Title: | Binary Classification Using Extensions of Discriminant Analysis |
---|---|
Description: | Implements methods for sample size reduction within Linear and Quadratic Discriminant Analysis in Lapanowski and Gaynanova (2020) <arXiv:2005.03858>. Also includes methods for non-linear discriminant analysis with simultaneous sparse feature selection in Lapanowski and Gaynanova (2019) PMLR 89:1704-1713. |
Authors: | Alexander F. Lapanowski [aut, cre], Irina Gaynanova [aut] |
Maintainer: | Alexander F. Lapanowski <[email protected]> |
License: | GPL-3 |
Version: | 1.3 |
Built: | 2024-12-07 06:53:07 UTC |
Source: | CRAN |
Returns a (m x 1) vector of predicted group membership (either 1 or 2) for each data point in X. Uses Data and Cat to train the classifier.
KOS(TestData = NULL, TrainData, TrainCat, Method = "Full", Mode = "Automatic", m1 = NULL, m2 = NULL, Sigma = NULL, Gamma = NULL, Lambda = NULL, Epsilon = 1e-05)
KOS(TestData = NULL, TrainData, TrainCat, Method = "Full", Mode = "Automatic", m1 = NULL, m2 = NULL, Sigma = NULL, Gamma = NULL, Lambda = NULL, Epsilon = 1e-05)
TestData |
(m x p) Matrix of unlabelled data with numeric features to be classified. Cannot have missing values. |
TrainData |
(n x p) Matrix of training data with numeric features. Cannot have missing values. |
TrainCat |
(n x 1) Vector of class membership corresponding to Data. Values must be either 1 or 2. |
Method |
A string of characters which determines which version of KOS to use. Must be either "Full" or "Subsampled". Default is "Full". |
Mode |
A string of characters which determines how the reduced sample paramters will be inputted for each method. Must be either "Research", "Interactive", or "Automatic". Default is "Automatic". |
m1 |
The number of class 1 compressed samples to be generated. Must be a positive integer. |
m2 |
The number of class 2 compressed samples to be generated. Must be a positive integer. |
Sigma |
Scalar Gaussian kernel parameter. Default set to NULL and is automatically generated if user-specified value not provided. Must be > 0. User-specified parameters must satisfy hierarchical ordering. |
Gamma |
Scalar ridge parameter used in kernel optimal scoring. Default set to NULL and is automatically generated if user-specified value not provided. Must be > 0. User-specified parameters must satisfy hierarchical ordering. |
Lambda |
Scalar sparsity parameter on weight vector. Default set to NULL and is automatically generated by the function if user-specified value not provided. Must be >= 0. When Lambda = 0, SparseKOS defaults to kernel optimal scoring of [Lapanowski and Gaynanova, preprint] without sparse feature selection. User-specified parameters must satisfy hierarchical ordering. |
Epsilon |
Numerical stability constant with default value 1e-05. Must be > 0 and is typically chosen to be small. |
Function which handles classification. Generates feature weight vector and discriminant coefficients vector in sparse kernel optimal scoring. If a matrix X is provided, the function classifies each data point using the generated feature weight vector and discriminant vector. Will use user-supplied parameters Sigma, Gamma, and Lambda if any are given. If any are missing, the function will run SelectParams to generate the other parameters. User-specified values must satisfy hierarchical ordering.
A list of
Predictions |
(m x 1) Vector of predicted class labels for the data points in TestData. Only included in non-null value of X is provided. |
Weights |
(p x 1) Vector of feature weights. |
Dvec |
(n x 1) Discrimiant coefficients vector. |
Lapanowski, Alexander F., and Gaynanova, Irina. “Sparse feature selection in kernel discriminant analysis via optimal scoring”, Artificial Intelligence and Statistics, 2019.
Sigma <- 1.325386 #Set parameter values equal to result of SelectParam. Gamma <- 0.07531579 #Speeds up example. Lambda <- 0.002855275 TrainData <- KOS_Data$TrainData TrainCat <- KOS_Data$TrainCat TestData <- KOS_Data$TestData TestCat <- KOS_Data$TestCat KOS(TestData = TestData, TrainData = TrainData, TrainCat = TrainCat , Sigma = Sigma , Gamma = Gamma , Lambda = Lambda)
Sigma <- 1.325386 #Set parameter values equal to result of SelectParam. Gamma <- 0.07531579 #Speeds up example. Lambda <- 0.002855275 TrainData <- KOS_Data$TrainData TrainCat <- KOS_Data$TrainCat TestData <- KOS_Data$TestData TestCat <- KOS_Data$TestCat KOS(TestData = TestData, TrainData = TrainData, TrainCat = TrainCat , Sigma = Sigma , Gamma = Gamma , Lambda = Lambda)
A list consisting of Training and Test data along with corresponding class labels.
