note that it is actually the unobserved individual responses, not the observed group
responses, which are modeled by the covariates here. In groupresp, a 0 denotes a negative response
and a 1 denotes a positive response, where the probability of an individual positive response is being
modeled directly. A terms specification of the form first + second indicates all the terms in first
together with all the terms in second with duplicates removed. The terms in the formula will be re-
ordered so that main effects come first, followed by the interactions, all second-order, all third-order
and so on; to avoid this pass a terms object as the formula.

A specification of the form first:second indicates the set of terms obtained by taking the interac-
tions of all terms in first with all terms in second. The specification first*second indicates the
cross of first and second. This is the same as first + second + first:second.

Three workhorse functions gtreg.fit, EM and EM.ret, where the first corresponds to Vanstee-
landt’s method and the last two corresponds to Xie’s method, are called by gtreg to carry out the
model fitting. The gtreg.fit function uses the optim function with default method "Nelder-Mead"
to maximize the likelihood function of the observed group responses. If this optimization method
produces a Hessian matrix of all zero elements, the "SANN" method in optim is employed to find
the coefficients and Hessian matrix. For "SANN" method, the number of iterations in optim is set to
be 10000.

The EM and EM.ret function apply Xie’s EM algorithm to the likelihood function written in terms of
the unobserved individual responses; the functions use glm.fit to update the parameter estimates
within each M step. The EM function is used when there are no retests and EM.ret is used when
individual retests are available. Thus, within retest, individual observations in observed positive
groups are 0 (negative) or 1 (positive); the remaining individual observations are NAs meaning that
no retest is performed for them. Retests cannot be used with Vansteelandt’s method; a warning
message will be given in this case, and the individual retests will be ignored in the model fitting.
There could be slight differences in the estimates between the Vansteelandt’s and Xie’s methods
(when retests are not available) due to different convergence criteria.

The data used here should be in the form of simple pooling - meaning that each individual appears
in exactly one pool. When only the group responses are observed, the null degrees of freedom are
the number of groups minus 1 and the residual degrees of freedom are the number of groups minus
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the number of parameters. When individual retests are observed too, it is an open research question
for what the degrees of freedom and the deviance for the null model should be; therefore the degrees
of freedom and null.deviance will not be displayed.

For the background on the use of optim, see help(optim).

Value

gtreg returns an object of class "gt". See later in this section. The function summary (i.e.,
summary.gt) can be used to obtain or print a summary of the results. The group testing functions
predict (i.e., predict.gt) and residuals (i.e., residuals.gt) can be used to extract various
useful features of the value returned by gtreg. An object of class "gt" is a list containing at least
the following components:

coefficients a named vector of coefficients

hessian estimated Hessian matrix of the negative log likelihood function, serves as an
estimate of the information matrix

residuals the response residuals, difference of the observed group responses and the fitted
group responses.

fitted.values the fitted mean values of group responses.

deviance the deviance between the fitted model and the saturated model.

aic Akaike’s An Information Criterion, minus twice the maximized log-likelihood
plus twice the number of coefficients

null.deviance The deviance for the null model, comparable with deviance. The null model
will include only the intercept if there is one in the model.

counts For Vansteelandt’s method: the number of iterations in optim; For Xie’s method:
the number of iterations in the EM algorithm.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

z the vector of group responses.

call the matched call.

formula the formula supplied.

terms the terms object used.

method the method ("Vansteelandt" or "Xie") used to fit the model.

link the link function used in the model.

Author(s)

Boan Zhang

References

Xie, M. (2001), Regression analysis of group testing samples, Statistics in Medicine, 20, 1957-1969.

Vansteelandt, S., Goetghebeur, E., and Verstraeten, T. (2000), Regression models for disease preva-
lence with diagnostic tests on pools of serum samples, Biometrics, 56, 1126-1133.
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See Also

summary.gt, predict.gt and residuals.gt for gt methods. gtreg.mp for the group testing
regression model in the matrix pooling setting.

Examples

data(hivsurv)

fit1 <- gtreg(formula = groupres ~ AGE + EDUC., data = hivsurv,
groupn = gnum, sens = 0.9, spec = 0.9, method = "Xie")

fit1

## --- Continuing the Example from '?sim.gt':

set.seed(46)
gt.data <- sim.gt(par = c(-12, 0.2), sample.size = 700, group.size = 5)
fit2 <- gtreg(formula = gres ~ x, data = gt.data, groupn = groupn)
fit2

set.seed(21)
gt.data <- sim.gt(par = c(-12, 0.2), sample.size = 700, group.size = 6,

sens = 0.95, spec = 0.95, sens.ind = 0.98, spec.ind = 0.98)
fit1 <- gtreg(formula = gres ~ x, data = gt.data, groupn = groupn,

retest = retest, method = "X", sens = 0.95, spec = 0.95, sens.ind = 0.98,
spec.ind = 0.98, trace = TRUE)

summary(fit1)

gtreg.halving Fitting Group Testing Models Under the Halving Protocol

Description

gtreg.halving is a function to fit the group testing regression model under the halving protocol
specified through a symbolic description of the linear predictor and descriptions of the group testing
setting.

Usage

gtreg.halving(formula, data, groupn, subg, retest, sens = 1,
spec = 1, linkf = c("logit", "probit", "cloglog"),
sens.ind = NULL, spec.ind = NULL, start = NULL, control = gt.control(...), ...)

EM.halving(Y, X, groupn, subg, ret, sens, spec, linkf, sens.ind,
spec.ind, start = NULL, control = gt.control())
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Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given under ’Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which gtreg.halving is called.

groupn a vector, list or data frame of the group numbers that designates individuals to
groups.

subg a vector, list or data frame of the group numbers that designates individuals to
subgroups.

retest a vector, list or data frame of individual retest results within a subgroup that tests
positive.

sens sensitivity of the test, set to be 1 by default.

spec specificity of the test, set to be 1 by default.

sens.ind sensitivity of the individual retests, set to be equal to sens if not specified oth-
erwise.

spec.ind specificity of the individual retests, set to be equal to spec if not specified oth-
erwise.

linkf a character string specifying one of the three link functions for a binomial model:
"logit" (default) or "probit" or "cloglog".

start starting values for the parameters in the linear predictor.

control a list of parameters for controlling the fitting process. See the documentation for
gt.control for details.

Y For EM.halving: the vector of the group responses.

X For EM.halving: the design matrix of the covariates.

ret For EM.halving: a vector containing individual retest results.

... arguments to be passed by default to gt.control: see argument control

Details

A typical predictor has the form groupresp ~ covariates where response is the (numeric) group
response vector and covariates is a series of terms which specifies a linear predictor for individual
responses. Note that it is actually the unobserved individual responses, not the observed group
responses, which are modeled by the covariates here. In groupresp, a 0 denotes a negative response
and a 1 denotes a positive response, where the probability of an individual positive response is being
modeled directly. A terms specification of the form first + second indicates all the terms in first
together with all the terms in second with duplicates removed. The terms in the formula will be re-
ordered so that main effects come first, followed by the interactions, all second-order, all third-order
and so on; to avoid this pass a terms object as the formula.

A specification of the form first:second indicates the set of terms obtained by taking the interac-
tions of all terms in first with all terms in second. The specification first*second indicates the
cross of first and second. This is the same as first + second + first:second.
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The EM.halving function apply Xie’s EM algorithm to the likelihood function written in terms of
the unobserved individual responses; the functions use glm.fit to update the parameter estimates
within each M step. In the halving protocol, if the initial group tests positive, it is split into two
subgroups. The two subgroups are subsequently tested and if either subgroup tests positive, the third
and final step is to test all individuals within the subgroup. Thus, within subg, subgroup responses
in observed positive groups are 0 (negative) or 1 (positive); the remaining subgroup responses are
NAs meaning that no tests are performed for them. The individual retests are similarly coded.

Value

gtreg.halving returns an object of class "gt". See later in this section. The function summary
(i.e., summary.gt) can be used to obtain or print a summary of the results. The group testing
functions predict (i.e., predict.gt) and residuals (i.e., residuals.gt) can be used to extract
various useful features of the value returned by gtreg.halving. An object of class "gt" is a list
containing at least the following components:

coefficients a named vector of coefficients

hessian estimated Hessian matrix of the negative log likelihood function, serves as an
estimate of the information matrix

residuals the response residuals, difference of the observed group responses and the fitted
group responses.

fitted.values the fitted mean values of group responses.

deviance the deviance between the fitted model and the saturated model.

aic Akaike’s An Information Criterion, minus twice the maximized log-likelihood
plus twice the number of coefficients

counts the number of iterations in the EM algorithm.

z the vector of group responses.

call the matched call.

formula the formula supplied.

terms the terms object used.

method the method "Xie" used to fit the model.

link the link function used in the model.

Author(s)

Boan Zhang

References

Xie, M. (2001), Regression analysis of group testing samples, Statistics in Medicine, 20, 1957-1969.

See Also

summary.gt, predict.gt and residuals.gt for gt methods.
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Examples

## --- Continuing the Example from '?sim.halving':

set.seed(46)
gt.data <- sim.halving(par = c(-6, .1), gshape = 17, gscale = 1.4,

sample.size = 5000, group.size = 5,
sens = 0.95, spec = 0.95)

fit1 <- gtreg.halving(formula = gres ~ x, data = gt.data, groupn = groupn,
start = c(-6, .1), subg = subgroup, retest = retest,
sens = .95, spec = .95, trace = TRUE)

summary(fit1)

gtreg.mp Fitting Group Testing Models in Matrix Pooling Setting

Description

gtreg.mp is a function to fit the group testing regression model in the matrix pooling setting spec-
ified through a symbolic description of the linear predictor and descriptions of the group testing
setting.

Usage

gtreg.mp(formula, data, coln, rown, arrayn, retest = NULL,
sens = 1, spec = 1, linkf = c("logit", "probit", "cloglog"),
sens.ind = NULL, spec.ind = NULL, start = NULL,
control = gt.control(...), ...)

EM.mp(col.resp, row.resp, X, coln, rown, sqn, ret, sens, spec,
linkf, sens.ind, spec.ind, start = NULL, control = gt.control())

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the model to be fitted. The details of model specification are
given under ’Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which gtreg.mp is called.

coln a vector, list or data frame that specifies column group number for each sample

rown a vector, list or data frame that specifies row group number for each sample

arrayn a vector, list or data frame that specifies array number for each sample
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retest a vector, list or data frame of individual retest results. A 0 denotes negative and
1 denotes positive. A NA denotes that no retest is performed for that individual.
Default value is NULL for no retests.

sens sensitivity of the group tests, set to be 1 by default.

spec specificity of the group tests, set to be 1 by default.

sens.ind sensitivity of the individual retests, set to be equal to sens if not specified oth-
erwise.

spec.ind specificity of the individual retests, set to be equal to spec if not specified oth-
erwise.

linkf a character string specifying one of the three link functions for a binomial model:
"logit" (default) or "probit" or "cloglog".

start starting values for the parameters in the linear predictor.

control a list of parameters for controlling the fitting process. See the documentation for
gt.control for details.

col.resp For EM.mp: vector of group responses of column pools for all samples. 0 denotes
negative and 1 denotes positive.

row.resp For EM.mp: vector of group responses of row pools for all samples. 0 denotes
negative and 1 denotes positive.

X For EM.mp: the design matrix of the covariates.

sqn For EM.mp: a vector that specifies array number

ret For EM.mp: a vector containing individual retest results

... arguments to be passed to gt.control: see argument control

Details

With matrix pooling, individual samples are placed in a matrix-like grid where samples are pooled
within each row and within each column. This leads to two kinds of group responses: row and
column group responses. Thus, a typical predictor has the form cbind(col.resp, row.resp)
~ covariates where col.resp is the (numeric) column group response vector and row.resp is
the (numeric) row group response vector. The covariates term is a series of terms which speci-
fies a linear predictor for individual responses. Note that it is actually the unobserved individual
responses, not the observed group responses, which are modeled by the covariates. In col.resp
and row.resp, a 0 denotes a negative response and 1 denotes a positive response, where the prob-
ability of an individual positive response is being modeled directly. A terms specification of the
form first + second indicates all the terms in first together with all the terms in second with
duplicates removed. The terms in the formula will be re-ordered so that main effects come first,
followed by the interactions, all second-order, all third-order and so on; to avoid this pass a terms
object as the formula.

A specification of the form first:second indicates the set of terms obtained by taking the interac-
tions of all terms in first with all terms in second. The specification first*second indicates the
cross of first and second. This is the same as first + second + first:second.

EM.mp is the workhorse function. It applies Xie‘s EM algorithm to the likelihood function written in
terms of the unobserved individual responses. In each E step, the Gibbs sampling technique is used
to estimate the conditional probabilities. Because of the large number of Gibbs samples needed
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to achieve convergence, the model fitting process could be quite slow, especially when multiple
positive rows and columns are observed. In this case, we can either increase the Gibbs sample size
to help achieve convergence or loosen the convergence criteria by increasing tol at the expense of
perhaps poorer estimates. If follow-up retests are performed, the retest results going into the model
will help achieve convergence faster with the same Gibbs sample size and convergence criteria. In
each M step, we use glm.fit to update the parameter estimates

Value

gtreg.mp returns an object of class "gt.mp" which inherits from the class "gt". See later in this
section. The function summary (i.e., summary.gt.mp) can be used to obtain or print a summary
of the results. The group testing function predict (i.e., predict.gt) can be used to make pre-
dictions on "gt.mp" objects. An object of class "gt.mp" is a list containing at least the following
components:

coefficients a named vector of coefficients.

hessian estimated Hessian matrix of the negative log likelihood function, serves as an
estimate of the information matrix

counts the number of iterations performed in the EM algorithm.
Gibbs.sample.size

the number of Gibbs samples generated in each E step.

call the matched call.

formula the formula supplied.

terms the terms object used.

link the link function used in the model.

Author(s)

Boan Zhang

References

Xie, M. (2001), Regression analysis of group testing samples, Statistics in Medicine, 20, 1957-1969.

See Also

summary.gt.mp and predict.gt for gt.mp methods. gtreg for the group testing regression model
in the simple pooling setting.

