
Package: bigGP (via r-universe)
October 26, 2024

Version 0.1.8

Date 2023-04-27

Title Distributed Gaussian Process Calculations

Depends R (>= 3.0.0), Rmpi (>= 0.6-2), methods

Suggests rlecuyer, fields

LazyData Yes

Description Distributes Gaussian process calculations across nodes in
a distributed memory setting, using Rmpi. The bigGP class
provides high-level methods for maximum likelihood with normal
data, prediction, calculation of uncertainty (i.e., posterior
covariance calculations), and simulation of realizations. In
addition, bigGP provides an API for basic matrix calculations
with distributed covariance matrices, including Cholesky
decomposition, back/forwardsolve, crossproduct, and matrix
multiplication.

SystemRequirements OpenMPI or MPICH2

OS_type unix

License GPL (>= 2)

URL https://doi.org/10.18637/jss.v063.i10

Collate 'auxil.R' 'bigGP.R' 'collectDistribute.R'
'distributedComputation.R' 'krigeProblem.R'

NeedsCompilation yes

Author Christopher Paciorek [aut, cre], Benjamin Lipshitz [aut],
Prabhat [ctb], Cari Kaufman [ctb], Tina Zhuo [ctb], Rollin
Thomas [ctb]

Maintainer Christopher Paciorek <paciorek@stat.berkeley.edu>

Repository CRAN

Date/Publication 2023-04-25 20:50:02 UTC

1

https://doi.org/10.18637/jss.v063.i10

2 alloc

Contents
alloc . 2
bigGP . 3
bigGP-meta . 5
bigGP.exit . 6
bigGP.init . 6
calcD . 7
calcIJ . 8
collectDiagonal . 8
collectRectangularMatrix . 9
collectTriangularMatrix . 10
collectVector . 12
distributedKrigeProblem-class . 13
distributeVector . 13
getDistributedVectorLength . 14
krigeProblem-class . 15
localAssign . 19
localCalc . 20
localCollectVector . 20
localGetVectorIndices . 21
localKrigeProblemConstructMean . 22
localRm . 23
pull . 23
push . 24
remoteCalc . 25
remoteCalcChol . 26
remoteConstructRnormVector . 27
remoteCrossProdMatSelf . 29
remoteCrossProdMatVec . 31
remoteForwardsolve . 33
remoteGetIndices . 35
remoteLs . 36
remoteMultChol . 37
remoteRm . 39
SN2011fe . 40

Index 42

alloc Create Object with its Own Memory

Description

alloc is an internal auxiliary function that creates an object of the size of the input with the goal of
allocating new memory for use in the C functions used by the package.

bigGP 3

Usage

alloc(input, inputPos = '.GlobalEnv')

Arguments

input an object name, given as a character string, giving the name of the object whose
size is to be mimiced in creating the output, or the length of the output vector to
be created.

inputPos where to look for the input, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClassobject.

Value

A new numeric vector of the appropriate size.

bigGP Package for Calculations with Big Gaussian Processes

Description

bigGP is a collection of functions for doing distributed calculations in the context of various kinds
of Gaussian process models, combined with a ReferenceClass, krigeProblem, for doing kriging
calculations based on maximum likelihood estimation.

Details

Full details on doing distributed kriging can be found in the help page for krigeProblem. For
general calculations with distributed vectors and matrices, including extending the package for ad-
ditional use cases beyond standard kriging, one first needs to create the needed vectors and ma-
trices in a distributed fashion on the slave processes. To do this, the indices associated with rele-
vant vectors and matrices need to be found for each slave process; see localGetVectorIndices.
Then these indices need to be used by user-created functions to create the pieces of the vec-
tors and matrices residing on each slave process; see localKrigeProblemConstructMean and
localKrigeProblemConstructMean for examples. Following this, one can use the various func-
tions for distributed linear algebra.

The functions provided for distributed linear algebra are:

remoteCalcChol: calculates the Cholesky decomposition of a (numerically) positive definite ma-
trix, C = LL⊤. Matrices that are not numerically positive. definite will cause failure as
pivoting is not implemented.

remoteForwardsolve: does a forwardsolve using an already-calculated Cholesky factor into a
vector or matrix, L−1Z.

remoteBacksolve: does a backsolve using an already-calculated Cholesky factor into a vector or
matrix, L−⊤Z.

remoteMultChol: multiplies and an already-calculated Cholesky factor by a vector or matrix, LZ.

4 bigGP

remoteCrossProdMatVec: multiplies the transpose of a matrix by a vector, X⊤z.

remoteCrossProdMatSelf: does the crossproduct of a matrix, X⊤X .

remoteCrossProdMatSelfDiag: finds the diagonal of the crossproduct of a matrix, diag(X⊤X).

remoteConstructRnormVector: generates a vector of random standard normal variables.

remoteConstructRnormMatrix: generates a matrix of random standard normal variables.

remoteCalc: does arbitrary calculations on one or two inputs.

Warnings

Note that the block replication factor, h, needs to be consistent in any given calculation. So if one
is doing a forwardsolve, the replication factor used in distributing the original matrix (and therefore
its Cholesky factor) should be the same as that used in distributing the vector being solved into (or
the rows of the matrix being solved into).

Also note that when carrying out time-intensive calculations on the slave processes, the slaves will
not be responsive to additional interaction, so commands such as remoteLs may appear to hang.
This may occur because the slave process needs to finish a previous calculation before responding.

Note that distributed vectors and distributed one-column matrices are stored differently, with matri-
ces stored with padded columns. When using remoteForwardSolve, remoteBacksolve, remoteMultChol,
you should use n2 = NULL when the second argument is a vector and n2 = 1 when the second column
is a one-column matrix.

Note that triangular and symmetric matrices are stored as vectors, column-major order, of the lower
triangular elements. To collect a distributed symmetric matrix on the master process, one uses
collectTriangularMatrix. collectTriangularMatrix always fills the upper triangle as the
transpose of the lower triangle.

Author(s)

Christopher Paciorek and Benjamin Lipshitz, in collaboration with Tina Zhuo, Cari Kaufman,
Rollin Thomas, and Prabhat.

Maintainer: Christopher Paciorek <paciorek@alumni.cmu.edu>

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

See bigGP.init for the necessary initialization steps, and krigeProblem for doing kriging based
on maximum likelihood estimation.

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

bigGP-meta 5

Examples

this is an example of using the API to do distributed linear algebra
for Gaussian process calculations; we'll demonstrate generating from
a Gaussian process with exponential covariance; note that this can
be done more easily through the krigeProblem ReferenceClass
Not run:
bigGP.init(3)
params <- c(sigma2 = 1, rho = 0.25)
for this example, we'll use a modest size problem, but to demo on a
cluster, increase m to a larger value
m <- 80
gd <- seq(0, 1, length = m)
locns = expand.grid(x = gd, y = gd)
indices will be a two column matrix with the index of the first set of
locations in the first column and of the second set in the second column
covfunc <- function(params, locns, indices) {
dd <- sqrt((locns$x[indices[,1]] - locns$x[indices[,2]])^2 +
(locns$y[indices[,1]] - locns$y[indices[,2]])^2)
return(params["sigma2"] * exp(-dd / params["rho"]))
}
mpi.bcast.Robj2slave(params)
mpi.bcast.Robj2slave(covfunc)
mpi.bcast.Robj2slave(locns)
mpi.bcast.cmd(indices <- localGetTriangularMatrixIndices(nrow(locns)))
mpi.bcast.cmd(C <- covfunc(params, locns, indices))
remoteLs() # this may pause before reporting, as slaves are busy doing
computations above
remoteCalcChol('C', 'L', n = m^2)
remoteConstructRnormVector('z', n = m^2)
remoteMultChol('L', 'z', 'x', n1 = m^2)
x <- collectVector('x', n = m^2)
image(gd, gd, matrix(x, m))

End(Not run)

bigGP-meta Information about the number and identities of the processes

Description

The .bigGP object (an environment) contains information about the processes involved in the dis-
tributed computation. .bigGP.fill is an internal auxiliary function that fills the .bigGP object
with the values of P , D, I , and J .

Usage

.bigGP

.bigGP.fill(init = FALSE)

6 bigGP.init

Arguments

init logical, indicating whether to initialize values to their defaults for before the
processes are set up

bigGP.exit Exit bigGP Environment

Description

bigGP.exit terminates the package’s execution environment and detaches the package. After that,
you can still work in R.

bigGP.quit terminates the package’s execution environment and quits R.

Usage

bigGP.exit()
bigGP.quit(save = "no")

Arguments

save the same argument as quit, but defaulting to "no".