KOS_Data
KOS_Data
A list consisting of:
(179 x 4) Matrix of training data features. the first two features satisfy sqrt(x_i1^2 + x_i2^2) > 2/3 if the ith sample is in class 1. Otherwise, they satisfy sqrt(x_i1^2 + x_i2^2) < 2/3 - 1/10 if the ith sample is in class 2. The third and fourth features are generated as independent N(0, 1/2) noise.
(94 x 4) Matrix of test data features. the first two features satisfy sqrt(x_i1^2 + x_i2^2) > 2/3 if the ith sample is in class 1. Otherwise, they satisfy sqrt(x_i1^2 + x_i2^2) < 2/3 - 1/10 if the ith sample is in class 2. The third and fourth features are generated as independent N(0, 1/2) noise.
(179 x 1) Vector of class labels for the training data.
(94 x 1) Vector of class labels for the test data.
...
Simulation model 1 from [Lapanowski and Gaynanova, preprint].
Lapanowski, Alexander F., and Gaynanova, Irina. “Sparse Feature Selection in Kernel Discriminant Analysis via Optimal Scoring”, preprint.
A wrapper function for the various LDA implementations available in this package.
Generates class predictions for TestData
.
LDA(TrainData, TrainCat, TestData, Method = "Full", Mode = "Automatic", m1 = NULL, m2 = NULL, m = NULL, s = NULL, gamma = 1e-05, type = "Rademacher")
LDA(TrainData, TrainCat, TestData, Method = "Full", Mode = "Automatic", m1 = NULL, m2 = NULL, m = NULL, s = NULL, gamma = 1e-05, type = "Rademacher")
TrainData |
A (n x p) numeric matrix without missing values consisting of n training samples each with p features. |
TrainCat |
A vector of length n consisting of group labels of the n training samples in |
TestData |
A (m x p) numeric matrix without missing values consisting of m training samples each with p features. The number of features must equal the number of features in |
Method |
A string of characters which determines which version of LDA to use. Must be either "Full", "Compressed", "Subsampled", "Projected", or "fastRandomFisher". Default is "Full". |
Mode |
A string of characters which determines how the reduced sample paramters will be inputted for each method. Must be either "Research", "Interactive", or "Automatic". Default is "Automatic". |
m1 |
The number of class 1 compressed samples to be generated. Must be a positive integer. |
m2 |
The number of class 2 compressed samples to be generated. Must be a positive integer. |
m |
The number of total compressed samples to be generated. Must be a positive integer. |
s |
The sparsity level used in compression. Must satify 0 < s < 1. |
gamma |
A numeric value for the stabilization amount gamma * I added to the covariance matrixed used in the LDA decision rule. Default amount is 1E-5. Cannot be negative. |
type |
A string of characters determining the type of compression matrix used. The accepted values are |
Function which handles all implementations of LDA.
A list containing
Predictions |
(m x 1) Vector of predicted class labels for the data points in |
Dvec |
(px1) Discriminant vector used to predict the class labels. |
Lapanowski, Alexander F., and Gaynanova, Irina. “Compressing large sample data for discriminant analysis” arXiv preprint arXiv:2005.03858 (2020).
Ye, Haishan, Yujun Li, Cheng Chen, and Zhihua Zhang. “Fast Fisher discriminant analysis with randomized algorithms.” Pattern Recognition 72 (2017): 82-92.