Examples

## --- Continuing the Example from '?sim.mp':
# 5*6 and 4*5 matrix
set.seed(9128)
sa1a<-sim.mp(par=c(-7,0.1), n.row=c(5,4), n.col=c(6,5),
sens=0.95, spec=0.95)
sa1<-sa1a$dframe
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## Not run:
fit1 <- gtreg.mp(formula = cbind(col.resp, row.resp) ~ x, data = sa1,

coln = coln, rown = rown, arrayn = arrayn,
sens = 0.95, spec = 0.95, tol = 0.005, n.gibbs = 2000, trace = TRUE)

fit1
summary(fit1)

## End(Not run)

## Here is an example of how long this fitting process may take. For the
## following simulated data, it takes a computer with 2.2GHZ processor and
## 3GB RAM about 6 minutes to achieve convergence.
set.seed(9012)
sa2a<-sim.mp(par=c(-7,0.1), n.row=c(10,10,10,10), n.col=c(10,10,10,10),

sens=0.95, spec=0.95)
sa2<-sa2a$dframe

## Not run:
fit2 <- gtreg.mp(formula = cbind(col.resp, row.resp) ~ x, data = sa2,

coln = coln, rown = rown, arrayn = arrayn, retest = retest,
sens = 0.95, spec = 0.95, start = c(-7, 0.1), tol = 0.005)

fit2
summary(fit2)

## End(Not run)

hierarchical.desc2 Operating characteristics for hierarchical group testing

Description

Calculate operating characteristics for hierarchical group testing with up to four stages, given a
vector of individual probabilities and a testing configuration.

Usage

hierarchical.desc2(p, I2 = NULL, I3 = NULL, se = 1, sp = 1,
order.p = TRUE)

Arguments

p vector of probabilities corresponding to each individual’s risk of disease.

I2 a numeric vector of pool sizes for stage 2 testing (used in hierarchical testing
with at least three stages).



46 hierarchical.desc2

I3 a numeric vector of pool sizes for stage 3 testing (used in hierarchical testing
with at least four stages).

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

order.p a logical value indicating whether the vector of individual probabilities needs to
be sorted.

Details

This function calculates the operating characteristics for hierarchical group testing with up to four
stages of testing. Operating characteristics calculated are expected number of tests, and pooling
sensitivity, pooling specificity, pooling positive predictive value, and pooling negative predictive
value, for each individual and for the configuration overall.

If I2 is NULL, there are two stages of testing. If I3 is NULL but I2 has values, there are three
stages of testing. If both I2 and I3 have values, there are four stages of testing.

Vectors I2 and I3 should be entered using notation that keeps track of all individuals through all
stages (e.g. for a group of 10 individuals that splits into 5, 4, and 1 individual at stage 2, then
into 3, 2, 2, 1, and 1 individual at stage 3 before individual testing at stage 4, then I2=c(5,4,1) and
I3=c(3,2,2,1,1,1) so that the specimen that was tested individually at stage 2 is still numbered at
stage 3 even though it will not be tested again).

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm. Expressions for these aver-
ages are provided in the Supplementary Material for Hitt et al. (2018). These expressions are based
on accuracy definitions given by Altman and Bland (1994a, 1994b).

Value

A list containing:

ET the expected number of tests.

stages the number of stages in the testing algorithm.

group.size the total number of individuals tested in the algorithm.

I2 pool sizes for the second stage of testing, or "individual testing" if there are only
two stages of testing.

I3 pool sizes for the third stage of testing, or "individual testing" if there are only
three stages of testing.

m1 the initial (stage 1) group size for two stage testing, or the number of subgroups
originating from the initial group.

m2 the number of subgroups for each preceding group containing more than one
individual, or "individual testing" if there are only two stages of testing.

m3 the number of subgroups for each preceding group containing more than one
individual, or "individual testing" if there are only three stages of testing. NULL
if there are only two stages of testing.
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individual.testerror

a data frame containing:

pse.vec a vector containing each individual’s pooling sensitivity.
psp.vec a vector containing each individual’s pooling specificity.
pppv.vec a vector containing each individual’s pooling positive predictive value.
pnpv.vec a vector containing each individual’s pooling negative predictive value.

group.testerror

a vector containing:

PSe the overall pooling sensitivity for the algorithm. Further details are given
under ’Details’.

PSp the overall pooling specificity for the algorithm. Further details are given
under ’Details’.

PPPV the overall pooling positive predictive value for the algorithm. Further
details are given under ’Details’.

PNPV the overall pooling negative predictive value for the algorithm. Further
details are given under ’Details’.

individual.probabilities

a vector containing each individual’s probability of disease. If order.p=TRUE,
this is the sorted vector of individual probabilities.

Note

This function returns the pooling positive and negative predictive values for all individuals even
though these measures are diagnostic specific; i.e., PPPV (PNPV) should only be considered for
those individuals who have tested positive (negative).

Author(s)

This function was originally written by Michael S. Black for Black et al. (2015). The function was
obtained from http://chrisbilder.com/grouptesting. Minor modifications were made to the
function for inclusion in the binGroup package.

References

Black, M., Bilder, C., Tebbs, J. (2015). “Optimal retesting configurations for hierarchical group
testing.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 64(4), 693–710.
ISSN 14679876, doi: 10.1111/rssc.12097.

See Also

Array.Measures for calculating operating characteristics under array testing without master pool-
ing, MasterPool.Array.Measures for non-informative array testing with master pooling, and
inf.dorf.measures for informative two-stage hierarchical testing. See p.vec.func for gener-
ating a vector of individual risk probabilities for informative group testing.

http://chrisbilder.com/grouptesting

Other Operating characteristic functions: Array.Measures, MasterPool.Array.Measures, inf.dorf.measures

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/rssc.12097
http://chrisbilder.com/grouptesting
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Examples

# Calculate the operating characteristics for
# non-informative two-stage hierarchical testing
# with an overall disease prevalence of p = 0.015
# and an initial group size of 12.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
p.vec <- rep(x=0.015, times=12)
hierarchical.desc2(p=p.vec, I2=NULL, I3=NULL, se=0.95,
sp=0.95, order.p=FALSE)

# Calculate the operating characteristics for
# non-informative three-stage hierarchical testing
# with an overall disease prevalence of p = 0.04,
# where an initial group of 20 individuals is
# split into equally sized subgroups of 5 each.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
p.vec <- rep(x=0.04, times=20)
hierarchical.desc2(p=p.vec, I2=rep(x=5, times=4),
I3=NULL, se=0.99, sp=0.99, order.p=FALSE)

# Calculate the operating characteristics for
# informative three-stage hierarchical testing
# where an initial group of 10 individuals is
# split into subsequent groups of 5, 4, and 1
# individual.
# A vector of individual probabilities is generated using
# the expected value of order statistics from a beta
# distribution with p = 0.02 and a heterogeneity level
# of alpha = 0.5. Depending on the specified probability,
# alpha level, and overall group size, simulation may
# be necessary in order to generate the vector of individual
# probabilities. This is done using p.vec.func() and
# requires the user to set a seed in order to reproduce
# results.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(1002)
p.vec <- p.vec.func(p=0.02, alpha=0.5, grp.sz=10)
hierarchical.desc2(p=p.vec, I2=c(5,4,1), I3=NULL,
se=0.90, sp=0.90, order.p=TRUE)

hivsurv Data from an HIV surveillance project
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Description

The hivsurv data set comes from an HIV surveillance project discussed in Verstraeten et al. (1998)
and Vansteelandt et al. (2000). The purpose of the study was to estimate the HIV prevalence among
pregnant Kenyan women in four rural locations of the country, using both individual and group
testing responses. Blood tests were administered to each participating woman, and 4 covariates were
obtained on each woman. Because the original group responses are unavailable, individuals are
artificially put into groups of 5 here to form group responses. Only the 428 complete observations
are given here.

Usage

data(hivsurv)

Format

A data frame with 428 observations on the following 8 variables.

DATE the date when each sample was collected

PAR. parity (number of children)

AGE age (in years)

MA.ST. marital status (1: single; 2: married (polygamous); 3: married (monogamous); 4: divorced;
5: widow)

EDUC. highest attained education level (1: no schooling; 2: primary school; 3: secondary school;
4: higher)

HIV individual response of HIV diagnosis (0: negative; 1: positive)

gnum the group number that designates individuals into groups

groupres the group response calculated from artificially formed groups

Source

Verstraeten, T., Farah, B., Duchateau, L., Matu, R. (1998), Pooling sera to reduce the cost of HIV
surveillance: a feasibility study in a rural Kenyan district, Tropical Medicine & International
Health, 3, 747-750.

Vansteelandt, S., Goetghebeur, E., and Verstraeten, T. (2000), Regression models for disease preva-
lence with diagnostic tests on pools of serum samples, Biometrics, 56, 1126-1133.

Examples

data(hivsurv)

str(hivsurv)
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Inf.Array Find the optimal testing configuration for informative array testing
without master pooling

Description

Find the optimal testing configuration (OTC) for informative array testing without master pooling
and calculate the associated operating characteristics.

Usage

Inf.Array(p, Se, Sp, group.sz, obj.fn, weights = NULL, alpha = 2)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease, from which a heterogeneous vector of individual probabilities will be
generated, or a heterogeneous vector of individual probabilities specified by the
user.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size (representing the row/column size) for which to calculate the
operating characteristics, or a range of group (row/column) sizes over which to
find the OTC.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

alpha a scale parameter for the beta distribution that specifies the degree of heterogene-
ity for the generated probability vector. If a heterogeneous vector of individual
probabilities is specified by the user, alpha can be specified as NA or will be
ignored.

Details

This function finds the OTC and computes the associated operating characteristics for informative
array testing without master pooling, implemented using the gradient arrangement described in
McMahan et al. (2012). Array testing without master pooling involves amalgamating specimens in
rows and columns for the first stage of testing. This function uses only square arrays, which is the

http://chrisbilder.com/grouptesting
http://chrisbilder.com/grouptesting
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way array-based group testing is carried out in most real-world applications. Operating characteris-
tics calculated are expected number of tests, pooling sensitivity, pooling specificity, pooling positive
predictive value, and pooling negative predictive value for the algorithm. See Hitt et al. (2018) or
McMahan et al. (2012) at http://chrisbilder.com/grouptesting for additional details on the
implementaion of informative array testing without master pooling.

The value(s) specified by group.sz represent the initial group (row/column) size. If a single value
is provided for group.sz, operating characteristics will be calculated and no optimization will be
performed. If a range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm, or within the entire array
for an array-based algorithm. Expressions for these averages are provided in the Supplementary
Material for Hitt et al. (2018). These expressions are based on accuracy definitions given by Altman
and Bland (1994a, 1994b).

Value

A list containing:

prob the probability of disease, as specified by the user.

alpha the level of heterogeneity used to generate the vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Array.dim the row/column size for the first stage of testing.
Array.sz the overall array size (the square of the row/column size).

p.mat the sorted matrix of individual probabilities, arranged using the gradient
method described by McMahan et al. (2012).

ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.

Author(s)

Brianna D. Hitt

http://chrisbilder.com/grouptesting
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References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: predictive values.” BMJ, 309, 102.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the Dorf-
man procedure.” Technometrics, 14(1), 113–122. ISSN 15372723, doi: 10.1080/00401706.1972.10488888,
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2018). “The Optimal Group Size Controversy for
Infectious Disease Testing: Much Ado About Nothing?!” Manuscript submitted for publication.

Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group test-
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metrics, 68(3), 793–804. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01726.x.

See Also

NI.Array for non-informative array testing without master pooling, NI.A2M for non-informative
array testing with master pooling, and OTC for finding the optimal testing configuration for a number
of standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.D3, Inf.Dorf, NI.A2M, NI.Array, NI.D3, NI.Dorf, OTC

Examples

# Find the OTC for informative array testing without
# master pooling over a range of group (row/column) sizes.
# A vector of individual probabilities is generated using
# the expected value of order statistics from a beta
# distribution with p = 0.03 and a heterogeneity level
# of alpha = 2. Depending on the specified probability,
# alpha level, and overall group size, simulation may
# be necessary in order to generate the vector of individual
# probabilities. This is done using p.vec.func() and
# requires the user to set a seed in order to reproduce
# results.
# This examples takes approximately 30 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(1002)
Inf.Array(p=0.03, Se=0.99, Sp=0.99, group.sz=3:20,
obj.fn=c("ET", "MAR"), alpha=2)
## End(Not run)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an

https://doi.org/10.1080/00401706.1972.10488888
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888
https://doi.org/10.1111/biom.12385
https://doi.org/10.1111/j.1541-0420.2011.01726.x
http://chrisbilder.com/grouptesting
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# Intel i7-6500U processor.
set.seed(1002)
Inf.Array(p=0.03, Se=0.99, Sp=0.99, group.sz=3:5,
obj.fn=c("ET", "MAR"), alpha=2)

# Find the OTC for a specified group (row/column) size
# for informative array testing without master pooling.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(14849)
Inf.Array(p=p.vec.func(p=0.05, alpha=0.5, grp.sz=100),
Se=0.95, Sp=0.95, group.sz=10, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1,1,10,10), nrow=2, ncol=2, byrow=TRUE),
alpha=NA)

Inf.D3 Find the optimal testing configuration for informative three-stage hi-
erarchical testing

Description

Find the optimal testing configuration (OTC) for informative three-stage hierarchical testing and
calculate the associated operating charcteristics.

Usage

Inf.D3(p, Se, Sp, group.sz, obj.fn, weights = NULL, alpha = 2)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease, from which a heterogeneous vector of individual probabilities will be
generated, or a heterogeneous vector of individual probabilities specified by the
user.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size over which to find the OTC out of all possible testing config-
urations, or a range of group sizes over which to find the OTC.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

http://chrisbilder.com/grouptesting
http://chrisbilder.com/grouptesting
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weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

alpha a scale parameter for the beta distribution that specifies the degree of heterogene-
ity for the generated probability vector. If a heterogeneous vector of individual
probabilities is specified by the user, alpha can be specified as NA or will be
ignored.

Details

This function finds the OTC and computes the associated operating characteristics for informative
three-stage hierarchical testing. This function finds the optimal testing configuration by consid-
ering all possible testing configurations. Operating characteristics calculated are expected num-
ber of tests, pooling sensitivity, pooling specificity, pooling positive predictive value, and pool-
ing negative predictive value for the algorithm. See Hitt et al. (2018) or Black et al. (2015) at
http://chrisbilder.com/grouptesting for additional details on the implementation of infor-
mative three-stage hierarchical testing.

The value(s) specified by group.sz represent the initial (stage 1) group size. If a single value is
provided for group.sz, the OTC will be found over all possible testing configurations for that initial
group size. If a range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm, or within the entire array
for an array-based algorithm. Expressions for these averages are provided in the Supplementary
Material for Hitt et al. (2018). These expressions are based on accuracy definitions given by Altman
and Bland (1994a, 1994b).

