Title: | Bounded Memory Linear and Generalized Linear Models |
---|---|
Description: | Regression for data too large to fit in memory. |
Authors: | Thomas Lumley |
Maintainer: | Thomas Lumley <[email protected]> |
License: | GPL |
Version: | 0.9-3 |
Built: | 2024-12-10 06:34:49 UTC |
Source: | CRAN |
bigglm
creates a generalized linear model object that uses only
p^2
memory for p
variables.
bigglm(formula, data, family=gaussian(),...) ## S3 method for class 'data.frame' bigglm(formula, data,...,chunksize=5000) ## S3 method for class 'function' bigglm(formula, data, family=gaussian(), weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7, start=NULL,quiet=FALSE,...) ## S3 method for class 'RODBC' bigglm(formula, data, family=gaussian(), tablename, ..., chunksize=5000) ## S4 method for signature 'ANY,DBIConnection' bigglm(formula, data, family=gaussian(), tablename, ..., chunksize=5000) ## S3 method for class 'bigglm' vcov(object,dispersion=NULL, ...) ## S3 method for class 'bigglm' deviance(object,...) ## S3 method for class 'bigglm' family(object,...) ## S3 method for class 'bigglm' AIC(object,...,k=2)
bigglm(formula, data, family=gaussian(),...) ## S3 method for class 'data.frame' bigglm(formula, data,...,chunksize=5000) ## S3 method for class 'function' bigglm(formula, data, family=gaussian(), weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7, start=NULL,quiet=FALSE,...) ## S3 method for class 'RODBC' bigglm(formula, data, family=gaussian(), tablename, ..., chunksize=5000) ## S4 method for signature 'ANY,DBIConnection' bigglm(formula, data, family=gaussian(), tablename, ..., chunksize=5000) ## S3 method for class 'bigglm' vcov(object,dispersion=NULL, ...) ## S3 method for class 'bigglm' deviance(object,...) ## S3 method for class 'bigglm' family(object,...) ## S3 method for class 'bigglm' AIC(object,...,k=2)
formula |
A model formula |
data |
See Details below. Method dispatch is on this argument |
family |
A glm family object |
chunksize |
Size of chunks for processng the data frame |
weights |
A one-sided, single term formula specifying weights |
sandwich |
|
maxit |
Maximum number of Fisher scoring iterations |
tolerance |
Tolerance for change in coefficient (as multiple of standard error) |
start |
Optional starting values for coefficients. If
|
object |
A |
dispersion |
Dispersion parameter, or |
tablename |
For the |
k |
penalty per parameter for AIC |
quiet |
When |
... |
Additional arguments |
The data
argument may be a function, a data frame, or a
SQLiteConnection
or RODBC
connection object.
When it is a function the function must take a single argument
reset
. When this argument is FALSE
it returns a data
frame with the next chunk of data or NULL
if no more data are
available. Whenreset=TRUE
it indicates that the data should be
reread from the beginning by subsequent calls. The chunks need not be
the same size or in the same order when the data are reread, but the
same data must be provided in total. The bigglm.data.frame
method gives an example of how such a function might be written,
another is in the Examples below.
The model formula must not contain any data-dependent terms, as these will not be consistent when updated. Factors are permitted, but the levels of the factor must be the same across all data chunks (empty factor levels are ok). Offsets are allowed (since version 0.8).
The SQLiteConnection
and RODBC
methods loads only the
variables needed for the model, not the whole table. The code in the
SQLiteConnection
method should work for other DBI
connections, but I do not have any of these to check it with.
An object of class bigglm
Algorithm AS274 Applied Statistics (1992) Vol.41, No. 2
biglm
, glm
data(trees) ff<-log(Volume)~log(Girth)+log(Height) a <- bigglm(ff,data=trees, chunksize=10, sandwich=TRUE) summary(a) gg<-log(Volume)~log(Girth)+log(Height)+offset(2*log(Girth)+log(Height)) b <- bigglm(gg,data=trees, chunksize=10, sandwich=TRUE) summary(b) ## Not run: ## requires internet access make.data<-function(urlname, chunksize,...){ conn<-NULL function(reset=FALSE){ if(reset){ if(!is.null(conn)) close(conn) conn<<-url(urlname,open="r") } else{ rval<-read.table(conn, nrows=chunksize,...) if (nrow(rval)==0) { close(conn) conn<<-NULL rval<-NULL } return(rval) } } } airpoll<-make.data("http://faculty.washington.edu/tlumley/NO2.dat", chunksize=150, col.names=c("logno2","logcars","temp","windsp", "tempgrad","winddir","hour","day")) b<-bigglm(exp(logno2)~logcars+temp+windsp, data=airpoll, family=Gamma(log), start=c(2,0,0,0),maxit=10) summary(b) ## End(Not run)
data(trees) ff<-log(Volume)~log(Girth)+log(Height) a <- bigglm(ff,data=trees, chunksize=10, sandwich=TRUE) summary(a) gg<-log(Volume)~log(Girth)+log(Height)+offset(2*log(Girth)+log(Height)) b <- bigglm(gg,data=trees, chunksize=10, sandwich=TRUE) summary(b) ## Not run: ## requires internet access make.data<-function(urlname, chunksize,...){ conn<-NULL function(reset=FALSE){ if(reset){ if(!is.null(conn)) close(conn) conn<<-url(urlname,open="r") } else{ rval<-read.table(conn, nrows=chunksize,...) if (nrow(rval)==0) { close(conn) conn<<-NULL rval<-NULL } return(rval) } } } airpoll<-make.data("http://faculty.washington.edu/tlumley/NO2.dat", chunksize=150, col.names=c("logno2","logcars","temp","windsp", "tempgrad","winddir","hour","day")) b<-bigglm(exp(logno2)~logcars+temp+windsp, data=airpoll, family=Gamma(log), start=c(2,0,0,0),maxit=10) summary(b) ## End(Not run)
biglm
creates a linear model object that uses only p^2
memory for p
variables. It can be updated with more data using
update
. This allows linear regression on data sets larger than
memory.