TrainData <- LDA_Data$TrainData TrainCat <- LDA_Data$TrainCat TestData <- LDA_Data$TestData plot(TrainData[,2]~TrainData[,1], col = c("blue","orange")[as.factor(TrainCat)]) #----- Full LDA ------- LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Full", gamma = 1E-5) #----- Compressed LDA ------- m1 <- 700 m2 <- 300 s <- 0.01 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Research", m1 = m1, m2 = m2, s = s, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Automatic", gamma = 1E-5) #----- Sub-sampled LDA ------ m1 <- 700 m2 <- 300 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Research", m1 = m1, m2 = m2, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Automatic", gamma = 1E-5) #----- Projected LDA ------ m1 <- 700 m2 <- 300 s <- 0.01 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Projected", Mode = "Research", m1 = m1, m2 = m2, s = s, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Projected", Mode = "Automatic", gamma = 1E-5) #----- Fast Random Fisher ------ m <- 1000 s <- 0.01 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "fastRandomFisher", Mode = "Research", m = m, s = s, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "fastRandomFisher", Mode = "Automatic", gamma = 1E-5)
TrainData <- LDA_Data$TrainData TrainCat <- LDA_Data$TrainCat TestData <- LDA_Data$TestData plot(TrainData[,2]~TrainData[,1], col = c("blue","orange")[as.factor(TrainCat)]) #----- Full LDA ------- LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Full", gamma = 1E-5) #----- Compressed LDA ------- m1 <- 700 m2 <- 300 s <- 0.01 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Research", m1 = m1, m2 = m2, s = s, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Automatic", gamma = 1E-5) #----- Sub-sampled LDA ------ m1 <- 700 m2 <- 300 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Research", m1 = m1, m2 = m2, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Automatic", gamma = 1E-5) #----- Projected LDA ------ m1 <- 700 m2 <- 300 s <- 0.01 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Projected", Mode = "Research", m1 = m1, m2 = m2, s = s, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Projected", Mode = "Automatic", gamma = 1E-5) #----- Fast Random Fisher ------ m <- 1000 s <- 0.01 LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "fastRandomFisher", Mode = "Research", m = m, s = s, gamma = 1E-5) LDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "fastRandomFisher", Mode = "Automatic", gamma = 1E-5)
A list consisting of Training and Test data along with corresponding class labels.
LDA_Data
LDA_Data
A list consisting of:
(10000 x 10) Matrix of independent normally-distributed training samples conditioned on class membership. There are 7000 samples belonging to class 1, and 3000 samples belonging to class 2. The class 1 mean vector is the vector of length 10 consisting only of -2. Likewise, the class 2 mean vector is the vector of length 10 consisting only of 2. The shared covariance matrix has (i,j) entry (0.5)^|i-j|.
(1000 x 10) Matrix of independenttest data features with the same distributions and class proportions as TrainData
.
(10000 x 1) Vector of class labels for the samples in TrainData
.
(1000 x 1) Vector of class labels for the samples in TestData
.
...
Lapanowski, Alexander F., and Gaynanova, Irina. “Compressing large-sample data for discriminant analysis”, preprint.
A wrapper function for the various QDA implementations available in this package.
Generates class predictions for TestData
.
QDA(TrainData, TrainCat, TestData, Method = "Full", Mode = "Automatic", m1 = NULL, m2 = NULL, m = NULL, s = NULL, gamma = 1e-05)
QDA(TrainData, TrainCat, TestData, Method = "Full", Mode = "Automatic", m1 = NULL, m2 = NULL, m = NULL, s = NULL, gamma = 1e-05)
TrainData |
A (n x p) numeric matrix without missing values consisting of n training samples each with p features. |
TrainCat |
A vector of length n consisting of group labels of the n training samples in |
TestData |
A (m x p) numeric matrix without missing values consisting of m training samples each with p features. The number of features must equal the number of features in |
Method |
A string of characters which determinds which version of QDA to use. Must be either "Full", "Compressed", or "Subsampled". |
Mode |
A string of characters which determines how the reduced sample paramters will be inputted for each method. Must be either "Research", "Interactive", or "Automatic". Default is "Automatic". |
m1 |
The number of class 1 compressed samples to be generated. Must be a positive integer. |
m2 |
The number of class 2 compressed samples to be generated. Must be a positive integer. |
m |
The number of total compressed samples to be generated. Must be a positive integer. |
s |
The sparsity level used in compression. Must satify 0 < s < 1. |
gamma |
A numeric value for the stabilization amount gamma * I added to the covariance matrixed used in the LDA decision rule. Default amount is 1E-5. Cannot be negative. |
Function which handles all implementations of LDA.
Predictions |
(m x 1) Vector of predicted class labels for the data points in |
Lapanowski, Alexander F., and Gaynanova, Irina. “Compressing large sample data for discriminant analysis” arXiv preprint arXiv:2005.03858 (2020).