Value

A list containing:

prob the probability of disease, as specified by the user.

alpha the level of heterogeneity used to generate the vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Stage1 pool size for the first stage of testing, i.e. the initial group size.
Stage2 pool sizes for the second stage of testing.

p.vec the sorted vector of individual probabilities.
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.

http://chrisbilder.com/grouptesting
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PSp the overall pooling specificity for the algorithm. Further details are given
under ’Details’.

PPPV the overall pooling positive predictive value for the algorithm. Further
details are given under ’Details’.

PNPV the overall pooling negative predictive value for the algorithm. Further
details are given under ’Details’.

Author(s)

Brianna D. Hitt

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: predictive values.” BMJ, 309, 102.

Black, M., Bilder, C., Tebbs, J. (2015). “Optimal retesting configurations for hierarchical group
testing.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 64(4), 693–710.
ISSN 14679876, doi: 10.1111/rssc.12097.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the Dorf-
man procedure.” Technometrics, 14(1), 113–122. ISSN 15372723, doi: 10.1080/00401706.1972.10488888,
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2018). “The Optimal Group Size Controversy for
Infectious Disease Testing: Much Ado About Nothing?!” Manuscript submitted for publication.

Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group test-
ing algorithms in the presence of misclassification.” Biometrics, 72(1), 299–302. ISSN 15410420,
doi: 10.1111/biom.12385.

See Also

NI.D3 for non-informative three-stage hierarchical testing and OTC for finding the optimal testing
configuration for a number of standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.Dorf, NI.A2M, NI.Array, NI.D3, NI.Dorf, OTC

Examples

# Find the OTC for informative three-stage hierarchical
# testing over a range of group sizes.
# A vector of individual probabilities is generated using
# the expected value of order statistics from a beta
# distribution with p = 0.05 and a heterogeneity level
# of alpha = 0.5. Depending on the specified probability,
# alpha level, and overall group size, simulation may
# be necessary in order to generate the vector of individual
# probabilities. This is done using p.vec.func() and
# requires the user to set a seed in order to reproduce
# results.
# This example takes approximately 20 seconds to run.

https://doi.org/10.1111/rssc.12097
https://doi.org/10.1080/00401706.1972.10488888
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888
https://doi.org/10.1111/biom.12385
http://chrisbilder.com/grouptesting
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# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(8318)
Inf.D3(p=0.05, Se=0.99, Sp=0.99, group.sz=3:30,
obj.fn=c("ET", "MAR"), alpha=0.5)
## End(Not run)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8318)
Inf.D3(p=0.05, Se=0.99, Sp=0.99, group.sz=10:15,
obj.fn=c("ET", "MAR"), alpha=0.5)

# Find the OTC out of all possible testing configurations
# for a specified group size and vector of individual
# probabilities.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(1216)
p.vec <- p.vec.func(p=0.10, alpha=2, grp.sz=12)
Inf.D3(p=p.vec, Se=0.99, Sp=0.99, group.sz=12,
obj.fn=c("ET", "MAR", "GR"), weights=matrix(data=c(1,1),
nrow=1, ncol=2, byrow=TRUE), alpha=NA)

Inf.Dorf Find the optimal testing configuration for informative two-stage hier-
archical (Dorfman) testing

Description

Find the optimal testing configuration (OTC) for informative two-stage hierarchical (Dorfman) test-
ing and calculate the associated operating characteristics.

Usage

Inf.Dorf(p, Se, Sp, group.sz, obj.fn, weights = NULL, alpha = 2)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease, from which a heterogeneous vector of individual probabilities will be
generated, or a heterogeneous vector of individual probabilities specified by the
user.
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Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single block size for which to find the OTC out of all possible configurations,
or a range of block sizes over which to find the OTC.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

alpha a scale parameter for the beta distribution that specifies the degree of heterogene-
ity for the generated probability vector. If a heterogeneous vector of individual
probabilities is specified by the user, alpha can be specified as NA or will be
ignored.

Details

This function finds the OTC and computes the associated operating characteristics for informa-
tive two-stage hierarchical (Dorfman) testing, implemented via the pool-specific optimal Dorfman
(PSOD) method described in McMahan et al. (2012). This function finds the optimal testing
configuration by considering all possible testing configurations instead of using the greedy algo-
rithm proposed for PSOD testing. Operating characteristics calculated are expected number of
tests, pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling neg-
ative predictive value for the algorithm. See Hitt et al. (2018) or McMahan et al. (2012) at
http://chrisbilder.com/grouptesting for additional details on the implementation of infor-
mative two-stage hierarchical (Dorfman) testing.

The value(s) specified by group.sz represent the overall block size used in the pool-specific opti-
mal Dorfman (PSOD) method, where the overall group size is not tested. Instead, multiple initial
pool sizes within this block are found and tested in the first stage of testing. The second stage
of testing consists of individual retesting. For more details on informative two-stage hierarchical
testing implemented via the PSOD method, see Hitt et al. (2018) and McMahan et al. (2012).

If a single value is provided for group.sz, the OTC will be found over all possible testing configu-
rations. If a range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm, or within the entire array
for an array-based algorithm. Expressions for these averages are provided in the Supplementary
Material for Hitt et al. (2018). These expressions are based on accuracy definitions given by Altman
and Bland (1994a, 1994b).

Value

A list containing:

http://chrisbilder.com/grouptesting
http://chrisbilder.com/grouptesting
http://chrisbilder.com/grouptesting
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prob the probability of disease, as specified by the user.

alpha the level of heterogeneity used to generate the vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Block.sz the block size/overall group size, which is not tested.
pool.szs pool sizes for the first stage of testing.

p.vec the sorted vector of individual probabilities.
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.

Author(s)

Brianna D. Hitt

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: predictive values.” BMJ, 309, 102.

Dorfman, R. (1943). “The Detection of Defective Members of Large Populations.” The Annals
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https://www.jstor.org/stable/2235930.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the Dorf-
man procedure.” Technometrics, 14(1), 113–122. ISSN 15372723, doi: 10.1080/00401706.1972.10488888,
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888.
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See Also

NI.Dorf for non-informative two-stage hierarchical (Dorfman) testing and OTC for finding the op-
timal testing configuration for a number of standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.D3, NI.A2M, NI.Array, NI.D3, NI.Dorf, OTC

Examples

# Find the OTC for informative two-stage hierarchical
# (Dorfman) testing.
# A vector of individual probabilities is generated using
# the expected value of order statistics from a beta
# distribution with p = 0.01 and a heterogeneity level
# of alpha = 2. Depending on the specified probability,
# alpha level, and overall group size, simulation may
# be necessary in order to generate the vector of individual
# probabilities. This is done using p.vec.func() and
# requires the user to set a seed in order to reproduce
# results.
# This example takes approximately 20 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(9245)
Inf.Dorf(p=0.01, Se=0.95, Sp=0.95, group.sz=3:30,
obj.fn=c("ET", "MAR"), alpha=2)
## End(Not run)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(9245)
Inf.Dorf(p=0.01, Se=0.95, Sp=0.95, group.sz=5:10,
obj.fn=c("ET", "MAR"), alpha=2)

# Find the OTC for informative two-stage hierarchical
# (Dorfman) testing, for a specified block size.
# This example uses rbeta() to generate random probabilities
# and requires the user to set a seed in order to reproduce
# results.
# This example takes approximately 2.5 minutes to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(8791)
Inf.Dorf(p=p.vec.func(p=0.03, alpha=0.5, grp.sz=50),
Se=0.90, Sp=0.90, group.sz=50, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1,1,10,10), nrow=2, ncol=2, byrow=TRUE),

http://chrisbilder.com/grouptesting
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alpha=NA)
## End(Not run)

inf.dorf.measures Operating characteristics for informative two-stage hierarchical
(Dorfman) testing

Description

Calculate the expected number of tests and accuracy measures for each individual using informative
two-stage hierarchical (Dorfman) testing, given a vector of individual probabilities and a testing
configuration.

Usage

inf.dorf.measures(prob, se, sp, N, pool.sizes)

Arguments

prob vector of probabilities corresponding to each individual’s risk of disease.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

N block size/initial group size that is not tested. This is the total number of indi-
viduals being tested. The details of block.sz are given under ’Details’.

pool.sizes a vector of pool sizes for the first stage of testing.

Details

This function utilizes the equations given by McMahan et al. (2012) for informative two-stage
hierarchical (Dorfman) testing. It also repurposes functions written by Christopher S. McMahan
(see http://chrisbilder.com/grouptesting) for the implementation of informative Dorfman
testing and directly uses functions written for the calculation of the associated operating character-
istics. This function calculates the operating characteristics for informative two-stage hierarchical
(Dorfman) testing. Operating characteristics calculated are expected number of tests, and pooling
sensitivity, pooling specificity, pooling positive predictive value, and pooling negative predictive
value for each individual.

The specified N represents the block size used in the pool-specific optimal Dorfman (PSOD) method.
This is the total number of individuals being tested by the algorithm. This block is not initially
tested. Instead, multiple initial pool sizes within this block are found and tested in the first stage of
testing. The second stage of testing consists of individual retesting. For more information on block
size specification, see McMahan et al. (2012).

http://chrisbilder.com/grouptesting
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Value

A list containing:

e the expected number of tests needed to decode all N individuals.

v the variance of the total number of tests needed to decode all N individuals.

summary a matrix containing the pool, probability of disease, pooling sensitivity, pooling
specificity, pooling positive predictive value, and pooling negative predictive
value for each individual. The pool column identifies which pool each individual
is contained in for the first stage of testing.

Note

This function returns the pooling positive and negative predictive values for all individuals even
though these measures are diagnostic specific; i.e., PPPV (PNPV) should only be considered for
those individuals who have tested positive (negative).

Author(s)

The majority of this function was originally written by Christopher S. McMahan for McMahan et
al. (2012). The function was obtained from http://chrisbilder.com/grouptesting. Minor
modifications were made to the function for inclusion in the binGroup package.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

Array.Measures for calculating operating characteristics under array testing without master pool-
ing, MasterPool.Array.Measures for non-informative array testing with master pooling, and
inf.dorf.measures for informative two-stage hierarchical testing. See p.vec.func for gener-
ating a vector of individual risk probabilities for informative group testing.

This function repurposed code from opt.info.dorf so that PSOD testing could be implemented
using all possible testing configurations instead of a greedy algorithm. This function also used
characteristics.pool and accuracy.dorf to calculate operating characteristics for the optimal
set of pool sizes.

http://chrisbilder.com/grouptesting

Other Operating characteristic functions: Array.Measures, MasterPool.Array.Measures, hierarchical.desc2

Other Informative Dorfman functions: accuracy.dorf, characteristics.pool, opt.info.dorf,
opt.pool.size, pool.specific.dorf, thresh.val.dorf

Examples

# Calculate the operating characteristics for
# informative two-stage hierarchical (Dorfman) testing
# with an overall disease prevalence of E(p(i)) = 0.01,
# where a block size of 50 is split into initial pools

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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# of 18, 13, 11, and 8 individuals.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8791)
inf.dorf.measures(prob=beta.dist(p=0.01, alpha=2,
grp.sz=50, simul=TRUE), se=0.95, sp=0.95, N=50,
pool.sizes=c(18, 13, 11, 8))

Informative.array.prob

Arrange a matrix of probabilities for informative array testing

Description

Arrange a vector of individual risk probabilities in a matrix for informative array testing without
master pooling.

Usage

Informative.array.prob(prob.vec, nr, nc, method = "sd")

Arguments

prob.vec vector of individual risk probabilities, of length nr*nc.

nr the number of rows in the array.

nc the number of columns in the array.

method character string defining the method to be used for matrix arrangement. Op-
tions include spiral ("sd") and gradient ("gd") arrangement. See McMahan et al.
(2012) for additional details.

Value

A matrix of probabilities arranged according to the specified method.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68(3), 793–804. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01726.x.

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01726.x
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See Also

p.vec.func for generating a vector of individual risk probabilities from an overall probability of
disease and Array.Measures for calculating operating characteristics for informative array testing
without master pooling.

http://chrisbilder.com/grouptesting

Other Individual risk probability functions: beta.dist, p.vec.func

Examples

# Use the gradient arrangement method to create a matrix
# of individual risk probabilities for a 10x10 array.
# Depending on the specified probability, alpha level,
# and overall group size, simulation may be necessary in
# order to generate the vector of individual probabilities.
# This is done using the p.vec.func() function and requires
# the user to set a seed in order to reproduce results.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(1107)
p.vec1 <- p.vec.func(p=0.05, alpha=2, grp.sz=100)
Informative.array.prob(prob.vec=p.vec1, nr=10, nc=10, method="gd")

# Use the spiral arrangement method to create a matrix
# of individual risk probabilities for a 5x5 array.
# Depending on the specified probability, alpha level,
# and overall group size, simulation may be necessary in
# order to generate the vector of individual probabilities.
# This is done using the p.vec.func() function and requires
# the user to set a seed in order to reproduce results.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8791)
p.vec2 <- p.vec.func(p=0.02, alpha=0.5, grp.sz=25)
Informative.array.prob(prob.vec=p.vec2, nr=5, nc=5, method="sd")

MasterPool.Array.Measures

Operating characteristics for array testing with master pooling

Description

Calculate the expected number of tests and accuracy measures for each individual using array testing
with master pooling.

http://chrisbilder.com/grouptesting
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Usage

MasterPool.Array.Measures(results, n, pmat, Se, Sp)

Arguments

results an object containing results (expected number of tests and accuracy measures)
from Array.Measures.

n size of a row/column in the square array.

pmat matrix of individual risk probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

Details

This function assumes that the array is square (i.e., the row and column size are equal) and utilizes
the equations from Kim et al. (2007) for square array testing with master pooling. This function
calculates the operating characteristics for array testing with master pooling. Operating characteris-
tics calculated are expected number of tests, pooling sensitivity, pooling specificity, pooling positive
predictive value, and pooling negative predictive value for each individual.

Value

A list containing:

ET the expected number of tests for the array.

PSe a matrix containing each individual’s pooling sensitivity, corresponding to the
input matrix of individual probabilities.

PSp a matrix containing each individual’s pooling specificity, corresponding to the
input matrix of individual probabilities.

PPV a matrix containing each individual’s pooling positive predictive value, corre-
sponding to the input matrix of individual probabilities.