biglm(formula, data, weights=NULL, sandwich=FALSE) ## S3 method for class 'biglm' update(object, moredata,...) ## S3 method for class 'biglm' vcov(object,...) ## S3 method for class 'biglm' coef(object,...) ## S3 method for class 'biglm' summary(object,...) ## S3 method for class 'biglm' AIC(object,...,k=2) ## S3 method for class 'biglm' deviance(object,...)
biglm(formula, data, weights=NULL, sandwich=FALSE) ## S3 method for class 'biglm' update(object, moredata,...) ## S3 method for class 'biglm' vcov(object,...) ## S3 method for class 'biglm' coef(object,...) ## S3 method for class 'biglm' summary(object,...) ## S3 method for class 'biglm' AIC(object,...,k=2) ## S3 method for class 'biglm' deviance(object,...)
formula |
A model formula |
weights |
A one-sided, single term formula specifying weights |
sandwich |
|
object |
A |
data |
Data frame that must contain all variables in
|
moredata |
Additional data to add to the model |
... |
Additional arguments for future expansion |
k |
penalty per parameter for AIC |
The model formula must not contain any data-dependent terms, as these will not be consistent when updated. Factors are permitted, but the levels of the factor must be the same across all data chunks (empty factor levels are ok). Offsets are allowed (since version 0.8).
An object of class biglm
Algorithm AS274 Applied Statistics (1992) Vol.41, No. 2
lm
data(trees) ff<-log(Volume)~log(Girth)+log(Height) chunk1<-trees[1:10,] chunk2<-trees[11:20,] chunk3<-trees[21:31,] a <- biglm(ff,chunk1) a <- update(a,chunk2) a <- update(a,chunk3) summary(a) deviance(a) AIC(a)
data(trees) ff<-log(Volume)~log(Girth)+log(Height) chunk1<-trees[1:10,] chunk2<-trees[11:20,] chunk3<-trees[21:31,] a <- biglm(ff,chunk1) a <- update(a,chunk2) a <- update(a,chunk3) summary(a) deviance(a) AIC(a)
Computes fitted means and standard errors at new data values after
fitting a model with biglm
or bigglm
.
## S3 method for class 'bigglm' predict(object, newdata, type = c("link", "response"), se.fit = FALSE, make.function = FALSE, ...) ## S3 method for class 'biglm' predict(object, newdata=NULL, se.fit = FALSE, make.function = FALSE, ...)
## S3 method for class 'bigglm' predict(object, newdata, type = c("link", "response"), se.fit = FALSE, make.function = FALSE, ...) ## S3 method for class 'biglm' predict(object, newdata=NULL, se.fit = FALSE, make.function = FALSE, ...)
object |
fitted model |
newdata |
data frame with variables for new values |
type |
|
se.fit |
Compute standard errors? |
make.function |
If |
... |
not used |
When make.function
is TRUE
, the return value is either a
single function that computes the fitted values or a list of two
functions that compute the fitted values and standard errors. The
input to these functions is the design matrix, without the intercept
column. This allows the relatively time-consuming calls to
model.frame()
and model.matrix()
to be avoided.
Either a vector of predicted values or a data frame with predicted values and standard errors.
based on code by Christophe Dutang
~put references to the literature/web site here ~
example(biglm) predict(a,newdata=trees) f<-predict(a,make.function=TRUE) X<- with(trees, cbind(log(Girth),log(Height))) f(X)
example(biglm) predict(a,newdata=trees) f<-predict(a,make.function=TRUE) X<- with(trees, cbind(log(Girth),log(Height))) f(X)