Details

These functions should be used to safely leave the "bigGP" execution context, specifically MPI,
when R is started via MPI such as by calling mpirun or analogous executables. They close the slave
processes and then invoke either mpi.exit or mpi.quit.

If leaving R altogether, one simply uses bigGP.quit.

See Also

mpi.exit mpi.quit

bigGP.init Initialize bigGP package

Description

bigGP.init initializes the bigGP and must be called before using any bigGP functionality. It starts
slave processes, if not already started, and sets up the necessary objects containing information for
distributing calculations correctly. It also initializes the RNG on the slave processes.

Usage

bigGP.init(P = NULL, parallelRNGpkg = "rlecuyer", seed = 0)

calcD 7

Arguments

P Number of slave processes. Should be equal to D(D+1)/2 for some integer D. If
NULL, will be taken to be mpi.comm.size()-1, where the additional process is
the master.

parallelRNGpkg Package to be used for random number generation (RNG). At the moment this
should be one of relecuyer or rsprng, and these packages must be installed.

seed Seed to be used for initializing the parallel RNG.

Details

The initialization includes starting the slave processes, calculating the partition factor, D, and pro-
viding the slave processes with unique identifying information. This information is stored in the
.bigGP object on each slave process.

Note that in general, the number of processes (number of slave processes, P, plus one for the master)
should not exceed the number of physical cores on the machine(s) available.

bigGP.init also sets up random number generation on the slaves, using parallelRNGpkg when
specified, and setting appropriate seeds on each slave process.

Examples

Not run:
bigGP.init(3, seed = 1)

End(Not run)

calcD Calculate Partition Factor

Description

calcD is an internal auxiliary function that calculates the partition factor, D, based on the number
of slave processes, P .

Usage

calcD(P)

Arguments

P a positive integer, the number of slave processes.

8 collectDiagonal

calcIJ Calculate Slave Process Identifiers

Description

calcIJ is an internal auxiliary function that calculates a unique pair of identifiers for each slave
process, corresponding to the row and column of the block assigned to the slave process (things are
more complicated when the block replication factor, h, is greater than one).

Usage

calcIJ(D)

Arguments

D a positive integer, the partition factor.

collectDiagonal Return the Diagonal of a Distributed Square Matrix to the Master Pro-
cess

Description

collectDiagonal retrieves the diagonal elements of a distributed square matrix from the slave
processes in the proper order. Values can be copied from objects in environments, lists, and Refer-
enceClass objects as well as the global environment on the slave processes.

Usage

collectDiagonal(objName, objPos = '.GlobalEnv', n, h = 1)

Arguments

objName an object name, given as a character string, giving the name of the matrix on the
slave processes.

objPos where to look for the matrix, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

n a positive integer, the number of rows (and columns) of the matrix.

h a positive integer, the block replication factor, h, relevant for the matrix.

Value

collectDiagonal returns a vector of length n.

collectRectangularMatrix 9

See Also

pull collectVector collectTriangularMatrix collectRectangularMatrix distributeVector

Examples

Not run:
if(require(fields)) {
nProc <- 3
n <- nrow(SN2011fe_subset)
inputs <- c(as.list(SN2011fe_subset), as.list(SN2011fe_newdata_subset),

nu =2)
initialize the problem
prob <- krigeProblem$new("prob", h_n = 1, numProcesses = nProc, n = n,

meanFunction = SN2011fe_meanfunc, covFunction = SN2011fe_covfunc,
inputs = inputs, params = SN2011fe_mle$par,
data = SN2011fe_subset$flux, packages = c("fields"))

calculate log density, primarily so Cholesky gets calculated
prob$calcLogDens()
diagC <- collectDiagonal('C', "prob", n = n, h = 1)
diagL <- collectDiagonal('L', "prob", n = n, h = 1)
diagC[1:5]
diagL[1:5]
}

End(Not run)

collectRectangularMatrix

Return a Distributed Rectangular Matrix to the Master Process

Description

collectRectangularMatrix retrieves a distributed rectangular matrix from the slave processes, re-
constructing the blocks correctly on the master process. Objects can be copied from environments,
lists, and ReferenceClass objects as well as the global environment on the slave processes. WARN-
ING: do not use with a distributed symmetric square matrix; instead use collectTriangularMatrix.

Usage

collectRectangularMatrix(objName, objPos = '.GlobalEnv', n1, n2, h1 = 1, h2 = 1)

Arguments

objName an object name, given as a character string, giving the name of the object on the
slave processes.

objPos where to look for the object, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

n1 a positive integer, the number of rows of the matrix.

10 collectTriangularMatrix

n2 a positive integer, the number of columns of the matrix.
h1 a positive integer, the block replication factor relevant for the rows of the matrix.
h2 a positive integer, the block replication factor relevant for the columns of the

matrix.

Value

collectRectangularMatrix returns a matrix of dimension, n1× n2.

See Also

pull collectVector collectTriangularMatrix collectDiagonal distributeVector

Examples

Not run:
if(require(fields)) {
nProc <- 3
n <- nrow(SN2011fe_subset)
m <- nrow(SN2011fe_newdata_subset)
inputs <- c(as.list(SN2011fe_subset), as.list(SN2011fe_newdata_subset),

nu =2)
initialize the problem
prob <- krigeProblem$new("prob", h_n = 1, h_m = 1, numProcesses =

nProc, n = n, m = m,
meanFunction = SN2011fe_meanfunc, predMeanFunction = SN2011fe_predmeanfunc,
covFunction = SN2011fe_covfunc, crossCovFunction = SN2011fe_crosscovfunc,

predCovFunction = SN2011fe_predcovfunc, params = SN2011fe_mle$par,
inputs = inputs, data = SN2011fe_subset$flux, packages = c("fields"))

do predictions, primarily so cross-covariance gets calculated
pred <- prob$predict(ret = TRUE, verbose = TRUE)

crossC <- collectRectangularMatrix('crossC', "prob", n1 = n, n2 = m,
h1 = 1, h2 = 1)
crossC[1:5, 1:5]
}

End(Not run)

collectTriangularMatrix

Return a Distributed Symmetric or Triangular Matrix to the Master
Process

Description

collectTriangularMatrix retrieves a distributed symmetric or triangular matrix from the slave
processes, reconstructing the blocks correctly on the master process. Objects can be copied from
environments, lists, and ReferenceClass objects as well as the global environment on the slave
processes.

collectTriangularMatrix 11

Usage

collectTriangularMatrix(objName, objPos = '.GlobalEnv', n, h = 1)

Arguments

objName an object name, given as a character string, giving the name of the object on the
slave processes.

objPos where to look for the object, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

n a positive integer, the number of rows (and columns) of the matrix.

h a positive integer, the block replication factor, h, relevant for the matrix.

Value

collectTriangularMatrix returns a matrix of dimension, n × n. Note that for lower triangular
matrices, the upper triangle is non-zero and is filled with the transpose of the lower triangle, and
vice versa for upper triangular matrices.

See Also

pull collectVector collectRectangularMatrix collectDiagonal distributeVector

Examples

Not run:
if(require(fields)) {
nProc <- 3
n <- nrow(SN2011fe_subset)
inputs <- c(as.list(SN2011fe_subset), as.list(SN2011fe_newdata_subset),

nu =2)
initialize the problem
prob <- krigeProblem$new("prob", h_n = 1, numProcesses = nProc, n = n,

meanFunction = SN2011fe_meanfunc, covFunction = SN2011fe_covfunc, inputs = inputs,
params = SN2011fe_mle$par, data = SN2011fe_subset$flux, packages =
c("fields"))

calculate log density, primarily so Cholesky gets calculated
prob$calcLogDens()
C <- collectTriangularMatrix('C', "prob", n = n, h = 1)
L <- collectTriangularMatrix('L', "prob", n = n, h = 1)
C[1:5, 1:5]
L[1:5, 1:5]
}

End(Not run)

12 collectVector

collectVector Return a Distributed Vector to the Master Process

Description

collectVector retrieves a distributed vector from the slave processes, reconstructing in the correct
order on the master process. Objects can be copied from environments, lists, and ReferenceClass
objects as well as the global environment on the slave processes.

Usage

collectVector(objName, objPos = '.GlobalEnv', n, h = 1)

Arguments

objName an object name, given as a character string, giving the name of the object on the
slave processes.

objPos where to look for the object, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

n a positive integer, the length of the vector.

h a positive integer, the block replication factor, h, relevant for the vector.

Value

collectVector returns a vector of length, n.

