Package 'bigReg'

Title: Generalized Linear Models (GLM) for Large Data Sets
Description: Allows the user to carry out GLM on very large data sets. Data can be created using the data_frame() function and appended to the object with object$append(data); data_frame and data_matrix objects are available that allow the user to store large data on disk. The data is stored as doubles in binary format and any character columns are transformed to factors and then stored as numeric (binary) data while a look-up table is stored in a separate .meta_data file in the same folder. The data is stored in blocks and GLM regression algorithm is modified and carries out a MapReduce- like algorithm to fit the model. The functions bglm(), and summary() and bglm_predict() are available for creating and post-processing of models. The library requires Armadillo installed on your system. It may not function on windows since multi-core processing is done using mclapply() which forks R on Unix/Linux type operating systems.
Authors: Chibisi Chima-Okereke <[email protected]>
Maintainer: Chibisi Chima-Okereke <[email protected]>
License: GPL (>= 2)
Version: 0.1.5
Built: 2024-12-06 06:41:20 UTC
Source: CRAN

Help Index


Function for creating control parameters for the GLM fit

Description

Function for creating control parameters for the GLM fit

Usage

.control(epsilon = 1e-08, maxit = 25, trace = TRUE)

Arguments

epsilon

defaults to 1E-8

maxit

defaults 25 maximum number of iterations

trace

defaults to TRUE


converts numeric vector to integer

Description

converts numeric vector to integer

Usage

asInteger(x)

Arguments

x

numeric vector


Function to carry out generalized linear regression on a data_frame data object

Description

Function to carry out generalized linear regression on a data_frame data object

Usage

bglm(
  formula,
  family = gaussian_(),
  data,
  weights = NULL,
  offset = NULL,
  start = NULL,
  control = list(),
  etastart = NULL,
  mustart = NULL
)

Arguments

formula

formula that defines your regression model

family

family object from activeReg, e.g. .gaussian(), .binomial(), .poisson(), .quasipoisson(), .quasibinomial(), .Gamma(), .inverse.gaussian(), .quasi()

data

data_frame object containing data for linear regression

weights

weights for the model

offset

offsets for the model

start

starting values for the linear predictor

control

list of parameters for .control() function

etastart

starting values for the linear predictor

mustart

starting values for vector of means

Examples

require(parallel)
data("plasma", package = "bigReg")
data_dir = tempdir()
plasma1 <- plasma
plasma1 <- data_frame(plasma1, 10, path = data_dir, nCores = 1)
plasma_glm <- bglm(ESR ~ fibrinogen + globulin, data = plasma1, family = binomial_("logit"))
summary(plasma_glm)

predict function for bglm object

Description

predict function for bglm object

Usage

bglm_predict(
  mf = stop("mf: model frame must be supplied"),
  object = stop("object: bglm object must be supplied"),
  type = stop("type: either \"link\", \"response\", \"terms\"")
)

Arguments

mf

model frame

object

a bglm object

type

one of c("link", "response", "terms")


binomial family function

Description

binomial family function

Usage

binomial_(link = "logit")

Arguments

link

function character


Function to carry out linear regression on a data_frame data object

Description

Function to carry out linear regression on a data_frame data object

Usage

blm(
  formula = stop("formula: not supplied"),
  data = stop("data: data not supplied"),
  control = list(),
  weights = NULL,
  offset = NULL
)

Arguments

formula

formula that defines your regression model

data

data_frame object containing data for linear regression

control

list of parameters for control() function

weights

weights for the model

offset

offsets for the model


creates factor from numeric vector and character vector as levels

Description

The CreateFactor function creates a factor from a numeric vector and a character vector for levels

Usage

CreateFactor(x, levels)

Arguments

x

numeric vector containing the numeric indices of the levels

levels

character vector levels


function to create a data_frame object

Description

function to create a data_frame object. The data_frame object is an object that is held on disk. It is written to a folder path on disk where the data is written to in blocks or chunks. The data is written in binary format using a C++ function in purely numerical data and a mapping to the table is held in a ".meta_data" file in the folder. The table object accomodates numeric, factor, and character (converted to factor).