NPV a matrix containing each individual’s pooling negative predictive value, corre-
sponding to the input matrix of individual probabilities.

Note

This function returns the pooling positive and negative predictive values for all individuals in the
array even though these measures are diagnostic specific; i.e., PPV (NPV) should only be considered
for those individuals who have tested positive (negative).

Author(s)

Brianna D. Hitt
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References

Kim, H., Hudgens, M., Dreyfuss, J., Westreich, D., Pilcher, C. (2007). “Comparison of group
testing algorithms for case identification in the presence of test error.” Biometrics, 63(4), 1152–
1163. ISSN 0006341X, doi: 10.1111/j.15410420.2007.00817.x.

See Also

Array.Measures for calculating operating characteristics under array testing without master pool-
ing, hierarchical.desc2 for three-stage hierarchical and non-informative two-stage hierarchical
testing, and inf.dorf.measures for informative two-stage hierarchical testing.

Other Operating characteristic functions: Array.Measures, hierarchical.desc2, inf.dorf.measures

Examples

# Calculate the operating characteristics for
# non-informative array testing with master
# pooling, with a 6x6 array and an overall
# disease risk of p = 0.10.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
p.mat <- matrix(data=0.10, ncol=6, nrow=6)
results <- Array.Measures(p=p.mat, se=0.90, sp=0.90)
MasterPool.Array.Measures(results=results, n=36,
pmat=p.mat, Se=0.90, Sp=0.90)

nDesign Iterate Sample Size in One Parameter Group Testing

Description

Increasing number of groups (assays, bulk samples) for a fixed group size in a binomial group
testing design, until a pre-specified power is achieved. At the same time, bias of the estimator
is controlled. A hypothetical threshold proportion p.hyp and the absolute difference delta to be
detected have to be specified.

Usage

nDesign(nmax, s, delta, p.hyp, conf.level = 0.95,
power = 0.8, alternative = "two.sided", method = "CP", biasrest = 0.05)

Arguments

nmax either a single integer giving the maximal number of individuals n allowed in
the iteration, or a vector of two integers giving the range of n in which power
shall be iterated

https://doi.org/10.1111/j.1541-0420.2007.00817.x
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s integer, fixed group size (number of units per group)

delta absolute difference between the threshold and the true proportion which shall be
detectable with specified power

p.hyp threshold proportion to test against in the hypothesis, specify as a value between
0 and 1

conf.level confidence level of the decision, default is 0.95

power level of power to be achieved to be specified as a probability between 0 and 1

alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’
or ’greater’ where ’less’ calculates the probability that p.hyp is excluded by
an upper confidence limit for a true proportion p.hyp - delta, ’greater’ calcu-
lates the probability that p.hyp is excluded by a lower confidence limit for a true
proportion p.hyp + delta. ’two.sided’ calculates min(power(p.hyp - delta,
p.hyp + delta)) for a two.sided CI, thus can result in much lower power.

method character string specifying the CImethod to be used for evaluation, see argument
method in bgtCI

biasrest value between 0 and 1 specifying the absolute bias maximally allowed

Details

The power of a confidence interval here is defined as the probability that a confidence interval or
limit excludes the threshold parameter (p.hyp) of the hypothesis.

This function increases the number of groups (i.e. number of observations or assays in binomial
group testing) until a pre-specified power is reached or the maximal number of groups nmax (spec-
ified in the function call) is reached. Since the power does not increase monotone with increasing
n for binomial proportions but oscillates between local maxima and minima, the simple iteration
given here will generally result in selecting those n, for which the given CI method shows a local
minimum of coverage if the null hypothesis is true. Bias decreases monotone with increasing the
number of groups (if other parameters are fixed) The resulting Problems of chosing a number of
groups which results in satisfactory power, are solved in the following manner:

In case that the pre-specified power can be reached within the given range of n, the smallest n will
be returned for which at least this power is reached, as well as the actual power for this n.

In case that the pre-specified power is not reached within the given value, that n is returned for
which maximal power is achieved, and the corresponding value of power.

In case that biasrestriction is violated even for the largest n within the given range of n, simply that
n will be returned for which power was largest in the given range. Due to discreteness of binomial
distribution, power can be zero for one-sided hypothesis over a range of n.

The power can be identical for different methods, depending on the particular combination of n, s,
p.hyp, conf.level.

Especially for large n, the calculation time may become large (particularly for Blaker). Then only
the range of sample size which is of interest can be specified in nmax, f.e. as: nmax=c(150,300).
Alternatively, the function bgtPower might be used instead to calculate power and bias only for
some particular combinations of n, s, delta, p.hyp,... .
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Value

A list containing

nout the number of groups (assays or bulk samples) necessary reach the power with
the specified parameters

powerout the power for the specified parameters and selected number of groups n

biasout the bias for the specified parameters and the selected number of groups n

and a number of values specified in the function call or produced in the iteration, which are only
necessary to apply the function plot() on objects of class ’nDesign’

Author(s)

Frank Schaarschmidt

References

Schaarschmidt F (2007). Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40.
http://agrobiol.sggw.waw.pl/cbcs/

Swallow WH (1985). Group testing for estimating infection rates and probabilities of disease trans-
mission. Phytopathology Vol.75, N.8, 882-889.

See Also

plot.nDesign to plot the iteration of this function

bgtPower: calculation of power and bias depending on n, s, delta, p.hyp, conf.level, method
sDesign: function for stepwise increasing group size s for a given n in order to achieve suffi-
cient power within a biasrestriction estDesign: function to choose group size s according to the
minimal mse of the estimator, as given in Swallow (1985)

Examples

## Assume one aims to show that a proportion is smaller
## 0.005 (i.e. 0.5 per cent) with a power
## of 0.80 (i.e. 80 per cent) if the unknown proportion
## in the population is 0.003 (i.e. 0.3 per cent),
## thus, to detect a delta of 0.002.
## The Clopper Pearson CI shall be used.
## The maximal group size because of limited
## sensitivity of assay might be s=20 and we
## can only afford to perform maximally 100 assays:

nDesign(nmax=100, s=20, delta=0.002, p.hyp=0.005,
alternative="less", method="CP", power=0.8)

## A power of 80 per cent can not be reached but
## only 30 percent with n=100
## One might accept to show significance only for a
## lower true proportion = 0.001 i.e accepting to be
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## able to show significance only if true proportion
## is delta=0.004 smaller than the threshold

nDesign(nmax=100, s=20, delta=0.004, p.hyp=0.005,
alternative="less", method="CP", power=0.8)

test<-nDesign(nmax=100, s=30, delta=0.004, p.hyp=0.005,
alternative="less", method="CP", power=0.8)

plot(test)

NI.A2M Find the optimal testing configuration for non-informative array test-
ing with master pooling

Description

Find the optimal testing configuration for non-informative array testing with master pooling and
calculate the associated operating characteristics.

Usage

NI.A2M(p, Se, Sp, group.sz, obj.fn, weights = NULL)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease or a homogeneous vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size (representing the row/column size) for which to calculate the
operating characteristics, or a range of group (row/column) sizes over which to
find the OTC.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

http://chrisbilder.com/grouptesting
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Details

This function finds the OTC and computes the associated operating characteristics for non-informative
array testing with master pooling. Array testing with master pooling involves testing all specimens
in the array together in one group before any row or column groups are formed. This function uses
only square arrays, which is the way array-based group testing is carried out in most real-world
applications. Operating characteristics calculated are expected number of tests, pooling sensitivity,
pooling specificity, pooling positive predictive value, and pooling negative predictive value for the
algorithm. See Hitt et al. (2018) at http://chrisbilder.com/grouptesting or Kim et al. (2007)
for additional details on the implementation of non-informative array testing with master pooling.

The value(s) specified by group.sz represent the row/column size, which is used for the second
stage of testing after the entire array is tested together in one group. If a single value is provided for
group.sz, operating characteristics will be calculated and no optimization will be performed. If a
range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm. Expressions for these aver-
ages are provided in the Supplementary Material for Hitt et al. (2018). These expressions are based
on accuracy definitions given by Altman and Bland (1994a, 1994b).

Value

A list containing:

prob the probability of disease, as specified by the user.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

opt.ET, opt.MAR, opt.GR
a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Array.dim the row/column size for the second stage of testing.
Array.sz the overall array size used for the first stage of testing.

p.mat the matrix of individual probabilities.
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.

http://chrisbilder.com/grouptesting
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Note

This function returns the pooling positive and negative predictive values for all individuals in the
array even though these measures are diagnostic specific; i.e., PPV (NPV) should only be considered
for those individuals who have tested positive (negative).

Author(s)

Brianna D. Hitt

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: predictive values.” BMJ, 309, 102.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the Dorf-
man procedure.” Technometrics, 14(1), 113–122. ISSN 15372723, doi: 10.1080/00401706.1972.10488888,
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2018). “The Optimal Group Size Controversy for
Infectious Disease Testing: Much Ado About Nothing?!” Manuscript submitted for publication.

Kim, H., Hudgens, M., Dreyfuss, J., Westreich, D., Pilcher, C. (2007). “Comparison of group
testing algorithms for case identification in the presence of test error.” Biometrics, 63(4), 1152–
1163. ISSN 0006341X, doi: 10.1111/j.15410420.2007.00817.x.

Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group test-
ing algorithms in the presence of misclassification.” Biometrics, 72(1), 299–302. ISSN 15410420,
doi: 10.1111/biom.12385.

See Also

NI.Array for non-informative array testing without master pooling, Inf.Array for informative
array testing without master pooling, and OTC for finding the optimal testing configuration for a
number of standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.D3, Inf.Dorf, NI.Array, NI.D3, NI.Dorf, OTC

Examples

# Find the OTC for non-informative array testing with
# master pooling over a range of group (row/column) sizes.
# This example takes approximately 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.A2M(p=0.04, Se=0.95, Sp=0.95, group.sz=3:10,
obj.fn=c("ET", "MAR"))

# Calculate the operating characteristics for a specified
# group (row/column) size for non-informative array
# testing with master pooling.
# This example takes less than 1 second to run.
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# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.A2M(p=rep(0.01, 64), Se=0.90, Sp=0.90, group.sz=8,
obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1,1,10,10),
nrow=2, ncol=2, byrow=TRUE))

NI.Array Find the optimal testing configuration for non-informative array test-
ing without master pooling

Description

Find the optimal testing configuration (OTC) for non-informative array testing without master pool-
ing and calculate the associated operating characteristics.

Usage

NI.Array(p, Se, Sp, group.sz, obj.fn, weights = NULL)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease or a homogeneous vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size (representing the row/column size) for which to calculate the
operating characteristics, or a range of group (row/column) sizes over which to
find the OTC. The details of group size specification are given under ’Details’.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.
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Details

This function finds the OTC and computes the associated operating characteristics for non-informative
array testing without master pooling. Array testing without master pooling involves amalgamating
specimens in rows and columns for the first stage of testing. This function uses only square arrays,
which is the way array-based group testing is carried out in most real-world applications. Operating
characteristics calculated are expected number of tests, pooling sensitivity, pooling specificity, pool-
ing positive predictive value, and pooling negative predictive value for the algorithm. See Hitt et al.
(2018) at http://chrisbilder.com/grouptesting or Kim et al. (2007) for additional details on
the implementation of non-informative array testing without master pooling.

The value(s) specified by group.sz represent the initial group (row/column) size. If a single value
is provided for group.sz, operating characteristics will be calculated and no optimization will be
performed. If a range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm. Expressions for these aver-
ages are provided in the Supplementary Material for Hitt et al. (2018). These expressions are based
on accuracy definitions given by Altman and Bland (1994a, 1994b).

Value

A list containing:

prob the probability of disease, as specified by the user.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Array.dim the row/column size for the first stage of testing.
Array.sz the overall array size (the square of the row/column size).

p.mat the matrix of individual probabilities.
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.

Author(s)

Brianna D. Hitt
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See Also

Inf.Array for informative array testing without master pooling, NI.A2M for non-informative array
testing with master pooling, and OTC for finding the optimal testing configuration for a number of
standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.D3, Inf.Dorf, NI.A2M, NI.D3, NI.Dorf, OTC

Examples

# Find the OTC for non-informative array testing
# without master pooling over a range of group
# (row/column) sizes.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.Array(p=0.04, Se=0.95, Sp=0.95, group.sz=3:10,
obj.fn=c("ET", "MAR"))

# Calculate the operating characteristics for a specified
# group (row/column) size for non-informative array
# testing without master pooling.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.Array(p=rep(0.01, 64), Se=0.90, Sp=0.90, group.sz=8,
obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1,1,10,10,100,100),
nrow=3, ncol=2, byrow=TRUE))
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NI.D3 Find the optimal testing configuration for non-informative three-stage
hierarchical testing

Description

Find the optimal testing configuration (OTC) for non-informative three-stage hierarchical testing
and calculate the associated operating characteristics.

Usage

NI.D3(p, Se, Sp, group.sz, obj.fn, weights = NULL)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease or a homogeneous vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size over which to find the OTC out of all possible testing config-
urations, or a range of group sizes over which to find the OTC.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

Details

This function finds the OTC and computes the associated operating characteristics for non-informative
three-stage hierarchical testing, by considering all possible testing configurations. Operating char-
acteristics calculated are expected number of tests, pooling sensitivity, pooling specificity, pooling
positive predictive value, and pooling negative predictive value for the algorithm. See Hitt et al.
(2018) at http://chrisbilder.com/grouptesting or Kim et al. (2007) for additional details on
the implementation of non-informative three-stage hierarchical testing.

The value(s) specified by group.sz represent the initial (stage 1) group size. If a single value is
provided for group.sz, the OTC will be found over all possible testing configurations for that initial
group size. If a range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
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for all individuals within the initial group for a hierarchical algorithm. Expressions for these aver-
ages are provided in the Supplementary Material for Hitt et al. (2018). These expressions are based
on accuracy definitions given by Altman and Bland (1994a, 1994b).

Value

A list containing:

prob the probability of disease, as specified by the user.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Stage1 pool size for the first stage of testing, i.e. the initial group size.
Stage2 pool sizes for the second stage of testing.

p.vec the vector of individual probabilities
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.

Author(s)

Brianna D. Hitt
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Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group test-
ing algorithms in the presence of misclassification.” Biometrics, 72(1), 299–302. ISSN 15410420,
doi: 10.1111/biom.12385.