See Also

pull collectTriangularMatrix collectRectangularMatrix collectDiagonal distributeVector

Examples

Not run:
bigGP.init(3)
n <- 3000
x <- rnorm(n)
distributeVector(x, 'tmp', n = n)
y <- collectVector('tmp', n = n)
identical(x, y)

End(Not run)

distributedKrigeProblem-class 13

distributedKrigeProblem-class

ReferenceClass for Distributed Components of the krigeProblem Ref-
erenceClass

Description

distributedKrigeProblem contains the distributed components of the core vectors and matrices
of the krigeProblem class, as well as copies of the functions for calculating mean vectors and co-
variance matrices, parameter values, and information about the pieces of the distributed objects
contained on a given slave process. The only method associated with the ReferenceClass is a con-
structor.

See Also

krigeProblem

distributeVector Distribute a Vector to the Slave Processes

Description

distributeVector distributes a vector to the slave processes, breaking into the appropriate pieces,
in some cases with padded elements. Objects can be distributed to environments and Reference-
Class objects as well as the global environment on the slave processes.

Usage

distributeVector(obj, objName = deparse(substitute(obj)), objPos = '.GlobalEnv', n, h = 1)

Arguments

obj object on master process to be copied, given either as the name of an object or
as a character.

objName an object name, given as a character string, giving the name to be used for the
object on the slave processes. If not provided, will be the same as the name of
obj in the calling environment.

objPos where to do the assignment, given as a character string (unlike assign). This
can indicate an environment or a ReferenceClass object.

n a positive integer, the length of the vector.

h a positive integer, the block replication factor, h, to be used when distributing
the vector.

14 getDistributedVectorLength

See Also

push collectVector collectTriangularMatrix collectRectangularMatrix collectDiagonal

Examples

Not run:
bigGP.init(3)
n <- 3000
x <- rnorm(n)
distributeVector(x, 'tmp', n = n)
y <- collectVector('tmp', n = n)
identical(x, y)

End(Not run)

getDistributedVectorLength

Find Length of Subset of Vector or Matrix Stored on Slave Process

Description

getDistributedVectorLength, getDistributedTriangularMatrixLength, and getDistributedRectangularLength
are internal auxiliary functions that find the length of the vector needed to store the subset of a vector
or matrix contained on a given slave process.

Usage

getDistributedVectorLength(n, h = 1)
getDistributedTriangularMatrixLength(n, h = 1)
getDistributedRectangularMatrixLength(n1, n2, h1 = 1, h2 = 1)

Arguments

n length of vector.

h replication factor.

n1 number of rows.

n2 number of columns.

h1 replication factor for the rows.

h2 replication factor for the columns.

krigeProblem-class 15

krigeProblem-class Class "krigeProblem"

Description

The krigeProblem class provides functionality for kriging using distributed calculations, based on
maximum likelihood estimation. The class includes methods for standard kriging calculations and
metadata necessary for carrying out the methods in a distributed fashion.

To carry out kriging calculations, one must first initialize an object of the krigeProblem class. This
is done using krigeProblem$new and help on initialization can be obtained via krigeProblem$help('initialize')
(but noting that the call is krigeProblem$new not krigeProblem$initialize).

Note that in what follows I refer to observation and prediction ’locations’. This is natural for spatial
problems, but for non-spatial problems, ’locations’ is meant to refer to the points within the relevant
domain at which observations are available and predictions wish to be made.

The user must provide functions that create the subsets of the mean vector(s) and the covariance
matrix/matrices. Functions for the mean vector and covariance matrix for observation locations
are required, while those for the mean vector for prediction locations, the cross-covariance matrix
(where the first column is the index of the observation locations and the second of the prediction lo-
cations), and the prediction covariance matrix for prediction locations are required when doing pre-
diction and posterior simulation. These functions should follow the form of SN2011fe_meanfunc,
SN2011fe_predmeanfunc, SN2011fe_covfunc, SN2011fe_predcovfunc, and SN2011fe_crosscovfunc.
Namely, they should take three arguments, the first a vector of all the parameters for the Gaussian
process (both mean and covariance), the second an arbitrary list of inputs (in general this would in-
clude the observation and prediction locations), and the third being indices, which will be provided
by the package and will differ between slave processes. For the mean functions, the indices will be
a vector, indicating which of the vector elements are stored on a given process. For the covariance
functions, the indices will be a two column matrix, with each row a pair of indices (row, column),
indicating the elements of the matrix stored on a given process. Thus, the user-provided functions
should use the second and third arguments to construct the elements of the vectors/matrices belong-
ing on the slave process. Note that the elements of the matrices are stored as vectors (vectorizing
matrices column-wise, as natural for column-major matrices). Users can simply have their func-
tions operate on the rows of the index matrix without worrying about ordering. An optional fourth
argument contains cached values that need not be computed at every call to the user-provided func-
tion. If the user wants to make use of caching of values to avoid expensive recomputation, the user
function should mimic SN2011fe_covfunc. That is, when the user wishes to change the cached
values (including on first use of the function), the function should return a two-element list, with
the first element being the covariance matrix elements and the second containing whatever object is
to be cached. This cached object will be provided to the function on subsequent calls as the fourth
argument.

Note that one should have all necessary packages required for calculation of the mean vector(s) and
covariance matrix/matrices installed on all machines used and the names of these packages should
be passed as the packages argument to the krigeProblem initialization.

Help for the various methods of the class can be obtained with krigeProblem$help('methodName')
and a list of fields and methods in the class with krigeProblem$help().

16 krigeProblem-class

In general, n (or n1 and n2) refer to the length or number of rows/columns of vectors and matrices
and h (or h1 and h2) to the block replication factor for these vectors and matrices. More details
on block replication factors can be found in the references in ‘references’; these are set at reason-
able values automatically, and for simplicity, one can set them at one, in which case the number
of blocks into which the primary covariance matrix is split is P , the number of slave processes.
Cross-covariance matrices returned to the user will have number of rows equal to the number of
observation locations and number of columns to the number of prediction locations. Matrices of
realizations will have each realized field as a single column.

Fields

localProblemName: Object of class "character" containing the name to be used for the object
on the slave processes.

n: Object of class "numeric" containing the number of observation locations.

h_n: Object of class "numeric" containing the block replication factor for the observation loca-
tions, will be set to a reasonable value by default upon initialization of an object in the class.

h_m: Object of class "numeric" containing the block replication factor for the prediction locations,
will be set to a reasonable value by default upon initialization of an object in the class.

meanFunction: Object of class "function" containing the function used to calculate values of the
mean function at the observation locations. See above for detailed information on how this
function should be written.

predMeanFunction: Object of class "function" containing the function used to calculate values
of the mean function at the prediction locations. See above for detailed information on how
this function should be written.

covFunction: Object of class "function" containing the function used to calculate values of the
covariance function for pairs of observation locations. See above for detailed information on
how this function should be written.

crossCovFunction: Object of class "function" containing the function used to calculate values
of the covariance function for pairs of observation and prediction locations. See above for
detailed information on how this function should be written.

predCovFunction: Object of class "function" containing the function used to calculate values of
the covariance function for pairs of prediction locations. See above for detailed information
on how this function should be written.

data: Object of class "ANY" containing the vector of data values at the observation locations. This
will be numeric, but is specified as of class "ANY" so that can default to NULL.

params: Object of class "ANY" containing the vector of parameter values. This will be numeric, but
is specified as of class "ANY" so that can default to NULL. This vector is what will be passed to
the mean and covariance functions.

meanCurrent: Object of class "logical" indicating whether the current distributed mean vector
(for the observation locations) on the slaves is current (i.e., whether it is based on the current
value of params).

predMeanCurrent: Object of class "logical" indicating whether the current distributed mean
vector (for the prediction locations) on the slaves is current (i.e., whether it is based on the
current value of params).

krigeProblem-class 17

postMeanCurrent: Object of class "logical" indicating whether the current distributed posterior
mean vector (for the prediction locations) on the slaves is current (i.e., whether it is based on
the current value of params).

covCurrent: Object of class "logical" indicating whether the current distributed covariance ma-
trix (for the observation locations) on the slaves is current (i.e., whether it is based on the
current value of params).

crossCovCurrent: Object of class "logical" indicating whether the current distributed cross-
covariance matrix (between observation and prediction locations) on the slaves is current (i.e.,
whether it is based on the current value of params).

predCovCurrent: Object of class "logical" indicating whether the current distributed prediction
covariance matrix on the slaves is current (i.e., whether it is based on the current value of
params).

postCovCurrent: Object of class "logical" indicating whether the current distributed posterior
covariance matrix on the slaves is current (i.e., whether it is based on the current value of
params).

cholCurrent: Object of class "logical" indicating whether the current distributed Cholesky fac-
tor of the covariance matrix (for observation locations) on the slaves is current (i.e., whether
it is based on the current value of params).

predCholCurrent: Object of class "logical" indicating whether the current distributed Cholesky
factor of the covariance matrix (the prior covariance matrix for prediction locations) on the
slaves is current (i.e., whether it is based on the current value of params). Note this is likely
only relevant when generating realizations for prediction locations not conditional on the ob-
servations.

postCholCurrent: Object of class "logical" indicating whether the current distributed Cholesky
factor of the posterior covariance matrix on the slaves is current (i.e., whether it is based on
the current value of params).