Usage

data_frame(
  data = stop("data must be supplied"),
  chunkSize = stop("chunkSize must be specified, a good number is 50000"),
  path = stop("path must be specified"),
  nCores = parallel::detectCores(),
  ...
)

Arguments

data

data.frame object to be converted into a data_frame object

chunkSize

number of rows to be used in each chunk

path

character to folder where the object will be created

nCores

the number of cores to use defaults to parallel::detectCores()

...

not currently used.

Details

Creates a data_frame object

Examples

irisA <- data_frame(iris[1:75,], 10, "irisA", nCores = 1)
irisA$append(iris[76:150,])
irisA$head()
irisA$tail(10)
irisA$delete(); rm(irisA)

function to create a data_frame object

Description

function to create a data_matrix object. The data_matrix object is an object that is held on disk. It is written to a folder path on disk where the data is written to in blocks or chunks. The data is written in binary format using a C++ function in purely numerical data.

Usage

data_matrix(
  data = stop("data: matrix must be supplied"),
  chunkSize = stop("chunkSize must be specified, a good number is 50000"),
  path = stop("path must be specified"),
  nCores = parallel::detectCores(),
  ...
)

Arguments

data

object to be converted into a data_matrix object

chunkSize

number of rows to be used in each chunk

path

character to folder where the object will be created

nCores

the number of cores to use defaults to parallel::detectCores()

...

not used at the moment

Details

Creates a data_matrix object


family function

Description

family function

Usage

family_(distr, link)

Arguments

distr

distr character one of "binomial", "poisson", "gaussian", "quasipoisson", "quasibinomial", "Gamma", "inverse.gaussian", "quasi"

link

function character


Gamma family function

Description

Gamma family function

Usage

Gamma_(link = "inverse")

Arguments

link

function character


gaussian family function

Description

gaussian family function

Usage

gaussian_(link = "identity")

Arguments

link

function character


inverse.gaussian family function

Description

inverse.gaussian family function

Usage

inverse.gaussian_(link = "1/mu^2")

Arguments

link

function character


function to load data_frame object

Description

function to load data_frame object

Usage

load_data_frame(path = stop("path: to data_frame folder must be supplied"))

Arguments

path

character to folder containing object


function to load data_frame object

Description

function to load data_frame object

Usage

load_data_matrix(path = stop("path: to data_matrix folder must be supplied"))

Arguments

path

character to folder containing object


finds whether x is in y

Description

finds whether x is in y

Usage

myIn(x, y)

Arguments

x

item to be sought

y

vector to be matched against


mySeq function to sequence integers

Description

a function to create a sequence of integers

Usage

mySeq(start, end)

Arguments

start

integer from where sequence should start

end

integer where sequence should end


plasma data from the HSAUR package

Description

Dataset from the HSAUR package

Usage

data(plasma)

Format

a data.frame

Details

...

Source

HSAUR package

References

HSAUR R package (HSAUR package)

Examples

data(plasma)
head(plasma)

poisson family function

Description

poisson family function

Usage

poisson_(link = "log")

Arguments

link

function character


print function for the bglm object

Description

print function for the bglm object

Usage

## S3 method for class 'bglm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x

bglm object to be displayed

digits

number of significant digits to use

...

not yet used


print function for the blm object

Description

print function for the blm object

Usage

## S3 method for class 'blm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x

blm object to be displayed

digits

number of significant digits to use

...

not yet used


print function for a data_frame

Description

print function for a data_frame

Usage

## S3 method for class 'data_frame'
print(x, ...)

Arguments

x

data_frame object to print

...

not used


print function for a data_matrix

Description

print function for a data_matrix

Usage

## S3 method for class 'data_matrix'
print(x, ...)

Arguments

x

data_matrix object to print

...

not used


Function to print the summary object from the bglm object

Description

Function to print the summary object from the bglm object

Usage

## S3 method for class 'summary.bglm'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

Arguments

x

summary blm object

digits

- the digits to be displayed

signif.stars

passed to printCoefmat

...

arguments passed to printCoefmat() function


Function to print the summary object from the blm object

Description

Function to print the summary object from the blm object

Usage

## S3 method for class 'summary.blm'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

Arguments

x

summary blm object

digits

- the digits to be displayed

signif.stars

passed to printCoefmat

...

