Package 'beaver'

Title: Bayesian Model Averaging of Covariate Adjusted Negative-Binomial Dose-Response
Description: Dose-response modeling for negative-binomial distributed data with a variety of dose-response models. Covariate adjustment and Bayesian model averaging is supported. Functions are provided to easily obtain inference on the dose-response relationship and plot the dose-response curve.
Authors: Richard Payne [aut], Hollins Showalter [aut, cre], Eli Lilly and Company [cph]
Maintainer: Hollins Showalter <[email protected]>
License: MIT + file LICENSE
Version: 1.0.0
Built: 2024-12-19 06:57:28 UTC
Source: CRAN

Help Index


Bayesian Model Averaging of Covariate Adjusted Neg-Binomial Dose-Response

Description

Bayesian Model Averaging of Covariate Adjusted Neg-Binomial Dose-Response

Usage

beaver_mcmc(
  data,
  formula = ~1,
  ...,
  n_adapt = 1000,
  n_burn = 1000,
  n_iter = 10000,
  n_chains = 4,
  thin = 1,
  quiet = FALSE
)

Arguments

data

a dataframe with columns "dose", "response" and any covariates listed in the formula argument.

formula

a right-hand sided formula specifying the covariates.

...

candidate models to be included in Bayesian model averaging. These should be created from calls to the ⁠model_negbin_*⁠ functions (e.g. model_negbin_emax()).

n_adapt

the number of iterations used to tune the MCMC algorithm.

n_burn

the number of MCMC iterations used for burn-in.

n_iter

the number of MCMC iterations to save.

n_chains

the number of MCMC chains.

thin

thinning for the MCMC chain.

quiet

logical indicating if MCMC chain progress output should be silenced.

Value

A list (with appropriate S3 classes) with the prior and posterior weights, sampled model index, and individual MCMC fits.

See Also

Other models: model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()

Other posterior calculations: posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi_g_comp(), pr_eoi()

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Generate data from a negative binomial EMAX model

Description

Generate data from a negative binomial EMAX model

Usage

data_negbin_emax(n_per_arm, doses, b1, b2, b3, ps, x = NULL)

Arguments

n_per_arm

number of subjects in each dose arm.

doses

doses at which to simulate subjects.

b1, b2, b3, ps

parameters from which to simulate data. See model description below. If covariates are specified (through x), then b1 should be a vector of length ncol(x).

x

the model matrix for the covariates. Must have the same number of rows as the total number of subjects (sum(n_per_arm * rep(1, length(doses)))). If NULL, then an intercept term is used by default.

Value

A dataframe with columns "subject", "dose", and "response".

Negative Binomial EMAX

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2di/(b3+di)log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i / (b3 + d_i)

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

b3 N(mub3,sigmab32)(Truncatedtobepositive)b3 ~ N(`mu_b3`, `sigma_b3`^2) (Truncated to be positive)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an EMAX model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Posterior Draws

Description

Extracts posterior draws and puts them into a dataframe or tibble.

Usage

draws(x, ...)

## S3 method for class 'beaver_mcmc'
draws(x, ...)

## S3 method for class 'beaver_mcmc_bma'
draws(x, ...)

Arguments

x

MCMC output.

...

additional arguments passed to methods.

Value

For generic:

See specific method.

For class 'beaver_mcmc':

A dataframe or tibble of MCMC draws.

For class 'beaver_mcmc_bma':

An error.