See Also

Inf.D3 for informative three-stage hierarchical testing, NI.Dorf for non-informative two-stage hi-
erarchical (Dorfman) testing, Inf.Dorf for informative two-stage hierarchical testing, and OTC for
finding the optimal testing configuration for a number of standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.D3, Inf.Dorf, NI.A2M, NI.Array, NI.Dorf, OTC

Examples

# Find the OTC for non-informative three-stage
# hierarchical testing over a range of group sizes.
# This example takes approximately 20 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
NI.D3(p=0.02, Se=0.90, Sp=0.90, group.sz=3:30,
obj.fn=c("ET", "MAR"))
## End(Not run)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.D3(p=0.02, Se=0.90, Sp=0.90, group.sz=3:12,
obj.fn=c("ET", "MAR"))

# Find the OTC out of all possible configurations for
# a specified group size for non-informative
# three-stage hierarchical testing.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.D3(p=rep(0.005, 15), Se=0.99, Sp=0.99, group.sz=15,
obj.fn=c("ET", "MAR", "GR"), weights=matrix(data=c(1,1,10,10),
nrow=2, ncol=2, byrow=TRUE))

NI.Dorf Find the optimal testing configuration for non-informative two-stage
hierarchical testing
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Description

Find the optimal testing configuration (OTC) for non-informative two-stage hierarchical (Dorfman)
testing and calculate the associated operating characteristics.

Usage

NI.Dorf(p, Se, Sp, group.sz, obj.fn, weights = NULL)

Arguments

p the probability of disease, which can be specified as an overall probability of
disease or a homogeneous vector of individual probabilities.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size for which to calculate operating characteristics, or a range of
group sizes over which to find the OTC. The details of group size specification
are given under ’Details’.

obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

Details

This function finds the OTC and computes the associated operating characteristics for non-informative
two-stage hierarchical (Dorfman) testing. Operating characteristics calculated are expected num-
ber of tests, pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value for the algorithm. See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting, Dorfman (1943), or Kim et al. (2007) for additional details on the implementation
of non-informative two-stage hierarchical testing.

The value(s) specified by group.sz represent the initial (stage 1) group size. If a single value is
provided for group.sz, operating characteristics will be calculated and no optimization will be
performed. If a range of group sizes is specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm. Expressions for these aver-
ages are provided in the Supplementary Material for Hitt et al. (2018). These expressions are based
on accuracy definitions given by Altman and Bland (1994a, 1994b).
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Value

A list containing:

prob the probability of disease, as specified by the user.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which in-
clude:
Stage1 pool size for the first stage of testing, i.e. the initial group size.

p.vec the vector of individual probabilities.
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.
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References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: predictive values.” BMJ, 309, 102.

Dorfman, R. (1943). “The Detection of Defective Members of Large Populations.” The Annals
of Mathematical Statistics, 14(4), 436–440. ISSN 0003-4851, doi: 10.1214/aoms/1177731363,
https://www.jstor.org/stable/2235930.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the Dorf-
man procedure.” Technometrics, 14(1), 113–122. ISSN 15372723, doi: 10.1080/00401706.1972.10488888,
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2018). “The Optimal Group Size Controversy for
Infectious Disease Testing: Much Ado About Nothing?!” Manuscript submitted for publication.

Kim, H., Hudgens, M., Dreyfuss, J., Westreich, D., Pilcher, C. (2007). “Comparison of group
testing algorithms for case identification in the presence of test error.” Biometrics, 63(4), 1152–
1163. ISSN 0006341X, doi: 10.1111/j.15410420.2007.00817.x.

Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group test-
ing algorithms in the presence of misclassification.” Biometrics, 72(1), 299–302. ISSN 15410420,
doi: 10.1111/biom.12385.

https://doi.org/10.1214/aoms/1177731363
https://www.jstor.org/stable/2235930
https://doi.org/10.1080/00401706.1972.10488888
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888
https://doi.org/10.1111/j.1541-0420.2007.00817.x
https://doi.org/10.1111/biom.12385


opt.info.dorf 79

See Also

Inf.Dorf for informative two-stage hierarchical (Dorfman) testing, NI.D3 for non-informative
three-stage hierarchical testing, Inf.D3 for informative three-stage hierarchical testing, and OTC
for finding the optimal testing configuration for a number of standard group testing algorithms.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.D3, Inf.Dorf, NI.A2M, NI.Array, NI.D3, OTC

Examples

# Find the OTC for non-informative two-stage
# hierarchical (Dorfman) testing over a range
# of group sizes.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.Dorf(p=0.01, Se=0.95, Sp=0.95, group.sz=2:100,
obj.fn=c("ET", "MAR"))

# Calculate the operating characteristics for a specified
# initial group size for non-informative two-stage
# hierarchical (Dorfman) testing.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
NI.Dorf(p=rep(0.025, 50), Se=0.90, Sp=0.90, group.sz=50,
obj.fn=c("ET", "MAR", "GR"), weights=matrix(data=c(1,1,10,10),
nrow=2, ncol=2, byrow=TRUE))

opt.info.dorf Find the characteristics of an informative two-stage hierarchical
(Dorfman) algorithm

Description

Find the characteristics of an informative two-stage hierarchical (Dorfman) decoding process using
Optimal Dorfman (OD), Thresholded Optimal Dorfman (TOD), or Pool-Specific Optimal Dorfman
(PSOD) algorithms.

Usage

opt.info.dorf(prob, se = 1, sp = 1, method = "OD", max.pool = 15,
thresh.pool = 8, threshold = NULL)

http://chrisbilder.com/grouptesting
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Arguments

prob a vector of all subjects’ infection probabilities.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

method character string defining the specific screening procedure for implementation
of Dorfman retesting in a heterogeneous population. Options include Optimal
Dorfman ("OD"), Thresholded Optimal Dorfman ("TOD"), and Pool-Specific Op-
timal Dorfman ("PSOD"). Further details are given under ’Details’.

max.pool the maximum allowable pool size. Further details are given under ’Details’.

thresh.pool the initial pool size used for TOD, if threshold is not specified. Further details
are given under ’Details’.

threshold the threshold value for TOD. If a threshold value is not specified, one is found
algorithmically. Further details are given under ’Details’.

Details

This function finds the characteristics of an informative two-stage hierarchical (Dorfman) decod-
ing process. Characteristics found include the expected expenditure of the decoding process, the
variance of the expenditure of the decoding process, and the pooling sensitivity, pooling specificity,
pooling positive predictive value, and pooling negative predictive value for each individual. Calcu-
lations of these characteristics are done using equations presented in McMahan et al. (2012).

Optimal Dorfman (OD) is an informative Dorfman algorithm in which the common pool size c =
copt minimizes E(T (c)), the expected number of tests needed to decode all N individuals when
pools of size c are used.

Thresholded Optimal Dorfman (TOD) is an informative Dorfman algorithm in which all N individ-
uals are partitioned into two classes, low-risk and high-risk individuals, based on whether their risk
probability falls below or above a particular threshold value. The threshold can be specified using
the threshold argument or the TOD algorithm can identify the optimal threshold value. The low-
risk individuals are tested using a optimal common pool size, and high-risk individuals are tested
individually.

Pool-Specific Optimal Dorfman (PSOD) is an informative Dorfman algorithm in which optimal
sizes are determined for each pool. A total of N individuals are tested in pools that minimize
the expected number of tests per individual, on a pool-by-pool basis. If desired, the user can add
the constraint of a maximum allowable pool size, so that each pool will contain no more than the
maximum allowable number of individuals.

All three informative Dorfman procedures described above require individuals to be ordered from
smallest to largest probability of infection. See McMahan et al. (2012) for additional details on the
implementation of informative two-stage hierarchical (Dorfman) testing algorithms.

Value

A list containing:

tv the threshold value used for TOD, if applicable.

e the expected expenditure of the decoding process.
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v the variance of the expenditure of the decoding process.

summary a matrix of summary measures that includes each individual’s infection proba-
bility, pool (pool to which they belong), pooling sensitivity, pooling specificity,
pooling positive predictive value, and pooling negative predictive value.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

Dorfman, R. (1943). “The Detection of Defective Members of Large Populations.” The Annals
of Mathematical Statistics, 14(4), 436–440. ISSN 0003-4851, doi: 10.1214/aoms/1177731363,
https://www.jstor.org/stable/2235930.

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

http://chrisbilder.com/grouptesting

Other Informative Dorfman functions: accuracy.dorf, characteristics.pool, inf.dorf.measures,
opt.pool.size, pool.specific.dorf, thresh.val.dorf

Examples

# Find the characteristics of an informative
# Dorfman algorithm, using the OD procedure.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
opt.info.dorf(prob=rbeta(1000,1,10), se=1, sp=1,
method ="OD", max.pool=15, thresh.pool=8, threshold=NULL)

# Find the characteristics of an informative
# Dorfman algorithm, using the TOD procedure.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(1002)
p.vec <- p.vec.func(p=0.01, alpha=2, grp.sz=20)
opt.info.dorf(prob=p.vec, se=0.95, sp=0.95,
method="TOD", max.pool=5, threshold=0.015)

http://chrisbilder.com/grouptesting
https://doi.org/10.1214/aoms/1177731363
https://www.jstor.org/stable/2235930
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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opt.pool.size Find the optimal pool size for Optimal Dorfman or Thresholded Opti-
mal Dorfman

Description

Find the optimal common pool size for Optimal Dorfman (OD) or Thresholded Optimal Dorfman
(TOD) testing.

Usage

opt.pool.size(p, max.p, se = 1, sp = 1)

Arguments

p a vector of each individual’s probability of infection.

max.p the maximum allowable pool size.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

Details

This function finds the optimal common pool size for OD or TOD testing. Using OD testing,
all individuals are tested using an optimal common pool size. Using TOD testing, individuals
are partitioned into low-risk and high-risk groups, and all low-risk individuals are tested using an
optimal common pool size. See McMahan et al. (2012) for additional details on the implementation
of OD or TOD testing.

Value

The optimal common pool size for OD or TOD testing.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

http://chrisbilder.com/grouptesting

Other Informative Dorfman functions: accuracy.dorf, characteristics.pool, inf.dorf.measures,
opt.info.dorf, pool.specific.dorf, thresh.val.dorf

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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Examples

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8135)
p.vec <- p.vec.func(p=0.02, alpha=1, grp.sz=10)
opt.pool.size(p=p.vec, max.p=3, se=0.95, sp=0.95)

OTC Find the optimal testing configuration

Description

Find the optimal testing configuration (OTC) for standard group testing algorithms and calculate
the associated operating characteristics.

Usage

OTC(algorithm, p = NULL, probabilities = NULL, Se = 0.99, Sp = 0.99,
group.sz, obj.fn = c("ET", "MAR"), weights = NULL, alpha = 2)

Arguments

algorithm character string defining the group testing algorithm to be used. Non-informative
testing options include two-stage hierarchical ("D2"), three-stage hierarchical
("D3"), square array testing without master pooling ("A2"), and square array
testing without master pooling ("A2M"). Informative testing options include two-
stage hierarchical ("ID2"), three-stage hierarchical ("ID3"), and square array
testing without master pooling ("IA2").

p overall probability of disease that will be used to generate a vector/matrix of
individual probabilities. For non-informative algorithms, a homogeneous set of
probabilities will be used. For informative algorithms, the p.vec.func func-
tion will be used to generate a heterogeneous set of probabilities. Either p or
probabilities should be specified, but not both.

probabilities a vector of individual probabilities, which is homogeneous for non-informative
testing algorithms and heterogeneous for informative testing algorithms. Either
p or probabilities should be specified, but not both.

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.

group.sz a single group size or range of group sizes for which to calculate operating
characteristics and/or find the OTC. The details of group size specification are
given under ’Details’.
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obj.fn a list of objective functions which are minimized to find the OTC. The ex-
pected number of tests per individual, "ET", will always be calculated. Addi-
tional options include "MAR" (the expected number of tests divided by the ex-
pected number of correct classifications, described in Malinovsky et al. (2016)),
and "GR" (a linear combination of the expected number of tests, the number of
misclassified negatives, and the number of misclassified positives, described in
Graff & Roeloffs (1972)). See Hitt et al. (2018) at http://chrisbilder.com/
grouptesting for additional details.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

alpha a shape parameter for the beta distribution that specifies the degree of hetero-
geneity for the generated probability vector (for informative testing only).

Details

This function finds the OTC and computes the associated operating characteristics for standard
group testing algorithms, as described in Hitt et al. (2018) at http://chrisbilder.com/grouptesting.

Available algorithms include two- and three-stage hierarchical testing and array testing with and
without master pooling. Both non-informative and informative group testing settings are allowed
for each algorithm, except informative array testing with master pooling is unavailable because this
method has not appeared in the group testing literature. Operating characteristics calculated are
expected number of tests, pooling sensitivity, pooling specificity, pooling positive predictive value,
and pooling negative predictive value for each individual.

The value(s) specified by group.sz represent the initial (stage 1) group size for three-stage hi-
erarchical testing and non-informative two-stage hierarchical testing. For informative two-stage
hierarchical testing, the group.sz specified represents the block size used in the pool-specific op-
timal Dorfman (PSOD) method, where the initial group (block) is not tested. For more details on
informative two-stage hierarchical testing implemented via the PSOD method, see Hitt et al. (2018)
and McMahan et al. (2012a). For array testing without master pooling, the group.sz specified
represents the row/column size for initial (stage 1) testing. For array testing with master pooling,
the group.sz specified represents the row/column size for stage 2 testing. The group size for initial
testing is overall array size, given by the square of the row/column size.

If a single value is provided for group.sz with array testing or non-informative two-stage hierar-
chical testing, operating characteristics will be calculated and no optimization will be performed.
If a single value is provided for group.sz with three-stage hierarchical or informative two-stage
hierarchical, the OTC will be found over all possible configurations. If a range of group sizes is
specified, the OTC will be found over all group sizes.

The displayed pooling sensitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value are weighted averages of the corresponding individual accuracy measures
for all individuals within the initial group for a hierarchical algorithm, or within the entire array
for an array-based algorithm. Expressions for these averages are provided in the Supplementary
Material for Hitt et al. (2018). These expressions are based on accuracy definitions given by Altman
and Bland (1994a, 1994b).

Value

A list containing:

http://chrisbilder.com/grouptesting
http://chrisbilder.com/grouptesting
http://chrisbilder.com/grouptesting
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prob the probability of disease, as specified by the user.

alpha level of heterogeneity for the generated probability vector (for informative test-
ing only).

Se the sensitivity of the diagnostic test.