arguments passed to printCoefmat() function


Function to print the summary object from the blm object

Description

Function to print the summary object from the blm object

Usage

process_bglm_block(
  mf,
  formula,
  mmCall,
  family,
  offset,
  weights,
  start,
  niter,
  etastart,
  mustart
)

Arguments

mf

the data block to be processed

formula

the formula of for the model

mmCall

the call object of the model

family

the family object for the model

offset

the model offset

weights

the model weights

start

the starting coefficient estimates

niter

the current number of iterations

etastart

the start for eta

mustart

the start for mu


quasi family function

Description

quasi family function

Usage

quasi_(link = "identity", variance = "constant")

Arguments

link

function character

variance

choice character


quasibinomial family function

Description

quasibinomial family function

Usage

quasibinomial_(link = "logit")

Arguments

link

function character


quasipoisson family function

Description

quasipoisson family function

Usage

quasipoisson_(link = "log")

Arguments

link

function character


row binding for benchmarking ...

Description

row binding for benchmarking

Usage

r_bind(x, y)

Arguments

x

first matrix to be bound together

y

second matrix to be bound together


read data frame block from file

Description

read data frame block from file

Usage

read_df_block(size, filePath, df, ncol, factors, factor_indices)

Arguments

size

number of elements in the block

filePath

path to where the block is stored

df

an empty list having the same number of elements as columns in the table

ncol

number of columns in the dataframe block

factors

list containing factors

factor_indices

numeric vector containing the indicies that denote the factors


read multiple blocks of data frames from file

Description

read multiple blocks of data frames from file

Usage

read_df_blocks(size, filePaths, df, ncols, factors, factor_indices)

Arguments

size

number of elements in each block

filePaths

path to where the blocks are stored

df

an empty list having the same number of elements as columns in the table

ncols

number of columns in the dataframe block

factors

list containing factors

factor_indices

numeric vector containing the indicies that denote the factors


read matrix block from file

Description

read matrix block from file

Usage

read_matrix_block(filePath, size, ncol)

Arguments

filePath

path to file where matrix should be read from

size

total number of elements to be read

ncol

number of columns in the matrix


read matrix blocks from file

Description

read matrix blocks from file

Usage

read_matrix_blocks(filePaths, size, ncols)

Arguments

filePaths

file paths from where the matrix blocks will be read

size

numeric vector containing the number of elements in each block

ncols

number of columns in the matrix


reads numeric vector to file

Description

reads numeric vector to file

Usage

readNumericVector(size, filePath)

Arguments

size

the length of the numeric vector

filePath

dependent variable


The reduction function for the algorithm

Description

The reduction function for the algorithm

Usage

sum_bglm_block(x1, x2)

Arguments

x1

the first list object to be reduced

x2

the second list object to be reduced


summary function for the bglm object

Description

summary function for the bglm object

Usage

## S3 method for class 'bglm'
summary(object, ...)

Arguments

object

bglm object to be summarized

...

not used


summary function for the blm object

Description

summary function for the blm object

Usage

## S3 method for class 'blm'
summary(object, ...)

Arguments

object

blm object to be summarized

...

not used


Singular value decomposition of the aggregated list from XWXMatrix(W) functions

Description

Singular value decomposition of the aggregated list from XWXMatrix(W) functions

Usage

SVD(out, epsilon)

Arguments

out

list containing requisite computed values

epsilon

either machine epsilon or user depermined epsilon


writes numeric vector to file

Description

writes numeric vector to file

Usage

write_numeric_vector(v, filePath)

Arguments

v

numeric vector to be written to file

filePath

path to file where the numeric vector should be written


writes numeric vector to file

Description

writes numeric vector to file

Usage

writeNumericVector(v, filePath)

Arguments

v

numeric vector

filePath

dependent variable


Calculation of iterative regression components

Description

Calculation of iterative regression components

Usage

XWXMatrix(X, y)

Arguments

X

design matrix

y

dependent variable


Calculation of iterative regression components

Description

Calculation of iterative regression components

Usage

XWXMatrixW(X, y, W)

Arguments

X

design matrix

y

dependent variable

W

weights