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Negative Binomial EMAX Dose Response

Description

Model settings for a negative binomial distribution assuming an EMAX Model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_emax(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  w_prior = 1
)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial EMAX

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2di/(b3+di)log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i / (b3 + d_i)

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

b3 N(mub3,sigmab32)(Truncatedtobepositive)b3 ~ N(`mu_b3`, `sigma_b3`^2) (Truncated to be positive)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an EMAX model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()


Negative Binomial Exponential Dose Response

Description

Model settings for a negative binomial distribution assuming an exponential model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_exp(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  w_prior = 1
)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Exponential

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2(1exp(b3di))log(\mu_{ij}) = x_{ij} * b1 + b2 * (1 - exp(-b3 * d_i))

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

b3 N(mub3,sigmab32)(Truncatedtobepositive)b3 ~ N(`mu_b3`, `sigma_b3`^2) (Truncated to be positive)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an exponential model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()


Negative Binomial Independent Dose Response

Description

Model settings for a negative binomial distribution with an independent mean for each dose. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_indep(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Independent

Let yijy_{ij} be the jjth subject on the kkth dose. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2klog(\mu_{ij}) = x_{ij} * b1 + b2_k

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2k N(mub2,sigmab22)b2_k ~ N(`mu_b2`, `sigma_b2`^2)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an exponential model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()


Negative Binomial Linear Dose Response

Description

Model settings for a negative binomial distribution assuming an linear model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_linear(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Linear

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2dilog(\mu_{ij}) = x_{ij} * b1 + b2 * d_i

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a linear model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()


Negative Binomial Log-Linear Dose Response

Description

Model settings for a negative binomial distribution assuming a log-linear model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_loglinear(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Log-Linear

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2log(1+di)log(\mu_{ij}) = x_{ij} * b1 + b2 * log(1 + d_i)

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a log-linear model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()


Negative Binomial Log-Quadratic Dose Response

Description

Model settings fora negative binomial distribution assuming a log-quadratic model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_logquad(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  w_prior = 1
)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Quadratic

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2log(1+di)+b3log(1+di)2log(\mu_{ij}) = x_{ij} * b1 + b2 * log(1 + d_i) + b3 * log(1 + d_i) ^ 2

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

b3 N(mub3,sigmab32)b3 ~ N(`mu_b3`, `sigma_b3`^2)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a quadratic model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_quad(), model_negbin_sigmoid_emax()


Negative Binomial Quadratic Dose Response

Description

Model settings for a negative binomial distribution assuming an quadratic model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_quad(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  w_prior = 1
)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Quadratic

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2di+b3di2log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i + b3 * d_i ^ 2

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

b3 N(mub3,sigmab32)b3 ~ N(`mu_b3`, `sigma_b3`^2)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a quadratic model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_sigmoid_emax()


Negative Binomial Sigmoidal EMAX Dose Response

Description

Model settings for a negative binomial distribution assuming a Sigmoidal EMAX Model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_sigmoid_emax(
  mu_b1,
  sigma_b1,
  mu_b2,
  sigma_b2,
  mu_b3,
  sigma_b3,
  mu_b4,
  sigma_b4,
  w_prior = 1
)

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2, mu_b3, sigma_b3, mu_b4, sigma_b4

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Value

A list with the model's prior weight and hyperparameter values.

Negative Binomial Sigmoidal EMAX

Let yijy_{ij} be the jjth subject on dose did_i. The model is

yij NB(pi,ri)y_{ij} ~ NB(p_i, r_i)

pi Uniform(0,1)p_i ~ Uniform(0, 1)

rij=(μijpi)/(1pi)r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)

log(μij)=xijb1+b2dib4/(b3+dib4)log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i ^ b4 / (b3 + d_i ^ b4)

b1 N(mub1,sigmab12)b1 ~ N(`mu_b1`, `sigma_b1`^2)

b2 N(mub2,sigmab22)b2 ~ N(`mu_b2`, `sigma_b2`^2)

b3 N(mub3,sigmab32)(Truncatedtobepositive)b3 ~ N(`mu_b3`, `sigma_b3`^2) (Truncated to be positive)

b3 N(mub4,sigmab42)(Truncatedtobepositive)b3 ~ N(`mu_b4`, `sigma_b4`^2) (Truncated to be positive)

The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an EMAX model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (

xijx_{ij}

).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_linear(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad()


Compute Posterior G-Computation Estimate

Description

Calculate the estimated effect for each observation at each dose and average over all observations. This function calculates the posterior marginal treatment effect at each dose.