Sp the specificity of the diagnostic test.
opt.ET, opt.MAR, opt.GR

a list for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which may
include:
Stage1 pool size for the first stage of hierarchical testing, if applicable.
Stage2 pool sizes for the second stage of hierarchical testing, if applicable.
Block.sz the block size/initial group size for informative Dorfman testing,

which is not tested.
pool.szs pool sizes for the first stage of testing for informative Dorfman

testing.
Array.dim the row/column size for array testing.
Array.sz the overall array size for array testing (the square of the row/column

size).
p.vec the sorted vector of individual probabilities, if applicable.
p.mat the sorted matrix of individual probabilities in gradient arrangement, if

applicable.
ET the expected testing expenditure for the OTC.
value the value of the objective function per individual.
PSe the overall pooling sensitivity for the algorithm. Further details are given

under ’Details’.
PSp the overall pooling specificity for the algorithm. Further details are given

under ’Details’.
PPPV the overall pooling positive predictive value for the algorithm. Further

details are given under ’Details’.
PNPV the overall pooling negative predictive value for the algorithm. Further

details are given under ’Details’.

Author(s)

Brianna D. Hitt

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: predictive values.” BMJ, 309, 102.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the Dorf-
man procedure.” Technometrics, 14(1), 113–122. ISSN 15372723, doi: 10.1080/00401706.1972.10488888,
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2018). “The Optimal Group Size Controversy for
Infectious Disease Testing: Much Ado About Nothing?!” Manuscript submitted for publication.

https://doi.org/10.1080/00401706.1972.10488888
https://www.tandfonline.com/doi/abs/10.1080/00401706.1972.10488888
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Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group test-
ing algorithms in the presence of misclassification.” Biometrics, 72(1), 299–302. ISSN 15410420,
doi: 10.1111/biom.12385.

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

McMahan, C., Tebbs, J., Bilder, C. (2012). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68(3), 793–804. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01726.x.

See Also

NI.Dorf for non-informative two-stage (Dorfman) testing, Inf.Dorf for informative two-stage
(Dorfman) testing, NI.D3 for non-informative three-stage hierarchical testing, Inf.D3 for infor-
mative three-stage hierarchical testing, NI.Array for non-informative array testing, Inf.Array for
informative array testing, and NI.A2M for non-informative array testing with master pooling.

http://chrisbilder.com/grouptesting

Other OTC functions: Inf.Array, Inf.D3, Inf.Dorf, NI.A2M, NI.Array, NI.D3, NI.Dorf

Examples

# Find the OTC for non-informative
# two-stage hierarchical (Dorfman) testing
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
OTC(algorithm="D2", p=0.05, Se=0.99, Sp=0.99, group.sz=2:100,
obj.fn=c("ET", "MAR"))

# Find the OTC for informative
# two-stage hierarchical (Dorfman) testing, implemented
# via the pool-specific optimal Dorfman (PSOD) method
# described in McMahan et al. (2012a), where the greedy
# algorithm proposed for PSOD is replaced by considering
# all possible testing configurations.
# A vector of individual probabilities is generated using
# the expected value of order statistics from a beta
# distribution with p = 0.01 and a heterogeneity level
# of alpha = 0.5. Depending on the specified probability,
# alpha level, and overall group size, simulation may
# be necessary in order to generate the vector of individual
# probabilities. This is done using p.vec.func() and
# requires the user to set a seed in order to reproduce
# results.
# This example takes approximately 2.5 minutes to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(52613)
OTC(algorithm="ID2", p=0.01, Se=0.95, Sp=0.95, group.sz=50,

https://doi.org/10.1111/biom.12385
https://doi.org/10.1111/j.1541-0420.2011.01644.x
https://doi.org/10.1111/j.1541-0420.2011.01726.x
http://chrisbilder.com/grouptesting
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obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 0.5, 0.5),
nrow=3, ncol=2, byrow=TRUE), alpha=0.5)
## End(Not run)

# Find the OTC over all possible
# testing configurations for a specified group size for
# non-informative three-stage hierarchical testing
# This example takes approximately 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
OTC(algorithm="D3", p=0.001, Se=0.95, Sp=0.95, group.sz=18,
obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1), nrow=1, ncol=2, byrow=TRUE))

# Find the OTC for non-informative
# three-stage hierarchical testing
# This example takes approximately 20 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
OTC(algorithm="D3", p=0.06, Se=0.90, Sp=0.90,
group.sz=3:30, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 100, 100),
nrow=3, ncol=2, byrow=TRUE))
## End(Not run)

# Find the OTC over all possible configurations
# for a specified group size, given a
# heterogeneous vector of probabilities.
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
OTC(algorithm="ID3", probabilities=c(0.012, 0.014, 0.011,
0.012, 0.010, 0.015), Se=0.99, Sp=0.99, group.sz=6,
obj.fn=c("ET","MAR","GR"), weights=matrix(data=c(1, 1),
nrow=1, ncol=2, byrow=TRUE), alpha=0.5)

# Calculate the operating characteristics for a specified array size
# for non-informative array testing without master pooling
# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
OTC(algorithm="A2", p=0.005, Se=0.95, Sp=0.95, group.sz=8,
obj.fn=c("ET", "MAR"))

# Find the OTC for informative array testing without
# master pooling
# A vector of individual probabilities is generated using
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# the expected value of order statistics from a beta
# distribution with p = 0.03 and a heterogeneity level
# of alpha = 2. The probabilities are then arranged in
# a matrix using the gradient method described in
# McMahan et al. (2012b). Depending on the specified
# probability, alpha level, and overall group size,
# simulation may be necessary in order to generate the
# vector of individual probabilities. This is done using
# p.vec.func() and requires the user to set a
# seed in order to reproduce results.
# This example takes approximately 30 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(1002)
OTC(algorithm="IA2", p=0.03, Se=0.95, Sp=0.95,
group.sz=3:20, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 100, 100),
nrow=3, ncol=2, byrow=TRUE), alpha=2)
## End(Not run)

# Find the OTC for non-informative array testing
# with master pooling
# This example takes approximately 20 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
OTC(algorithm="A2M", p=0.02, Se=0.90, Sp=0.90,
group.sz=3:20, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 0.5, 0.5, 2, 2,
100, 100, 10, 100), nrow=6, ncol=2, byrow=TRUE))
## End(Not run)

p.vec.func Generate a vector of probabilities for informative group testing algo-
rithms.

Description

Generate a vector of individual risk probabilities using an overall probability of disease (i.e., the
expected value of order statistics from a beta distribution) for use with informative group testing
algorithms.

Usage

p.vec.func(p, alpha, grp.sz)
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Arguments

p overall probability of disease that will be used to generate a vector of individual
risk probabilities.

alpha a shape parameter for the beta distribution that specifies the degree of hetero-
geneity for the generated probability vector.

grp.sz the number of total individuals for which to generate risk probabilities.

Details

This function uses Michael Black’s beta.dist function to generate a vector of individual risk
probabilities, ordered from least to greatest. Depending on the specified probability, alpha level,
and overall group size, simulation may be necessary in order to generate the vector of individ-
ual probabilities. For this reason, the user should set a seed in order to reproduce results. The
p.vec.func function augments the beta.dist function by checking whether simulation is needed
before attempting to generate the vector of individual risk probabilities. See Black et al. (2015) for
additional details on Michael Black’s beta.dist function.

Value

A vector of individual risk probabilities.

Author(s)

Brianna D. Hitt

References

Black, M., Bilder, C., Tebbs, J. (2015). “Optimal retesting configurations for hierarchical group
testing.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 64(4), 693–710.
ISSN 14679876, doi: 10.1111/rssc.12097.

See Also

Informative.array.prob for arranging a vector of individual risk probabilities in a matrix for in-
formative array testing without master pooling and beta.dist for the function on which p.vec.func
is based on.

http://chrisbilder.com/grouptesting

Other Individual risk probability functions: Informative.array.prob, beta.dist

Examples

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8791)
p.vec.func(p=0.03, alpha=0.5, grp.sz=100)

# This example takes less than 1 second to run.

https://doi.org/10.1111/rssc.12097
http://chrisbilder.com/grouptesting
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# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(52613)
p.vec.func(p=0.005, alpha=2, grp.sz=40)

plot.bgtDesign Plot Results of nDesign or sDesign

Description

Plots the results of the iteration performed by nDesign or sDesign in order to find an experimental
design with sufficient power.

Usage

## S3 method for class 'nDesign'
plot(x, ...)
## S3 method for class 'sDesign'
plot(x, ...)

Arguments

x An object of class "nDesign" or "sDesign" as can be created by nDesign and
sDesign, respectively.

... further arguments to be passed to plot

Examples

plot(nDesign(nmax=100, s=30, delta=0.004, p.hyp=0.005,
alternative="less", method="Score", power=0.8))

plot.binDesign Plot Results of binDesign

Description

Plot function to visualize the power curve.

Usage

## S3 method for class 'binDesign'
plot(x, ...)
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Arguments

x an object of class "binDesign, as can be created by link{binDesign}"

... plot parameters as described in par

Value

A plot.

See Also

binPower for calculation of power

Examples

# Find a sample size for which the power to reject
# H0: p >= 0.1 in favor of HA: p < 0.1
# is at least 0.9 (90 percent) in case that
# the true proportion is 0.04 (i.e. an absolute delta
# of 0.06 to the threshold proportion p.hyp=0.1)
# The exact one sided Clopper-Pearson CI shall be used
# with default confidence level = 0.95.

sasi<-binDesign( nmax=200, delta=0.06, p.hyp=0.1,
alternative="less", method="CP", power=0.9)

sasi

# Plot the result

# plot(sasi)

# for larger sample sizes this can be very time consuming.
# Better to use only a smaller range of n then:

sasi<-binDesign( nmax=c(200,300), delta=0.03, p.hyp=0.1,
alternative="less", method="CP", power=0.9)

plot(sasi)

plot.poolbin Diagnostic line fit for pool.bin objects

Description

Diagnostic line fit for pool.bin objects
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Usage

## S3 method for class 'poolbin'
plot(x, pch = 16, refline = TRUE, printR2 = TRUE, ...)

Arguments

x an object of class "poolbin", as can be created by pooledBin

pch symbol type for plotting, see ?pch

refline logical, whether or not to add a reference line to the plot

printR2 logical, whether to print R^2

... further arguments passed to plot

Details

Brad: Maybe drop a line here...

Value

a plot

Author(s)

Brad Biggerstaff

References

Brad: Any reference for this?

Examples

test <- pooledBin(x=c(8,3,1,0), m=c(50,20,10,5),
n=c(10,10,10,10), pt.method="firth", ci.method="lrt")

plot(test)

pool.specific.dorf Find the optimal pool sizes for Pool-Specific Optimal Dorfman
(PSOD) testing

Description

Find the set of optimal pool sizes for Pool-Specific Optimal Dorfman (PSOD) testing.

Usage

pool.specific.dorf(p, max.p, se, sp)
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Arguments

p a vector of each individual’s probability of infection.

max.p the maximum allowable pool size.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

Details

This function finds the set of optimal pool sizes for PSOD testing. PSOD testing uses a greedy
algorithm and does not consider all possible sets of pool sizes. See McMahan et al. (2012) for
additional details on the implementation of PSOD testing.

Value

The optimal set of pool sizes for PSOD testing.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

http://chrisbilder.com/grouptesting

Other Informative Dorfman functions: accuracy.dorf, characteristics.pool, inf.dorf.measures,
opt.info.dorf, opt.pool.size, thresh.val.dorf

Examples

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
set.seed(8135)
p.vec <- p.vec.func(p=0.02, alpha=1, grp.sz=10)
pool.specific.dorf(p=p.vec, max.p=3, se=0.95, sp=0.95)

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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pooledBin Confidence intervals for a single proportion

Description

Calculates confidence intervals for a single proportion based on pooled testing experiments con-
taining various different pool sizes.

Usage

pooledBin(x, m, n = rep(1, length(x)),
pt.method = c("firth", "gart", "bc-mle", "mle", "mir"),
ci.method = c("skew-score", "bc-skew-score", "score",
"lrt", "wald", "mir"),
scale = 1, alpha = 0.05, tol = .Machine$double.eps^0.5)

Arguments

x a vector, specifying the observed number of positive pools, among the number
of pools tested (n)

m a vector of pool sizes, must have the same length as, x

n a vector of the corresponding number of pools of sizes m

pt.method a character string, specifying the point estimate to compute, with the following
options: "bc-mle" bias-corrected MLE, the default; "mle" MLE, and "mir"
MIR.

ci.method a character string, specifying the confidence interval to compute, with options:
"skew-score" skewness-corrected, the default, "score" the score, "bc-skew-score"
bias- and skewness-corrected "lrt" likelihood ratio test, "wald" wald, and
"mir" MIR.

scale a single numeric, coefficient to scale the point estimates and intervals bounds in
the print and summary method (print.poolbin, summary.poolbin)

alpha a single numeric, specifying the type-I-error level

tol accuracy required for iterations in internal functions

Details

Point estimation: bias preventative ("firth") and bias corrected ("gart") estimators are recommended,
with details described in Hepworth G, Biggerstaff BJ (2017). Use of MLE ("mle"), and MIR
("mir") estimators is not recommended.

Confidence intervals: Note, that the methods "mir" and "wald" can not be recommended, because
they return too narrow intervals in relevant situations, "mir" because it ignores the pooling, and
"wald" because it relies on simple large sample methods. For computational details and simulation
results of the remaining methods, see Biggerstaff (2008).
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Value

A list with elements

p the estimated proportion

lcl the lower confidence limit

ucl the upper confidence limit

pt.method the method used for point estimation

ci.method the method used for interval estimation

alpha the type-I-error level

x the numbers of postive pools

m the size of the pools

n the numbers of pools with corresponding pool sizes m

scale Scaling coefficient for the output

Author(s)

Brad Biggerstaff

References

Walter SD, Hildreth SW, Beaty BJ: Estimation of infection rates in population of organisms using
pools of variable size. Am J Epidemiol 1980, 112(1):124-128

Hepworth G: Estimation of proportions by group testing. PhD Dissertation. Melbourne, Australia:
The University of Melbourne; 1999.

Biggerstaff BJ (2008): Confidence interval for the difference of proportions estmimated from pooled
samples. Journal of Agricultural Biological and Environmental Statistics 2008, 13(4):478-496.

Hepworth G, Biggerstaff BJ: Bias correction in estimating Proportions by pooled testing. JABES
20178, to appear.