Methods

new(localProblemName = NULL, numProcesses = NULL, h_n = NULL, h_m = NULL, n = length(data), m = NULL, meanFunction = function(){}, predMeanFunction = function(){}, covFunction = function(){}, crossCovFunction = function(){}, predCovFunction = function(){}, inputs = NULL, params = NULL, data = NULL, packages = NULL, parallelRNGpkg = "rlecuyer", seed = 0, ...):
Initializes new krigeProblem object, which is necessary for distributed kriging calculations.

calcH(n): Internal method that calculates a good choice of the block replication factor given n.

show(verbose = TRUE): Show (i.e., print) method.

initializeSlaveProblems(packages): Internal method that sets up the slave processes to carry
out the krigeProblem distributed calculations.

setParams(params, verbose = TRUE): Sets (or changes) the value of the parameters.

remoteConstructMean(obs = TRUE, pred = !obs, verbose = FALSE): Meant for internal use; cal-
culates the value of the specified mean vector (for observation and/or prediction locations) on
the slave processes, using the appropriate user-provided function.

remoteConstructCov(obs = TRUE, pred = FALSE, cross = FALSE, verbose = FALSE): Meant for
internal use; calculates the value of the specified covariance matrices on the slave processes,
using the appropriate user-provided function.

calcLogDeterminant(): Calculates the log-determinant of the covariance matrix for the observa-
tion locations.

18 krigeProblem-class

calcLogDens(newParams = NULL, newData = NULL, negative = FALSE, verbose = TRUE): Calculates
the log-density of the data given the parameters.

optimizeLogDens(newParams = NULL, newData = NULL, method = "Nelder-Mead", verbose = FALSE, gr = NULL, lower = -Inf, upper = Inf, control = list(), hessian = FALSE, ...):
Finds the maximum likelihood estimate of the parameters given the data, using optim.

predict(ret = FALSE, verbose = FALSE): Calculates kriging predictions (i.e., the posterior mean
for the prediction locations).

calcPostCov(returnDiag = TRUE, verbose = FALSE): Calculates the prediction covariance (i.e.,
the posterior covariance matrix for the prediction locations), returning the diagonal (the vari-
ances) if requested.

simulateRealizations(r = 1, h_r = NULL, obs = FALSE, pred = FALSE, post = TRUE, verbose = FALSE):
Simulates realizations, which would generally be from the posterior distribution (i.e., condi-
tional on the data), but could also be from the prior distribution (i.e., not conditional on the
data) at either observation or predition locations.

Extends

All reference classes extend and inherit methods from "envRefClass".

Author(s)

Christopher Paciorek and Benjamin Lipshitz, in collaboration with Tina Zhuo, Cari Kaufman,
Rollin Thomas, and Prabhat.

Maintainer: Christopher Paciorek <paciorek@alumni.cmu.edu>

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

See bigGP for general information on the package and bigGP.init for the necessary initialization
steps required before using the package, including the krigeProblem class.

Examples

Not run:
doSmallExample <- TRUE

if(require(fields)) {

if(doSmallExample){
SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

localAssign 19

nProc <- 3
} else {
users should select number of processors based on their system and the
size of the full example
nProc <- 210
}

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)

prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,

predCovFunction = SN2011fe_predcovfunc, meanFunction = SN2011fe_meanfunc,
covFunction = SN2011fe_covfunc, inputs = inputs, params = SN2011fe_mle$par,
data = SN2011fe$flux, packages = c("fields"))

prob$calcLogDens()

prob$optimizeLogDens(method = "L-BFGS-B", verbose = TRUE,
lower = rep(.Machine$double.eps, length(SN2011fe_initialParams)),
control = list(parscale = SN2011fe_initialParams, maxit = 2))
the full optimization can take some time; only two iterations are done
are specified here; even this is not run as it takes 10s of seconds

prob$setParams(SN2011fe_mle$par)

pred <- prob$predict(ret = TRUE, se.fit = TRUE, verbose = TRUE)
realiz <- prob$simulateRealizations(r = 10, post = TRUE, verbose = TRUE)

show(prob)
}

End(Not run)

localAssign Assign a New Name to an Object on Slave Process

Description

localAssign is an internal auxiliary function used to assign a new name to an object in an environ-
ment on a slave process. The function needs to be executed on the slave processes.

Usage

localAssign(nameToAssign, currentName, objPos = ".GlobalEnv")

20 localCollectVector

Arguments

nameToAssign a variable name, given as a character string, giving the new name for the object.

currentName a variable name, given as a character string, giving the current name for the
object.

objPos where to do the assignment, given as a character string (unlike assign). This
can indicate an environment or a ReferenceClass object.

Details

This function is primarily for internal use, but might be useful for developers extending the package
for use cases other than the kriging use case contained in krigeProblem ReferenceClass.

Examples

Not run:
bigGP.init(3)
mpi.bcast.cmd(e <- new.env())
mpi.bcast.cmd(a <- 7)
mpi.remote.exec(localAssign, "x", "a", objPos = "e")
mpi.remote.exec(e$x, ret = TRUE)

End(Not run)

localCalc Local Calculation Functions

Description

These internal functions carry out the calculations of their respective remote counterpart functions,
e.g., remoteCalc, on the slave process. The functions need to be executed on the slave processes.

localCollectVector Local Distribution and Collection Functions

Description

These internal functions carry out the tasks of their respective primary functions, e.g., collectVector,
on the slave process. The functions need to be executed on the slave processes.

localGetVectorIndices 21

Usage

localCollectVector(objName, objPos, n, h)
localCollectVectorTest(objName, objPos, n, h)
localDistributeVector(objName, objPos, n, h)
localDistributeVectorTest(objName, objPos, n, h)
localPull(objName, objPos, tag = 1)
localCollectDiagonal(objName, objPos, n, h)
localCollectDiagonalTest(objName, objPos, n, h)
localCollectTriangularMatrix(objName, objPos, n, h)
localCollectTriangularMatrixTest(objName, objPos, n, h)
localCollectRectangularMatrix(objName, objPos, n1, n2, h1, h2)
localCollectRectangularMatrixTest(objName, objPos, n1, n2, h1, h2)

Arguments

objName name of object as a character string.

objPos where to look for the object, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

n length of vector.

h replication factor.

tag MPI tag.

n1 number of rows.

n2 number of columns.

h1 replication factor for the rows.

h2 replication factor for the columns.

localGetVectorIndices Get Indices of Vector or Matrix Elements Stored on Slave Process

Description

localGetVectorIndices, localGetTriangularMatrixIndices, and localGetRectangularMatrixIndices
are internal auxiliary functions that determine the indices of the elements of a vector or matrix that
are stored on a slave process. These are primarily meant for internal use, but can also be used in the
process of creating distributed vectors and matrices on the slave processes. The functions need to
be executed on the slave processes.

Usage

localGetVectorIndices(n, h = 1)
localGetTriangularMatrixIndices(n, h = 1)
localGetRectangularMatrixIndices(n1, n2, h1 = 1, h2 = 1)

22 localKrigeProblemConstructMean

Arguments

n a positive integer, giving the length of the vector or number of rows and columns
of the triangular/square matrix.

n1 a positive integer, giving the number of rows of the rectangular matrix.
n2 a positive integer, giving the number of columns of the rectangular matrix.
h a positive integer, giving the block replication factor for the vector or triangu-

lar/square matrix.
h1 a positive integer, giving the block replication factor for the rows of the rectan-

gular matrix.
h2 a positive integer, giving the block replication factor for the columns of the rect-

angular matrix.