TrainData <- QDA_Data$TrainData TrainCat <- QDA_Data$TrainCat TestData <- QDA_Data$TestData plot(TrainData[,2]~TrainData[,1], col = c("blue","orange")[as.factor(TrainCat)]) #----- Full QDA ------- QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Full", gamma = 1E-5) #----- Compressed QDA ------- m1 <- 700 m2 <- 300 s <- 0.01 QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Research", m1 = m1, m2 = m2, s = s, gamma = 1E-5) QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Automatic", gamma = 1E-5) #----- Sub-sampled QDA ------ m1 <- 700 m2 <- 300 QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Research", m1 = m1, m2 = m2, gamma = 1E-5) QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Automatic", gamma = 1E-5)
TrainData <- QDA_Data$TrainData TrainCat <- QDA_Data$TrainCat TestData <- QDA_Data$TestData plot(TrainData[,2]~TrainData[,1], col = c("blue","orange")[as.factor(TrainCat)]) #----- Full QDA ------- QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Full", gamma = 1E-5) #----- Compressed QDA ------- m1 <- 700 m2 <- 300 s <- 0.01 QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Research", m1 = m1, m2 = m2, s = s, gamma = 1E-5) QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Compressed", Mode = "Automatic", gamma = 1E-5) #----- Sub-sampled QDA ------ m1 <- 700 m2 <- 300 QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Research", m1 = m1, m2 = m2, gamma = 1E-5) QDA(TrainData = TrainData, TrainCat = TrainCat, TestData = TestData, Method = "Subsampled", Mode = "Automatic", gamma = 1E-5)
A list consisting of Training and Test data along with corresponding class labels.
QDA_Data
QDA_Data
A list consisting of:
(10000 x 10) Matrix of independent normally-distributed training samples conditioned on class membership. There are 7000 samples belonging to class 1, and 3000 samples belonging to class 2. The class 1 mean vector is the vector of length 10 consisting only of -2. Likewise, the class 2 mean vector is the vector of length 10 consisting only of 2. The class 1 covariance matrix has (i,j) entry (0.5)^|i-j|. The class 2 covariance matrix has (i,j) entry (-0.5)^|i-j|.
(1000 x 10) Matrix of independenttest data features with the same distributions and class proportions as TrainData
.
(10000 x 1) Vector of class labels for the samples in TrainData
.
(1000 x 1) Vector of class labels for the samples in TestData
.
...
Lapanowski, Alexander F., and Gaynanova, Irina. “Compressing large-sample data for discriminant analysis”, preprint.
Generates parameters to be used in sparse kernel optimal scoring.
SelectParams(TrainData, TrainCat, Sigma = NULL, Gamma = NULL, Epsilon = 1e-05)
SelectParams(TrainData, TrainCat, Sigma = NULL, Gamma = NULL, Epsilon = 1e-05)
TrainData |
(n x p) Matrix of training data with numeric features. Cannot have missing values. |
TrainCat |
(n x 1) Vector of class membership. Values must be either 1 or 2. |
Sigma |
Scalar Gaussian kernel parameter. Default set to NULL and is automatically generated if user-specified value not provided. Must be > 0. User-specified parameters must satisfy hierarchical ordering. |
Gamma |
Scalar ridge parameter used in kernel optimal scoring. Default set to NULL and is automatically generated if user-specified value not provided. Must be > 0. User-specified parameters must satisfy hierarchical ordering. |
Epsilon |
Numerical stability constant with default value 1e-05. Must be > 0 and is typically chosen to be small. |
Generates the gaussian kernel, ridge, and sparsity parameters for use in sparse kernel optimal scoring using the methods presented in [Lapanowski and Gaynanova, preprint]. The Gaussian kernel parameter is generated using five-fold cross-validation of the misclassification error rate aross the .05, .1, .2, .3, .5 quantiles of squared-distances between groups. The ridge parameter is generated using a stabilization technique developed in Lapanowski and Gaynanova (2019). The sparsity parameter is generated by five-fold cross-validation over a logarithmic grid of 20 values in an automatically-generated interval.
A list of
Sigma |
Gaussian kernel parameter. |
Gamma |
Ridge Parameter. |
Lambda |
Sparsity parameter. |
Lancewicki, Tomer. "Regularization of the kernel matrix via covariance matrix shrinkage estimation." arXiv preprint arXiv:1707.06156 (2017).
Lapanowski, Alexander F., and Gaynanova, Irina. “Sparse feature selection in kernel discriminant analysis via optimal scoring”, Artificial Intelligence and Statistics, 2019.
Sigma <- 1.325386 #Set parameter values equal to result of SelectParam. Gamma <- 0.07531579 #Speeds up example TrainData <- KOS_Data$TrainData TrainCat <- KOS_Data$TrainCat SelectParams(TrainData = TrainData , TrainCat = TrainCat, Sigma = Sigma, Gamma = Gamma)
Sigma <- 1.325386 #Set parameter values equal to result of SelectParam. Gamma <- 0.07531579 #Speeds up example TrainData <- KOS_Data$TrainData TrainCat <- KOS_Data$TrainCat SelectParams(TrainData = TrainData , TrainCat = TrainCat, Sigma = Sigma, Gamma = Gamma)