See Also

bgtvs to compute exact confidence intervals for one proportion in designs with different pool sizes.
Note that bgtvs can only deal with a limited number of different pool sizes.

bgtCI to compute exact or asymptotic confidence intervals for one proportion in designs with a
common pool size in all pools.

Examples

# Consider an imaginary example, where pools of size
# 1, 5, 10 and 50 are tested, 5 pools of each size
# among the 5 pools with size 1 and 5, no pool is positive,
# while among the 5 pools of size 10 and 50, 1 and 2 positive
# pools are identified, respectively.

x1 <- c(0,0,1,2)
m1 <- c(1,5,10,50)
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n1 <- c(5,5,5,5)

pooledBin(x=x1, m=m1, n=n1)
pooledBin(x=x1, m=m1, n=n1, scale=1000)

pooledBin(x=x1, m=m1, n=n1)

summary(pooledBin(x=x1, m=m1, n=n1), scale=1000)

# For another population, tested with the same design, one might find:
# 1 positive result among the pools pooling 5 elements,
# no positive result among the pools pooling 10 elements,
# 4 positive results among the pools pooling 50 elements,

x2<-c(0,1,0,4)
m2 <- c(1,5,10,50)
n2 <- c(5,5,5,5)

pooledBin(x=x2, m=m2, n=n2)

# Some other methods for the confidence bounds:

pooledBin(x=x2, m=m2, n=n2, ci.method="lrt")

###
# Reproducing some of the estimates from Table 1 in
# Hepworth & Biggerstaff (2017):

pooledBin(x=c(1,2), m=c(20,5), n=c(8,8), pt.method="firth", ci.method="lrt")

pooledBin(x=c(7,8), m=c(20,5), n=c(8,8), pt.method="firth", ci.method="lrt")

pooledBinDiff Confidence intervals for the difference of proportions

Description

The function calculates confidence intervals for the difference of two proportions based on pooled
testing experiments containing various different pool sizes.

Usage

pooledBinDiff(x1, m1, x2, m2, n1 = rep(1, length(x1)),
n2 = rep(1, length(x2)),
pt.method = c("firth", "gart", "bc-mle", "mle", "mir"),
ci.method = c("skew-score", "bc-skew-score", "score", "lrt", "wald", "mir"),
scale = 1, alpha = 0.05, tol = .Machine$double.eps^0.5)
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Arguments

x1 a vector, specifying the observed number of positive pools, among the number
of pools tested (n1) in population 1

m1 a vector of corresponding pool sizes in population 1, must have the same length
as x1

x2 a vector, specifying the observed number of positive pools, among the number
of pools tested (n2) in population 2

m2 a vector of corresponding pool sizes in population 2, must have the same length
as x2

n1 a vector of the corresponding number of pools with sizes m1

n2 a vector of the corresponding number of pools with sizes m2

pt.method a character string, specifying the point estimator to compute, with the following
options: "firth": recommended bias-corrected estimator (Hepworth & Big-
gerstaff, 2017), the default; "gart" bias-corrected MLE (Biggerstaff, 2008);
"bc-mle": same as "gart", kept for backward compatibility ; "mle" MLE, and
"mir" MIR.

ci.method a character string, specifying the confidence interval to compute, with options:
"skew-score" skewness-corrected, the default, "score" the score, "bc-skew-score"
bias- and skewness-corrected "lrt" likelihood ratio test. See Biggerstaff (2008)
for details. Further, the options "wald" wald and "mir" MIR are available but
are not recommended.

scale a single numeric, coefficient to scale the point estimates and intervals bounds in
the print and summary method (print.poolbindiff, summary.poolbindiff)

alpha a single numeric, specifying the type-I-error level

tol accuracy required for iterations in internal functions

Details

Point estimation: bias preventative ("firth") and bias corrected ("gart") estimators are recommended,
with details described in Hepworth G, Biggerstaff BJ (2017). Use of MLE ("mle"), and MIR
("mir") estimators is not recommended.

Confidence intervals: Note, that the methods "mir" and "wald" can not be recommended, because
they return too narrow intervals in relevant situations, "mir" because it ignores the pooling, and
"wald" because it relies on simple large sample methods. For computational details and simulation
results of the remaining methods, see Biggerstaff (2008).

Value

A list with elements

d the estimated difference of proportions

lcl the lower confidence limit

ucl the upper confidence limit

pt.method the method used for point estimation
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ci.method the method used for interval estimation

alpha the type-I-error level

scale Scaling coefficient for the output

x1 the numbers of postive pools in population 1

m1 the size of the pools in population 1

n1 the numbers of pools with corresponding pool sizes m1 in population 1

x2 the numbers of postive pools in population 2

m2 the size of the pools in population 2

n2 the numbers of pools with corresponding pool sizes m1 in population 2

Author(s)

Brad Biggerstaff

References

Walter SD, Hildreth SW, Beaty BJ: Estimation of infection rates in population of organisms using
pools of variable size. Am J Epidemiol 1980, 112(1):124-128

Hepworth G: Estimation of proportions by group testing. PhD Dissertation. Melbourne, Australia:
The University of Melbourne; 1999.

Biggerstaff BJ (2008): Confidence interval for the difference of proportions estmimated from pooled
samples. Journal of Agricultural Biological and Environmental Statistics 2008, 13(4):478-496.

Hepworth G, Biggerstaff BJ: Bias correction in estimating Proportions by pooled testing. JABES
2017, to appear.

Examples

# Consider an imaginary example, where pools of size
# 1, 5, 10 and 50 are tested, 5 pools of each size. The same
# design is applied to estimate the prevalence in
# two populations:
# In population 1, among the 5 pools with size 1 and 5,
# no positive pool is observed,
# while among the 5 pools of size 10 and 50, 1 and 2 positive
# pools are identified, respectively.

# In population 2, 1 positive result is observed
# among the 5 pools each pooling 5 elements,
# no positive result among the pools pooling 10 elements,
# 4 positive results among the pools pooling 50 elements,

x1 <- c(0,0,1,2)
m <- c(1,5,10,50)
n <- c(5,5,5,5)

x2<-c(0,1,0,4)
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pooledBinDiff(x1=x1, m1=m, x2=x2, m2=m, n1=n, n2=n)

summary(pooledBinDiff(x1=x1, m1=m, x2=x2, m2= m, n1=n, n2=n), scale=1000)

# Compare recommended methods:

pooledBinDiff(x1=x1, m1=m, x2=x2, m2= m, n1=n, n2=n, pt.method="mle",
ci.method="lrt")

pooledBinDiff(x1=x1, m1=m, x2=x2, m2= m, n1=n, n2=n, pt.method="mle",
ci.method="score")

pooledBinDiff(x1=x1, m1=m, x2=x2, m2= m, n1=n, n2=n, pt.method="mle",
ci.method="skew-score")

predict.gt Predict Method for Group Testing Model Fits

Description

Obtains predictions for individual observations and optionally estimates standard errors of those
predictions from objects of class "gt" or "gt.mp" returned by gtreg and gtreg.mp, respectively.

Usage

## S3 method for class 'gt'
predict(object, newdata, type = c("link", "response"),
se.fit = FALSE, conf.level = NULL, na.action = na.pass, ...)

Arguments

object a fitted object of class "gt" or "gt.mp".

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The option "link" is on the scale of the linear
predictors; the alternative "response" is on the scale of the response variable.
Thus for the binomial model the "link" predictions are of log-odds (probabili-
ties on logit scale) and type = "response" gives the predicted probabilities.

se.fit logical switch indicating if standard errors are required.

conf.level confidence level of the interval of the predicted values.

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

... currently not used



100 print.bgt

Details

If newdata is omitted the predictions are based on the data used for the fit. When newdata is
present and contains missing values, how the missing values will be dealt with is determined by the
na.action argument. In this case, if na.action = na.omit omitted cases will not appear, whereas
if na.action = na.exclude they will appear (in predictions and standard errors), with value NA.
See also napredict.

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors

lower Lower bound of the confidence interval if calculated

upper Upper bound of the confidence interval if calculated

Author(s)

Boan Zhang

Examples

data(hivsurv)

fit1 <- gtreg(formula = groupres ~ AGE + EDUC., data = hivsurv,
groupn = gnum, sens = 0.9, spec = 0.9, linkf = "logit", method = "V")

pred.data <- data.frame(AGE = c(15, 25, 30), EDUC. = c(1, 3, 2))
predict(object = fit1, newdata = pred.data, type = "link", se.fit = TRUE)
predict(object = fit1, newdata = pred.data, type = "response",

se.fit = TRUE, conf.level = 0.9)
predict(object = fit1, type = "response", se.fit = TRUE, conf.level = 0.9)

print.bgt Print Functions for Group Testing CIs and Tests for One Proportion

Description

Print objects of class "bgtCI", "bgtTest", "bgtvs", "binCI", and "binTest"
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Usage

## S3 method for class 'bgtCI'
print(x, ...)
## S3 method for class 'binCI'
print(x, ...)
## S3 method for class 'bgtTest'
print(x, ...)
## S3 method for class 'binTest'
print(x, ...)
## S3 method for class 'bgtvs'
print(x, ...)

Arguments

x an object of the corresponding class

... currently only digits is passed to signif for appropriate rounding

Value

A print out.

print.bgtDesign Print Functions for nDesign and sDesign

Description

Print function for results of functions nDesign, nDesign.

Usage

## S3 method for class 'nDesign'
print(x, ...)
## S3 method for class 'sDesign'
print(x, ...)

Arguments

x An object of class "nDesign" or "sDesign"

... currently only digits is passed to signif for appropriate rounding
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print.binDesign Print Function for binDesign

Description

Print objects of class "binDesign"

Usage

## S3 method for class 'binDesign'
print(x, ...)

Arguments

x an object of class "binDesign"

... currently only digits is passed to signif for appropriate rounding

print.gt Print methods for objects of classes "gt" and "gt.mp"

Description

Print methods for objects of classes "gt" and "gt.mp"

Usage

## S3 method for class 'gt'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x objects of class "gt" and "gt.mp", respectively

digits the digits for rounding

... currently not used

Value

A print out
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print.poolbindiff Print methods for classes "poolbin" and "poolbindiff"

Description

Print methods for objects of classes "poolbin" and "poolbindiff"

Usage

## S3 method for class 'poolbin'
print(x, scale = x$scale, ...)
## S3 method for class 'poolbindiff'
print(x, scale = x$scale, ...)

Arguments

x An object of class "poolbin" or "poolbindiff" (pooledBin, pooledBinDiff)
scale A coefficient to scale the point estimate and interval bounds
... further arguments to be passed to print

Value

A print out.

print.summary.gt Print Functions for summary.gt.mp and summary.gt

Description

Print function for objects obtained by calling summary.gt.mp and summary.gt

Usage

## S3 method for class 'summary.gt.mp'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)

## S3 method for class 'summary.gt'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)

Arguments

x an object of class "summary.gt.mp" or "summary.gt"
digits digits for rounding
signif.stars logical, indicating whether significance stars should be shown
... further arguments to be passed to printCoefmat
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Value

A print out.

residuals.gt Extract Model Residuals From a Fitted Group Testing Model

Description

residuals.gt is a function which extracts model residuals from objects of class "gt" returned by
gtreg.

Usage

## S3 method for class 'gt'
residuals(object, type = c("deviance", "pearson", "response"),...)

Arguments

object an object of class "gt" from which the model residuals are to be extracted.

type the type of residuals which should be returned. The alternatives are: "deviance"
(default), "pearson", and "response".

... currently not used

Value

Residuals of group responses extracted from the object object.

Author(s)

Boan Zhang

Examples

data(hivsurv)

fit1 <- gtreg(formula = groupres ~ AGE * EDUC., data = hivsurv, groupn = gnum,
linkf = "probit")

residuals.gt(object = fit1, type = "pearson")
residuals.gt(object = fit1, type = "deviance")
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sDesign Iterate Group Size for a One-Parameter Group Testing Problem

Description

Increasing of group size s for a fixed number of groups n in a binomial group testing design, un-
til a pre-specified power is achieved. Control of bias during iteration. A hypothetical threshold
proportion p.hyp and the absolute difference delta to be detected have to be specified.

Usage

sDesign(n, smax, delta, p.hyp, conf.level = 0.95,
power = 0.8, alternative = "two.sided", method = "CP", biasrest = 0.05)

Arguments

n integer, fixed sample size (number of assays)

smax integer, maximal group size allowed in planning of the design

delta absolute difference between the threshold and the true proportion which shall be
detectable with specified power

p.hyp threshold proportion to test against in the hypothesis, specify as a value between
0 and 1

conf.level confidence level of the decision, default is 0.95

power level of power to be achieved to be specified as a probability between 0 and 1

alternative character string, defining the alternative hypothesis, either ’two.sided’, ’less’ or
’greater’ where ’less’ calculates the probability that p.hyp is excluded by an
upper confidence limit for a true proportion p.hyp - delta, ’greater’ calcu-
lates the probability that p.hyp is excluded by a lower confidence limit for a
true proportion of p.hyp + delta . ’two.sided’ calculates min(power(p.hyp
- delta, p.hyp + delta)) for a two.sided CI, thus can result in much lower
power. Note that coverage probability and power are not necessarily symmetric
for upper and lower bound of binomial CI.

method character string specifying the CImethod to be used for evaluation, see argument
method in bgtCI

biasrest value between 0 and 1 specifying the absolute bias maximally allowed

Details

The power of a confidence interval here is defined as the probability that a confidence interval or
limit excludes the threshold parameter (p.hyp) of the hypothesis. This function increases size of
groups (number of units in a bulk sample) until a pre-specified power is reached. Since the power
does not increase monotone with increasing s for binomial proportions but oscillates between local
maxima and minima, the simple iteration given here will generally result in selecting those s, for
which the given CI method shows a local minimum of coverage if the null hypothesis is true. Since
the positive bias of the estimator in group testing increases with increasing group size, it is checked
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whether bias is smaller than a pre-specified value (bias.rest). If bias violates this restriction for a
given combination n, s, delta, s will not be further increased the actual power of the last acceptable
group size s is returned.

Value

A list containing:

sout the group size necessary to met the conditions

powerout the exact power for the specified parameters and the group size

biasout the bias for the specified parameters and the iterated group size

and a number of values specified in the function call or produced in the iteration.

References

Schaarschmidt F (2007) Experimental design for one-sided confidence intervals or hypothesis tests
in binomial group testing. Communications in Biometry and Crop Science 2 (1), 32-40. http://agrobiol.sggw.waw.pl/cbcs/

Swallow WH (1985) Group testing for estimating infection rates and probabilities of disease trans-
mission. Phytopathology 75 (8), 882-889.