Value

localGetVectorIndices returns the indices (as a one-column matrix) of the subset of a distributed
vector that will be stored on the process on which the function is called. localGetTriangularMatrixIndices,
and localGetRectangularMatrixIndices return a two-column matrix with the indices for the
subset of the distributed matrix that will be stored (as a vector) on the process on which the function
is called. I.e., the ith row of the matrix gives the (row, column) position in the full matrix for the ith
element of the vector on the local process that contains a subset of that matrix.

Warning: in some cases there is a small amount of buffering involved in the distributed objects so
that the blocks on each process are of the same size. In this case, the index of the first element will
generally be added one or more times to the end of the indices assigned to the last process.

localKrigeProblemConstructMean

Calculate Mean Vector or Covariance Matrix on Slave Process

Description

localKrigeProblemConstructMean and localKrigeProblemConstructCov are internal wrapper
functions for calculating a mean vector or covariance matrix on the slave processes. They are called
by member functions of the krigeProblem ReferenceClass.

Usage

localKrigeProblemConstructMean(problemName, obs, pred)
localKrigeProblemConstructCov(problemName, obs, pred, cross)

Arguments

problemName name of the problem as a character string.
obs logical, whether to compute the mean or covariance for the observation loca-

tions.
pred logical, whether to compute the mean or covariance for the prediction locations.
cross logical, whether to compute the cross-covariance.

localRm 23

See Also

krigeProblem

localRm Remove Objects on Slave Process

Description

localRm is an internal auxiliary function used by remoteRm to remove objects on a slave process.

Usage

localRm(list)

Arguments

list a character vector naming objects to be removed.

pull Copy Object from Slave Processes to Master

Description

Copies all objects with a given name from the slave processes to the master process, returning
a list with one element per slave process. Objects can be copied from lists, environments, and
ReferenceClass objects as well as the global environment on the slave processes.

Usage

pull(objName, objPos = ".GlobalEnv", tag = 1)

Arguments

objName a variable name, given as a character string, giving the name of the object on the
slave processes.

objPos where to look for the object, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

tag non-negative integer, as in mpi.send and mpi.recv. Use mpi.any.tag for any
tag flag.

Value

pull returns a list, with one element per slave process.

24 push

Warning

Vectors and matrices that are part of the distributed linear algebra computations are broken up in
very specific ways on the slave processes and often include padded elements. In general one should
not use pull for retrieving such objects from the slave processes. Rather, use collectVector,
CollectTriangularMatrix, etc.

See Also

push collectVector collectTriangularMatrix collectRectangularMatrix collectDiagonal

Examples

Not run:
bigGP.init(3)
a <- 3
push(a)
remoteLs()
pull('a')

End(Not run)

push Copy Object from Master to Slave Processes

Description

Copies an objects from the master process to all slave processes. Objects can be copied to environ-
ments and ReferenceClass objects as well as the global environment on the slaves.

Usage

push(.tmp, objName = deparse(substitute(.tmp)), objPos = ".GlobalEnv")

Arguments

.tmp object on master process to be copied, given either as the name of an object or
as a character.

objName the name to use for the object on the slave processes.

objPos where to do the assignment, given as a character string (unlike assign). This
can indicate an environment or a ReferenceClass object.

Warning

Vectors that are part of the distributed linear algebra computations are broken up in very specific
ways on the slave processes and often include padded elements. In general one should not use push
to distribute such objects as push would distribute the entire vector to each slave process. Rather,
use distributeVector.

remoteCalc 25

See Also

pull distributeVector

Examples

Not run:
bigGP.init(3)
a <- 3
push(a)
remoteLs()

End(Not run)

remoteCalc Do Arbitrary Calculations on One or Two Inputs

Description

remoteCalc applies a function to either one or two input objects on the slave processes. Input
objects can be obtained environments, lists, and ReferenceClass objects as well as the global envi-
ronment on the slave processes. The output object can be assigned into a environment or a Refer-
enceClass objects as well as the global environment on the slave processes.

Usage

remoteCalc(input1Name, input2Name = NULL, FUN, outputName, input1Pos = '.GlobalEnv',
input2Pos = '.GlobalEnv', outputPos = '.GlobalEnv')

Arguments

input1Name an object name, given as a character string, giving the name of the first input on
the slave processes.

input2Name an object name, given as a character string, giving the name of the first input on
the slave processes. This is optional so that one can carry out a calculation on a
single input.

FUN the function to be applied, see ‘details’. In the case of operators like +, the
function name must be backquoted.

outputName an object name, given as a character string, giving the name to be used for the
result of the function call.

input1Pos where to look for the first input, given as a character string (unlike get). This
can indicate an environment, a list, or a ReferenceClass object.

input2Pos where to look for the second input, given as a character string (unlike get). This
can indicate an environment, a list, or a ReferenceClass object.

outputPos where to do the assignment of the output, given as a character string (unlike
assign). This can indicate an environment or a ReferenceClass object.

26 remoteCalcChol

Details

FUN is found by a call to match.fun and typically is either a function or a symbol (e.g., a backquoted
name) or a character string specifying a function to be searched for from the environment of the call
to remoteCalc.

Examples

Not run:
bigGP.init(3)
mpi.bcast.cmd(x <- 0:mpi.comm.rank())
remoteCalc('x', FUN = exp, outputName = 'exp.x')
remoteLs()
pull('exp.x')
remoteCalc('x', 'exp.x', FUN = `+`, outputName = 'silly')
pull('silly')

End(Not run)

remoteCalcChol Calculate Distributed Cholesky Decomposition

Description

remoteCalcChol calculates a distributed Cholesky decomposition from a distributed positive defi-
nite matrix. The Cholesky factor and the original matrix can both be contained within environments
and ReferenceClass objects as well as the global environment on the slave processes.

Usage

remoteCalcChol(matName, cholName, matPos = '.GlobalEnv', cholPos = '.GlobalEnv', n, h = 1)

Arguments

matName name of the input (positive definite) matrix, given as a character string, giving
the name of the object on the slave processes.

cholName an name, given as a character string, giving the name to be used for the Cholesky
factor matrix on the slave processes.

matPos where to look for the input matrix, given as a character string (unlike get). This
can indicate an environment, a list, or a ReferenceClass object.

cholPos where to do the assignment of the Cholesky factor matrix, given as a character
string (unlike assign). This can indicate an environment or a ReferenceClass
object.

n a positive integer, the number of rows and columns of the input matrix.

h a positive integer, the block replication factor, h, relevant for the input matrix
and used for the Cholesky factor as well.

remoteConstructRnormVector 27

Details

Computes the distributed Cholesky decomposition using a blocked algorithm similar to that in
ScaLapack. When h is 1, the number of blocks, representing the lower triangle of the original
matrix and of the Cholesky factor, is equal to the number of processes. For larger values of h, there
are multiple blocks assigned to each process.

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

bigGP

Examples

Not run:
if(require(fields)) {

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,
predCovFunction = SN2011fe_predcovfunc, meanFunction = SN2011fe_meanfunc,
covFunction = SN2011fe_covfunc, inputs = inputs, params = SN2011fe_mle$par,

data = SN2011fe$flux, packages = c("fields"))
remoteCalcChol(matName = 'C', cholName = 'L', matPos = 'prob',

cholPos = 'prob', n = n, h = prob$h_n)
L <- collectTriangularMatrix('L', objPos = 'prob', n = n, h = prob$h_n)
}

End(Not run)

remoteConstructRnormVector

Create Distributed Vector or Matrix of Random Normals

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

28 remoteConstructRnormVector

Description

remoteConstructRnormVector constructs a distributed vector of standard normal random vari-
ables, while remoteConstructRnormMatrix constructs a distributed matrix. The output object can
both be contained within environments or ReferenceClass objects as well as the global environment
on the slave processes.

Usage

remoteConstructRnormVector(objName, objPos = ".GlobalEnv", n, h = 1)
remoteConstructRnormMatrix(objName, objPos = ".GlobalEnv", n1, n2, h1 = 1, h2 = 1)

Arguments

objName the name to use for the vector or matrix, on the slave processes.

objPos where to do the assignment of the output matrix or vector, given as a character
string (unlike assign). This can indicate an environment or a ReferenceClass
object.

n a positive integer, the length of the vector

h a positive integer, the block replication factor, h, relevant for the vector

n1 a positive integer, the number of rows of the matrix.

n2 a positive integer, the number of columns of the matrix.

h1 a positive integer, the block replication factor, h, relevant for the rows of the
matrix.

h2 a positive integer, the block replication factor, h, relevant for the columns of the
matrix.

Warning

Note that a vector and a one-column matrix are stored differently, with padded columns included for
the matrix. For other distributed computation functions, providing the argument n2 = NULL indicates
the input is a vector, while n2 = 1 indicates a one-column matrix.

See Also

bigGP

Examples

Not run:
if(require(fields)) {

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)

remoteCrossProdMatSelf 29

prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,
predCovFunction = SN2011fe_predcovfunc, meanFunction = SN2011fe_meanfunc,
covFunction = SN2011fe_covfunc, inputs = inputs, params = SN2011fe_mle$par,
data = SN2011fe$flux, packages = c("fields"))
remoteCalcChol(matName = 'C', cholName = 'L', matPos = 'prob',

cholPos = 'prob', n = n, h = prob$h_n)
remoteConstructRnormVector('z', n = n, h = prob$h_n)
remoteMultChol(cholName = 'L', inputName = 'z', outputName = 'result',
cholPos = 'prob', n1 = n, h1 = prob$h_n)
realiz <- collectVector('result', n = n, h = prob$h_n)

r = 10
remoteConstructRnormMatrix('z2', n1 = n, n2 = r, h1 = prob$h_n, h2 = 1)
remoteMultChol(cholName = 'L', inputName = 'z2', outputName = 'result2',
cholPos = 'prob', n1 = n, n2 = r, h1 = prob$h_n, h2 = 1)
realiz2 <- collectRectangularMatrix('result2', n1 = prob$n, n2 = r, h1
= prob$h_n, h2 = 1)
}

End(Not run)

remoteCrossProdMatSelf

Distributed Crossproduct of a Rectangular Matrix with Itself

Description

remoteCrossProdMatSelf multiplies the transpose of a distributed rectangular matrix by itself.
remoteCrossProdMatSelfDiag calculates only the diagonal of the crossproduct. The objects can
both be contained within environments or ReferenceClass objects as well as the global environment
on the slave processes.

Usage

remoteCrossProdMatSelf(inputName, outputName, inputPos = '.GlobalEnv',
outputPos = '.GlobalEnv', n1, n2, h1 = 1, h2 = 1)
remoteCrossProdMatSelfDiag(inputName, outputName, inputPos =
'.GlobalEnv', outputPos = '.GlobalEnv', n1, n2, h1 = 1, h2 = 1)

Arguments

inputName name of the matrix, given as a character string, giving the name of the object on
the slave processes.

outputName the name to use for resulting matrix, on the slave processes.

inputPos where to look for the matrix, given as a character string (unlike get). This can
indicate an environment, a list, or a ReferenceClass object.

30 remoteCrossProdMatSelf

outputPos where to do the assignment of the output matrix, given as a character string
(unlike assign). This can indicate an environment or a ReferenceClass object.

n1 a positive integer, the number of rows of the matrix.

n2 a positive integer, the number of columns of the matrix.

h1 a positive integer, the block replication factor, h, relevant for the rows of the
matrix.

h2 a positive integer, the block replication factor, h, relevant for the columns of the
matrix.

Details

Computes the distributed product, XTX using a blocked algorithm, resulting in a distributed ma-
trix.

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

bigGP

Examples

Not run:
if(require(fields)) {

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction =
SN2011fe_crosscovfunc, predCovFunction = SN2011fe_predcovfunc,
meanFunction = SN2011fe_meanfunc, covFunction = SN2011fe_covfunc,
inputs = inputs, params = SN2011fe_mle$par, data = SN2011fe$flux,
packages = c("fields"))

remoteCalcChol(matName = "C", cholName = "L", matPos = "prob",
cholPos = "prob", n = n, h = prob$h_n)

prob$remoteConstructCov(obs = FALSE, pred = FALSE, cross = TRUE, verbose = TRUE)
we now have a rectangular cross-covariance matrix named 'crossC'
remoteForwardsolve(cholName = "L", inputName = "crossC", outputName = "tmp1",

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

remoteCrossProdMatVec 31

cholPos = "prob", inputPos = "prob", n1 = n, n2 = m, h1 = prob$h_n, h2 = prob$h_m)

remoteCrossProdMatSelf(inputName = "tmp1", outputName = "result", n1 = n,
n2 = m, h1 = prob$h_n, h2 = prob$h_m)
result <- collectTriangularMatrix("result", n = m, h = prob$h_m)

remoteCrossProdMatSelfDiag(inputName = "tmp1", outputName = "resultDiag",
n1 = n, n2 = m, h1 = prob$h_n, h2 = prob$h_m)
resultDiag <- collectVector("resultDiag", n = m, h = prob$h_m)
}

End(Not run)

remoteCrossProdMatVec Distributed Crossproduct of a Rectangular Matrix and a Vector

Description

remoteCrossProdMatVec multiplies the transpose of a distributed rectangular matrix by a dis-
tributed vector or matrix. The objects can both be contained within environments or ReferenceClass
objects as well as the global environment on the slave processes.

Usage

remoteCrossProdMatVec(matName, inputName, outputName, matPos = '.GlobalEnv',
inputPos = '.GlobalEnv', outputPos = '.GlobalEnv', n1, n2, h1 = 1, h2 = 1)

Arguments

matName name of the rectangular matrix, given as a character string, giving the name of
the object on the slave processes.

inputName name of the vector being multiplied by, given as a character string, giving the
name of the object on the slave processes.

outputName the name to use for resulting vector, on the slave processes.

matPos where to look for the rectangular matrix, given as a character string (unlike get).
This can indicate an environment, a list, or a ReferenceClass object.

inputPos where to look for the input vector, given as a character string (unlike get). This
can indicate an environment, a list, or a ReferenceClass object.

outputPos where to do the assignment of the output vector, given as a character string
(unlike assign). This can indicate an environment or a ReferenceClass object.

n1 a positive integer, the number of rows of the matrix.

n2 a positive integer, the number of columns of the matrix.

h1 a positive integer, the block replication factor, h, relevant for the rows of the
matrix.

h2 a positive integer, the block replication factor, h, relevant for the columns of the
matrix.

32 remoteCrossProdMatVec

Details

Computes the distributed product using a blocked algorithm, resulting in a distributed vector.

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

bigGP

Examples

Not run:
if(require(fields)) {

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction =
SN2011fe_crosscovfunc, predCovFunction = SN2011fe_predcovfunc,
meanFunction = SN2011fe_meanfunc, covFunction = SN2011fe_covfunc,
inputs = inputs, params = SN2011fe_mle$par, data = SN2011fe$flux,
packages = c("fields"))

remoteCalcChol(matName = "C", cholName = "L", matPos = "prob",
cholPos = "prob", n = n, h = prob$h_n)

remoteCalc("data", "mean", `-`, "tmp1", input1Pos = "prob", input2Pos = "prob")
remoteForwardsolve(cholName = "L", inputName = "tmp1", outputName = "tmp2",
cholPos = "prob", n1 = n, h1 = prob$h_n)
remoteBacksolve(cholName = "L", inputName = "tmp2", outputName = "tmp3",
cholPos = "prob", n1 = n, h1 = prob$h_n)

prob$remoteConstructCov(obs = FALSE, pred = FALSE, cross = TRUE, verbose = TRUE)
we now have a rectangular cross-covariance matrix named 'crossC'
remoteCrossProdMatVec(matName = "crossC", inputName = "tmp3", outputName = "result",
matPos = "prob", n1 = n, n2 = m, h1 = prob$h_n, h2 = prob$h_m)

result <- collectVector("result", n = n, h = prob$h_n)
}

End(Not run)

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

remoteForwardsolve 33

remoteForwardsolve Solve a Distributed Triangular System

Description

Solves a distributed system of linear equations where the coefficient matrix is lower triangular.
remoteBacksolve solves L⊤X = C for vector or matrix X , while remoteForwardsolve solves
LX = C. Any of the matrices or vectors can be contained within environments and ReferenceClass
objects as well as the global environment on the slave processes.

Usage

remoteBacksolve(cholName, inputName, outputName, cholPos = '.GlobalEnv',
inputPos = '.GlobalEnv', outputPos = '.GlobalEnv', n1, n2 = NULL, h1 = 1,

h2 = NULL)
remoteForwardsolve(cholName, inputName, outputName, cholPos =
'.GlobalEnv', inputPos = '.GlobalEnv', outputPos = '.GlobalEnv', n1, n2
= NULL, h1 = 1, h2 = NULL)

Arguments

cholName name of the input lower triangular matrix matrix (the matrix of coefficients),
given as a character string, of the object on the slave processes.

inputName name of the vector or matrix being solved into (the right-hand side(s) of the
equations), given as a character string, of the object on the slave processes.

outputName the name to use for the output object, the solution vector or matrix, on the slave
processes.

cholPos where to look for the lower triangular matrix, given as a character string (unlike
get). This can indicate an environment, a list, or a ReferenceClass object.

inputPos where to look for the input right-hand side matrix or vector, given as a character
string (unlike get). This can indicate an environment, a list, or a ReferenceClass
object.

outputPos where to do the assignment of the output matrix or vector, given as a character
string (unlike assign). This can indicate an environment or a ReferenceClass
object.

n1 a positive integer, the number of rows and columns of the input matrix.

n2 a positive integer, the number of columns of the right-hand side values. When
equal to one, indicates a single right-hand side vector.

h1 a positive integer, the block replication factor, h, relevant for the input matrix
and used for the solution (either for a vector, or the rows of the solution for a
matrix).

h2 a positive integer, the block replication factor, h, relevant for the columns of the
solution when the right-hand side is a matrix.