See Also

plot.sDesign can be used to plot th iteration of this function

bgtPower: calculation of power and bias depending on n, s, delta, p.hyp, conf.level, method
nDesign: function to iteratively optimize sample size(number of groups)n for a given group size s
estDesign: function to choose group size s according to the minimal mse of the estimator, as given
in Swallow (1985)

Examples

## Assume that objective is to show that a proportion
## is smaller than 0.005 (i.e. 0.5%) with a
## power of 0.80 (i.e. 80%) if the unknown proportion
## in the population is 0.003 (i.e. 0.3%), thus a
## delta = 0.002 shall be detected. A 95-per-cent
## Clopper-Pearson CI (corresponding to an exact test)
## shall be used. The maximal number of groups might
## be 30 where the assay sensitivity is not limited
## until groupsize s = 100.

sDesign(smax=100, n=30, delta=0.002, p.hyp=0.005,
alternative="less", method="CP", power=0.8)

## One might accept to detect delta=0.004,
## i.e. accepting to reject H0: p>=0.005 with
## power 80 per cent when the true proportion is 0.001:

sDesign(smax=100, n=30, delta=0.004, p.hyp=0.005,
alternative="less", method="CP", power=0.8)
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sDesign(smax=100, n=30, delta=0.004, p.hyp=0.005,
alternative="less", method="Score", power=0.8)

sim.gt Simulation Function for Group Testing Data

Description

Simulates data in group testing form ready to be fit by gtreg.

Usage

sim.gt(x = NULL, gshape = 20, gscale = 2, par,
linkf = c("logit", "probit", "cloglog"),
sample.size, group.size, sens = 1, spec = 1,
sens.ind = NULL, spec.ind = NULL)

Arguments

x a matrix of user-submitted covariates to simulate the data with, defaults to NULL
in which case a gamma distribution is used to generate the covariates automati-
cally

gshape shape parameter of gamma distribution, must be non-negative, set to be 20 by
default

gscale scale parameter of gamma distribution, must be strictly positive, set to be 2 by
default

par the true coefficients in the linear predictor

sample.size sample size of simulated data

linkf a character string specifying one of the three link functions to be used: "logit"
(default) or "probit" or "cloglog"

group.size group size in pooling individual samples

sens sensitivity of the group tests, set to be 1 by default.

spec specificity of the group tests, set to be 1 by default.

sens.ind sensitivity of the individual retests, set to be equal to sens if not specified oth-
erwise.

spec.ind specificity of the individual retests, set to be equal to spec if not specified oth-
erwise.
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Details

sim.gt generates group testing data in simple pooling form. The covariates are either specified by
the x argument or they are generated from a gamma distribution with a given gshape and gscale.
The individual probabilities are calculated from the covariates, the coefficients given in par, and
the link function specified through linkf. The true binary individual responses are then simulated
from the individual probabilities. The true group responses are found from the individual responses
within the groups (i.e., if at least one response is positive, the group is positive; otherwise, the group
response is negative). Finally, the observed group responses are simulated using the given sens
and spec. Individual retests are simulated from sens.ind and spec.ind for samples in observed
positive groups. Note that with a given group.size, the last group may have less individuals.

Value

sim.gt returns a data frame with the following columns:

gres the group response

x the covariate

groupn the group number

ind the actual individual response

retest the results of individual retests

Author(s)

Boan Zhang

See Also

gtreg, gtreg.mp

Examples

set.seed(46)
gt.data <- sim.gt(par = c(-12, 0.2), sample.size = 700, group.size = 5)

x1 <- sort(runif(100, 0, 30))
x2 <- rgamma(100, shape=17, scale=1.5)
gt.data <- sim.gt(x = cbind(x1,x2), par=c(-14, 0.2, 0.3),
group.size = 4, sens = 0.98, spec = 0.98)
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sim.halving Simulation Function for Group Testing Data for the Halving Protocol

Description

Simulates data in group testing form ready to be fit by gtreg.halving.

Usage

sim.halving(x = NULL, gshape = 20, gscale = 2, par,
linkf = c("logit", "probit", "cloglog"),
sample.size, group.size, sens = 1, spec = 1,
sens.ind = NULL, spec.ind = NULL)

Arguments

x a matrix of user-submitted covariates to simulate the data with, defaults to NULL
in which case a gamma distribution is used to generate the covariates automati-
cally

gshape shape parameter of gamma distribution, must be non-negative, set to be 20 by
default

gscale scale parameter of gamma distribution, must be strictly positive, set to be 2 by
default

par the true coefficients in the linear predictor

sample.size sample size of simulated data

linkf a character string specifying one of the three link functions to be used: "logit"
(default) or "probit" or "cloglog"

group.size group size in pooling individual samples

sens sensitivity of the group tests, set to be 1 by default.

spec specificity of the group tests, set to be 1 by default.

sens.ind sensitivity of the individual retests, set to be equal to sens if not specified oth-
erwise.

spec.ind specificity of the individual retests, set to be equal to spec if not specified oth-
erwise.

Details

sim.halving generates group testing data for the halving protocol. The covariates are either spec-
ified by the x argument or they are generated from a gamma distribution with a given gshape and
gscale. The individual probabilities are calculated from the covariates, the coefficients given in
par, and the link function specified through linkf. The true binary individual responses are then
simulated from the individual probabilities. The group, subgroup, and individual retests are simu-
lated using the given sens and spec under the halving protocol.
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Value

sim.halving returns a data frame with the following columns:

gres the group response

x the covariate

groupn the group number

ind the actual individual response

retest the results of individual retests

subgroup the subgroup number

Author(s)

Boan Zhang

See Also

gtreg.halving

Examples

set.seed(46)
gt.data <- sim.halving(par = c(-6, .1), gshape = 17, gscale = 1.4,

sample.size = 5000, group.size = 5,
sens = 0.95, spec = 0.95)

sim.mp Simulation Function for Group Testing Data with Matrix Pooling De-
sign

Description

Simulates data in group testing form ready to be fit by gtreg.mp.

Usage

sim.mp(x = NULL, gshape = 20, gscale = 2, par,
linkf = c("logit", "probit", "cloglog"),
n.row, n.col, sens = 1, spec = 1,
sens.ind = NULL, spec.ind = NULL)



sim.mp 111

Arguments

x a matrix of user-submitted covariates to simulate the data with, defaults to NULL
in which case a gamma distribution is used to generate the covariates automati-
cally.

gshape shape parameter of gamma distribution, must be non-negative, set to be 20 by
default

gscale scale parameter of gamma distribution, must be strictly positive, set to be 2 by
default

par the true coefficients in the linear predictor

linkf a character string specifying one of the three link functions to be used: "logit"
(default) or "probit" or "cloglog"

n.row a vector that specifies the number of rows in each matrix, a scalar if only one
matrix is simulated

n.col a vector that specifies the number of columns in each matrix, a scalar if only one
matrix is simulated

sens sensitivity of the group tests, set to be 1 by default.

spec specificity of the group tests, set to be 1 by default.

sens.ind sensitivity of the individual retests, set to be equal to sens if not specified other-
wise.

spec.ind specificity of the individual retests, set to be equal to spec if not specified other-
wise.

Details

sim.mp generates group testing data in matrix pooling form. The covariates are either specified by
the x argument or they are generated from a gamma distribution with a given gshape and gscale.
The individual probabilities are calculated from the covariates, the coefficients given in par and the
link function specified through linkf. The true binary individual responses are then simulated from
the individual probabilities. The individuals are organized into (by column) one or more matrices
specified by n.row and n.col, and the true group responses are found (i.e., if at least one response
is positive, the group is positive; otherwise, the group response is negative). The observed row
and column group responses are then simulated using the given sens and spec values. Individual
retests are simulated from sens.ind and spec.ind for individuals that lie on the intersection of an
observed positive row and an observed positive column. In the case where no column (row) tests
positive in a matrix, all the individuals in any observed positive rows (columns) will be assigned a
simulated retest result. If no column or row is observed positive, NULL is returned.

Value

sim.mp returns a list with the components dframe: the data frame that is actually to be fit, ind: the
true individual responses presented in matrices and prob: the individual probabilities.

dframe is a data frame with columns

col.resp the column group response

row.resp the row group response
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x the covariate
arrayn the array number
coln the column group number
rown the row group number
retest the results of individual retests

Author(s)

Boan Zhang

See Also

gtreg.mp for the corresponding function to fit the model.

Examples

# 5*6 and 4*5 matrix
set.seed(9128)
sa1a<-sim.mp(par=c(-7,0.1), n.row=c(5,4), n.col=c(6,5),
sens=0.95, spec=0.95)

sa1<-sa1a$dframe

summary.gt Summary Method for Group Testing Model (Simple Pooling) Fits

Description

Produce a summary list for objects of class "gt" returned by gtreg.

Usage

## S3 method for class 'gt'
summary(object, ...)

Arguments

object a fitted object of class "gt".
... currently not used.

Details

print.summary.gt is the print function that formats the coefficients, standard errors, etc. and
additionally gives ’significance stars’ if signif.stars is TRUE. The coefficients component of
the result gives the estimated coefficients and their estimated standard errors, together with their
ratio. This third column is labeled z ratio using Wald tests. A fourth column gives the two-tailed
p-value corresponding to the z ratio based on a Wald test. (It is possible that there are no residual
degrees of freedom from which to estimate it. In that case the estimate is NaN.)
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Value

summary.gt returns an object of class "summary.gt", a list with components

call the component from object.

link the component from object.

deviance the component from object.

aic the component from object.

df.residual the component from object.

null.deviance the component from object.

df.null the component from object.

deviance.resid the deviance residuals: see residuals.gt

coefficients the matrix of coefficients, standard errors, z-values and p-values. Aliased coef-
ficients are omitted.

counts the component from object.

method the component from object.

cov.mat the estimated covariance matrix of the estimated coefficients.

Author(s)

Boan Zhang

See Also

gtreg for creating an object of class "gt", and print.summary.gt for some options of changing
the print out following summary.gt.

Examples

## --- Continuing the Example from '?gtreg':

data(hivsurv)

fit1 <- gtreg(formula = groupres ~ AGE + EDUC., data = hivsurv,
groupn = gnum, sens = 0.9, spec = 0.9, method = "Xie")

summary(fit1)



114 summary.gt.mp

summary.gt.mp Summary Method for Group Testing Model (Matrix Pooling) Fits

Description

Produce a summary list for objects of class "gt.mp" returned by gtreg.mp.

Usage

## S3 method for class 'gt.mp'
summary(object, ...)

Arguments

object a fitted object of class "gt.mp".

... currently not used.

Details

print.summary.gt.mp is the print function that formats the coefficients, standard errors, etc. and
additionally gives ’significance stars’ if signif.stars is TRUE. The coefficients component of
the result gives the estimated coefficients and their estimated standard errors, together with their
ratio. This third column is labeled z ratio using Wald tests. A fourth column gives the two-tailed
p-value corresponding to the z ratio based on a Wald test.

Value

summary.gt.mp returns an object of class "summary.gt.mp", a list with components

call the component from object.

link the component from object.

coefficients the matrix of coefficients, standard errors, z-values and p-values.

counts the component from object.
Gibbs.sample.size

the component from object.

cov.mat the estimated covariance matrix of the estimated coefficients.

Author(s)

Boan Zhang

See Also

gtreg.mp for creating an object of class "gtreg.mp", print.summary.gt.mp gives some hints
how to change the print-out of summary.gt.mp
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Examples

## --- Continuing the Example from '?sim.mp' and '?gtreg.mp':
# 5*6 and 4*5 matrix

set.seed(9128)
sa1a<-sim.mp(par=c(-7,0.1), n.row=c(5,4), n.col=c(6,5),

sens=0.95, spec=0.95)
sa1<-sa1a$dframe

## Not run:
fit1mp <- gtreg.mp(formula = cbind(col.resp, row.resp) ~ x, data = sa1,

coln = coln, rown = rown, arrayn = arrayn,
sens = 0.95, spec = 0.95, linkf = "logit", n.gibbs = 1000, tol = 0.005)

summary(fit1mp)

## End(Not run)

summary.poolbindiff Summary methods for "poolbin" and "poolbindiff"

Description

Summary Method for One-Sample and Two-sample confidence intervals (various pool sizes)

Usage

## S3 method for class 'poolbin'
summary(object, scale = object$scale, ...)
## S3 method for class 'poolbindiff'
summary(object, scale = object$scale, ...)

Arguments

object An object of class "poolbin" or "poolbindiff" (pooledBin, pooledBinDiff)

scale A coefficient to scale the point estimate and interval bounds

... further arguments to be passed to print

Value

A print out
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thresh.val.dorf Find the optimal threshold value for Thresholded Optimal Dorfman
testing

Description

Find the optimal threshold value for Thresholded Optimal Dorfman (TOD) testing.

Usage

thresh.val.dorf(p, psz, se = 1, sp = 1)

Arguments

p a vector of each individual’s probability of infection.

psz the initial pool size.

se the sensitivity of the diagnostic test.

sp the specificity of the diagnostic test.

Details

This function finds the optimal threshold value for TOD testing for situations where the threshold
value is not specified. See McMahan et al. (2012) for additional details on the implementation of
TOD testing.

Value

The optimal threshold value for TOD testing.

Author(s)

This function was originally written by Christopher S. McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012). “Informative Dorfman Screening.” Biometrics, 68(1),
287–296. ISSN 0006341X, doi: 10.1111/j.15410420.2011.01644.x.

See Also

http://chrisbilder.com/grouptesting

Other Informative Dorfman functions: accuracy.dorf, characteristics.pool, inf.dorf.measures,
opt.info.dorf, opt.pool.size, pool.specific.dorf

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01644.x
http://chrisbilder.com/grouptesting
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Examples

# This example takes approximately 4 seconds to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
## Not run:
set.seed(3154)
p.vec <- p.vec.func(p=0.10, alpha=0.5, grp.sz=1000)
thresh.val.dorf(p=p.vec, psz=10, se=0.95, sp=0.95)
## End(Not run)

# This example takes less than 1 second to run.
# Estimated running time was calculated using a
# computer with 16 GB of RAM and one core of an
# Intel i7-6500U processor.
p.vec <- p.vec.func(p=0.15, alpha=2, grp.sz=100)
thresh.val.dorf(p=p.vec, psz=10, se=0.95, sp=0.95)
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