34 remoteForwardsolve

Details

Computes the solution to a distributed set of linear equations, with either a single or multiple right-
hand side(s) (i.e., solving into a vector or a matrix). Note that these functions work for any dis-
tributed lower triangular matrix, but bigGP currently only provides functionality for computing
distributed Cholesky factors, hence the argument names cholName and cholPos.

When the right-hand side is vector that is stored as a vector, such as created by distributeVector
or remoteConstructRnormVector, use n2 = NULL. When multiplying by a one-column matrix, use
n2 = 1.

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

bigGP

Examples

Not run:
if(require(fields)) {

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,
predCovFunction = SN2011fe_predcovfunc, meanFunction = SN2011fe_meanfunc,
covFunction = SN2011fe_covfunc, inputs = inputs, params = SN2011fe_mle$par,
data = SN2011fe$flux, packages = c("fields"))
remoteCalcChol(matName = "C", cholName = "L", matPos = "prob",

cholPos = "prob", n = n, h = prob$h_n)
remoteForwardsolve(cholName = "L", inputName = "data", outputName =
"tmp", cholPos = "prob", inputPos = "prob", n1 = n, h1 = prob$h_n)
LinvY <- collectVector("tmp", n = n, h = prob$h_n)
remoteBacksolve(cholName = "L", inputName = "tmp", outputName =
"tmp2", cholPos = "prob", inputPos = "prob", n1 = n, h1 = prob$h_n)
CinvY <- collectVector("tmp2", n = n, h = prob$h_n)
}

End(Not run)

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

remoteGetIndices 35

remoteGetIndices Determine Indices of Vector or Matrix Elements Stored on all Pro-
cesses

Description

remoteGetIndices determines the indices of the subset of a matrix or vector that are stored on
each process.

Usage

remoteGetIndices(type = "vector", objName, objPos = ".GlobalEnv", n1,
n2 = NULL, h1 = 1, h2 = 1)

Arguments

type a string, one of ’vector’, ’symmetric’, ’triangular’, or ’rectangular’ giving the
type of object for which one wants the indices. Note that square and symmetric
matrices are both stored as lower triangles, so these options both return the same
result. For square, non-symmetric matrices, use ’rectangular’.

objName the name to use for the object containing the indices on the slave processes.

objPos where to do the assignment of the object, given as a character string (unlike
assign). This can indicate an environment or a ReferenceClass object.

n1 a positive integer, giving the length of the vector, number of rows and columns
of a symmetric or triangular matrix and number of rows of a rectangular matrix,
including square, non-symmetric matrices.

n2 a positive integer, giving the number of columns of a a rectangular matrix.

h1 a positive integer, giving the block replication factor for a vector, a symmetric
or triangular matrix, or the rows of a rectangular matrix.

h2 a positive integer, giving the block replication factor for the columns of the rect-
angular matrix.

Details

remoteGetIndices calculates the indices as described in localGetVectorIndices, localGetTriangularMatrixIndices,
and localGetRectangularMatrixIndices, and writes them to an object named objName.

36 remoteLs

remoteLs Remote List Objects

Description

remoteLs returns the names of the objects in the global environment on each slave process, as a list
of character vectors.

Usage

remoteLs(all.names = FALSE)

Arguments

all.names a logical value. If ’TRUE’, all object names are returned. If ’FALSE’, names
which begin with a ’.’ are omitted.

Value

A list, with each element a vector of character strings giving the names of the objects on a given
slave process.

See Also

remoteRm

Examples

Not run:
bigGP.init(3)
a <- 3
b <- 7
push(a); push(b)
remoteLs()
remoteRm(a)
remoteLs()

End(Not run)

remoteMultChol 37

remoteMultChol Distributed Multiplication of Lower Triangular Matrix and a Vector
or Matrix

Description

remoteMultChol multiplies a distributed lower triangular matrix by a distributed vector or matrix.
The objects can both be contained within environments or ReferenceClass objects as well as the
global environment on the slave processes.

Usage

remoteMultChol(cholName, inputName, outputName, cholPos = '.GlobalEnv',
inputPos = '.GlobalEnv', outputPos = '.GlobalEnv', n1, n2 = NULL, h1 = 1,
h2 = NULL)

Arguments

cholName name of the lower triangular matrix, given as a character string, giving the name
of the object on the slave processes.

inputName name of the vector or matrix being multiplied by, given as a character string,
giving the name of the object on the slave processes.

outputName the name to use for resulting vector or matrix product, on the slave processes.

cholPos where to look for the lower triangular matrix, given as a character string (unlike
get). This can indicate an environment, a list, or a ReferenceClass object.

inputPos where to look for the input matrix or vector, given as a character string (unlike
get). This can indicate an environment, a list, or a ReferenceClass object.

outputPos where to do the assignment of the output matrix or vector, given as a character
string (unlike assign). This can indicate an environment or a ReferenceClass
object.

n1 a positive integer, the number of rows and columns of the lower triangular ma-
trix.

n2 a positive integer, the number of columns of the vector or matrix being multi-
plied by. When equal to one, indicates multiplication by a vector.

h1 a positive integer, the block replication factor, h, relevant for the input matrix
and used for the solution (either for a vector, or the rows of the solution for a
matrix).

h2 a positive integer, the block replication factor, h, relevant for the columns of the
input and output matrices when the lower triangular matrix is multiplied by a
matrix.

38 remoteMultChol

Details

Computes the distributed product using a blocked algorithm. Note that the function works for any
distributed lower triangular matrix, but bigGP currently only provides functionality for computing
distributed Cholesky factors, hence the argument names cholName and cholPos.

When multiplying by a vector that is stored as a vector, such as created by distributeVector or
remoteConstructRnormVector, use n2 = NULL. When multiplying by a one-column matrix, use n2
= 1.

References

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

bigGP

Examples

Not run:
if(require(fields)) {

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,
predCovFunction = SN2011fe_predcovfunc, meanFunction = SN2011fe_meanfunc,
covFunction = SN2011fe_covfunc, inputs = inputs, params = SN2011fe_mle$par,
data = SN2011fe$flux, packages = c("fields"))
remoteCalcChol(matName = 'C', cholName = 'L', matPos = 'prob',

cholPos = 'prob', n = n, h = prob$h_n)
remoteConstructRnormVector('z', n = n, h = prob$h_n)
remoteMultChol(cholName = 'L', inputName = 'z', outputName = 'result',
cholPos = 'prob', n1 = n, h1 = prob$h_n)
realiz <- collectVector('result', n = n, h = prob$h_n)
}

End(Not run)

https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

remoteRm 39

remoteRm Remote Remove Objects

Description

remoteRm is used to remove objects from the global environment on the slave processes.

Usage

remoteRm(..., list = character())

Arguments

... the objects to be removed, as names (unquoted) or character strings (quoted).

list a character vector naming objects to be removed

Details

This is a distributed version of rm. It removes the named objects from all of the slave processes.
Unlike rm, remoteRm is currently not enabled to remove objects from other than the global environ-
ment. Note that unless options(warn = 2) is set on the slave processes, no warning is reported if
one tries to remove objects that do not exist.

See Also

remoteLs

Examples

Not run:
bigGP.init(3)
a <- 3
b <- 7
push(a); push(b)
remoteLs()
remoteRm(a)
remoteLs()

End(Not run)

40 SN2011fe

SN2011fe SN2011fe Supernova Dataset

Description

SN2011fe is a dataset of flux values and estimated standard errors, as a function of phase and
wavelength, from the SN 2011fe supernova event. Data were collected over multiple nights (phases)
and multiple wavelengths.

Format

The SN2011fe object is a data frame containing the following columns:

phase: time of measurement in days.

wavelength: wavelength of measurement in Å.

flux: flux measurement in erg s−1 cm−2 Å
−1

.

fluxerror: estimated standard deviation of the error in measurement of the flux.

phaseindex: 1-based index value of the time of measurement [check this]

logwavelength: log of wavelength.

The SN2011fe_newdata object is a data frame of prediction points on a fine grid of phases and
wavelengths. The columns correspond to the phase and wavelength columns in SN2011fe but the
initial ’p’ stands for ’prediction’.

The SN2011fe_mle object is the output from maximum likelihood fitting of the parameters of a
statistical model for the dataset, with the par element containing the MLEs.

The objects labeled ’_subset’ are analogous objects for a small subset of the dataset feasible to be
fit without parallel processing.

The SN2011fe_initialParams object is a set of starting values for the maximum likelihood fitting.

The functions SN2011fe_meanfunc, SN2011fe_predmeanfunc, SN2011fe_covfunc, SN2011fe_crosscovfunc,
and SN2011fe_predcovfunc are functions for calculating the various mean vectors and covariance
matrices used in the statistical analysis of the dataset. Users will need to create analogous functions
for their own kriging problems, so these are provided in part as templates.

Warning

Note that the SN2011fe_newdata set of prediction points was chosen to ensure that the points were
not so close together as to result in numerically non-positive definite covariance matrices when
simulating posterior realizations.

Source

https://snfactory.lbl.gov/snf/data/SNfactory_Pereira_etal_2013_SN2011fe.tar.gz

https://snfactory.lbl.gov/snf/data/SNfactory_Pereira_etal_2013_SN2011fe.tar.gz

SN2011fe 41

References

For more details on the dataset, see: R. Pereira, et al., 2013, "Spectrophotometric time series of SN
2011fe from the Nearby Supernova Factory," Astronomy and Astrophysics, accepted (arXiv:1302.1292v1),
DOI: doi:10.1051/00046361/201221008.

For more details on the statistical model used to fit the data, see:

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2015. Parallelizing
Gaussian Process Calculations in R. Journal of Statistical Software, 63(10), 1-23. doi:10.18637/
jss.v063.i10.

or

Paciorek, C.J., B. Lipshitz, W. Zhuo, Prabhat, C.G. Kaufman, and R.C. Thomas. 2013. Parallelizing
Gaussian Process Calculations in R. arXiv:1305.4886. https://arxiv.org/abs/1305.4886.

See Also

krigeProblem-class

Examples

Not run:
doSmallExample <- TRUE

if(require(fields)) {
if(doSmallExample){

SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3

} else {
users should select number of processors based on their system and the
size of the full example
nProc <- 210
}

n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)

prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,
predCovFunction = SN2011fe_predcovfunc, meanFunction =
SN2011fe_meanfunc, covFunction = SN2011fe_covfunc, inputs = inputs,
params = SN2011fe_mle$par, data = SN2011fe$flux, packages = c("fields"))

prob$calcLogDens()
}

End(Not run)

https://doi.org/10.1051/0004-6361/201221008
https://doi.org/10.18637/jss.v063.i10
https://doi.org/10.18637/jss.v063.i10
https://arxiv.org/abs/1305.4886

Index

∗ assign
push, 24

∗ classes
krigeProblem-class, 15

∗ get
pull, 23

∗ ls
remoteLs, 36

∗ objects
remoteLs, 36

∗ remove
remoteRm, 39

∗ rm
remoteRm, 39

∗ utilities
bigGP.exit, 6

.bigGP (bigGP-meta), 5

alloc, 2

bigGP, 3, 18, 27, 28, 30, 32, 34, 38
bigGP-meta, 5
bigGP-package (bigGP), 3
bigGP.exit, 6
bigGP.init, 4, 6, 18
bigGP.quit (bigGP.exit), 6

calcD, 7
calcH, krigeProblem-method

(krigeProblem-class), 15
calcIJ, 8
calcLogDens, krigeProblem-method

(krigeProblem-class), 15
calcPostCov, krigeProblem-method

(krigeProblem-class), 15
collectDiagonal, 8
collectRectangularMatrix, 9
collectTriangularMatrix, 10
collectVector, 12

distributedKrigeProblem
(distributedKrigeProblem-class),
13

distributedKrigeProblem-class, 13
distributeVector, 13

envRefClass, 18

getDistributedRectangularMatrixLength
(getDistributedVectorLength),
14

getDistributedTriangularMatrixLength
(getDistributedVectorLength),
14

getDistributedVectorLength, 14

initializeSlaveProblems,
krigeProblem-method
(krigeProblem-class), 15

krigeProblem, 3, 4
krigeProblem (krigeProblem-class), 15
krigeProblem-class, 15

localAssign, 19
localBacksolve (localCalc), 20
localCalc, 20
localCalcChol (localCalc), 20
localCollectDiagonal

(localCollectVector), 20
localCollectDiagonalTest

(localCollectVector), 20
localCollectRectangularMatrix

(localCollectVector), 20
localCollectRectangularMatrixTest

(localCollectVector), 20
localCollectTriangularMatrix

(localCollectVector), 20
localCollectTriangularMatrixTest

(localCollectVector), 20
localCollectVector, 20

42

INDEX 43

localCollectVectorTest
(localCollectVector), 20

localConstructRnormMatrix (localCalc),
20

localCrossProdMatSelf (localCalc), 20
localCrossProdMatSelfDiag (localCalc),

20
localCrossProdMatVec (localCalc), 20
localDistributeVector

(localCollectVector), 20
localDistributeVectorTest

(localCollectVector), 20
localForwardsolve (localCalc), 20
localGetRectangularMatrixIndices, 35
localGetRectangularMatrixIndices

(localGetVectorIndices), 21
localGetTriangularMatrixIndices, 35
localGetTriangularMatrixIndices

(localGetVectorIndices), 21
localGetVectorIndices, 3, 21, 35
localKrigeProblemConstructCov

(localKrigeProblemConstructMean),
22

localKrigeProblemConstructMean, 3, 22
localMultChol (localCalc), 20
localPull (localCollectVector), 20
localPullTest (localCollectVector), 20
localRm, 23

mpi.exit, 6
mpi.quit, 6

optimizeLogDens, krigeProblem-method
(krigeProblem-class), 15

predict, krigeProblem-method
(krigeProblem-class), 15

pull, 23
push, 24

remoteBacksolve (remoteForwardsolve), 33
remoteCalc, 25
remoteCalcChol, 26
remoteConstructCov,

krigeProblem-method
(krigeProblem-class), 15

remoteConstructMean,
krigeProblem-method
(krigeProblem-class), 15

remoteConstructRnormMatrix
(remoteConstructRnormVector),
27

remoteConstructRnormVector, 27
remoteCrossProdMatSelf, 29
remoteCrossProdMatSelfDiag

(remoteCrossProdMatSelf), 29
remoteCrossProdMatVec, 31
remoteForwardsolve, 33
remoteGetIndices, 35
remoteLs, 36
remoteMultChol, 37
remoteRm, 39

setParams, krigeProblem-method
(krigeProblem-class), 15

show, krigeProblem-method
(krigeProblem-class), 15

simulateRealizations,
krigeProblem-method
(krigeProblem-class), 15

SN2011fe, 40
SN2011fe_covfunc (SN2011fe), 40
SN2011fe_crosscovfunc (SN2011fe), 40
SN2011fe_initialParams (SN2011fe), 40
SN2011fe_meanfunc (SN2011fe), 40
SN2011fe_mle (SN2011fe), 40
SN2011fe_mle_subset (SN2011fe), 40
SN2011fe_newdata (SN2011fe), 40
SN2011fe_newdata_subset (SN2011fe), 40
SN2011fe_predcovfunc (SN2011fe), 40
SN2011fe_predmeanfunc (SN2011fe), 40
SN2011fe_subset (SN2011fe), 40

	alloc
	bigGP
	bigGP-meta
	bigGP.exit
	bigGP.init
	calcD
	calcIJ
	collectDiagonal
	collectRectangularMatrix
	collectTriangularMatrix
	collectVector
	distributedKrigeProblem-class
	distributeVector
	getDistributedVectorLength
	krigeProblem-class
	localAssign
	localCalc
	localCollectVector
	localGetVectorIndices
	localKrigeProblemConstructMean
	localRm
	pull
	push
	remoteCalc
	remoteCalcChol
	remoteConstructRnormVector
	remoteCrossProdMatSelf
	remoteCrossProdMatVec
	remoteForwardsolve
	remoteGetIndices
	remoteLs
	remoteMultChol
	remoteRm
	SN2011fe
	Index