Usage

posterior_g_comp(
  x,
  doses = attr(x, "doses"),
  reference_dose = NULL,
  prob = c(0.025, 0.975),
  return_stats = TRUE,
  return_samples = FALSE,
  new_data = NULL,
  reference_type = c("difference", "ratio")
)

Arguments

x

an object output from beaver_mcmc() or (internal function) run_mcmc().

doses

doses at which to obtain the posterior.

reference_dose

dose to which to compare as either a difference or ratio.

prob

the percentiles of the posterior to calculate for each dose.

return_stats

logical indicating if the posterior mean and quantiles should be returned.

return_samples

logical indicating if posterior mean samples should be returned.

new_data

a dataframe containing all the variables used in the covariate adjustments to the model used to obtain x. Usually this will be the same dataframe used to fit the model.

reference_type

whether to provide the posterior of the difference or the ratio between each dose and the reference dose.

Value

A list with the elements stats and samples. When using this function with default settings, samples is NULL and stats is a dataframe summarizing the posterior samples. stats contains, at a minimum, the columns "dose", "value", and variables corresponding to the values passed in prob ("2.50%" and "97.50%" by default). When return_stats is set to FALSE, stats is NULL. When return_samples is set to TRUE, samples is a dataframe with the posterior samples for each iteration of the MCMC.

When x is of class 'beaver_mcmc_bma':

The dataframe will have, at a minimum, the columns "iter" and "model", indicating the MCMC iteration and the model that was used in the calculations, as well as the columns "dose" and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the beaver_mcmc() function.

When x is of class 'beaver_mcmc':

The dataframe will have, at a minimum, the column "iter", indicating the MCMC iteration, as well as the columns "dose" and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the run_mcmc() function.

See Also

Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), pr_eoi_g_comp(), pr_eoi()

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Posterior Samples from Bayesian Model Averaging

Description

Calculate posterior quantities of interest using Bayesian model averaging.

Usage

## S3 method for class 'beaver_mcmc'
posterior(
  x,
  doses = attr(x, "doses"),
  reference_dose = NULL,
  prob = c(0.025, 0.975),
  return_stats = TRUE,
  return_samples = FALSE,
  new_data = NULL,
  contrast = NULL,
  reference_type = c("difference", "ratio"),
  ...
)

Arguments

x

an object output from (internal function) run_mcmc().

doses

doses at which to obtain the posterior.

reference_dose

dose to which to compare as either a difference or ratio.

prob

the percentiles of the posterior to calculate for each dose.

return_stats

logical indicating if the posterior mean and quantiles should be returned.

return_samples

logical indicating if posterior mean samples should be returned.

new_data

a dataframe for which the posterior will be calculated for each observation's covariate values.

contrast

a matrix containing where each row contains a contrast for which the posterior will be calculated.

reference_type

whether to provide the posterior of the difference or the ratio between each dose and the reference dose.

...

additional arguments will throw an error.

Value

A list with the elements stats and samples. When using this function with default settings, samples is NULL and stats is a dataframe summarizing the posterior samples. stats contains, at a minimum, the columns "dose", ".contrast_index", "(Intercept)", "value", and variables corresponding to the values passed in prob ("2.50%" and "97.50%" by default). When return_stats is set to FALSE, stats is NULL. When return_samples is set to TRUE, samples is a dataframe with the posterior samples for each iteration of the MCMC. The dataframe will have, at a minimum, the column "iter", indicating the MCMC iteration, as well as the columns "dose", ".contrast_index", "(Intercept)", and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the run_mcmc() function.

See Also

Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior_g_comp(), pr_eoi_g_comp(), pr_eoi()

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Posterior Samples from Bayesian Model Averaging

Description

Calculate posterior quantities of interest using Bayesian model averaging.

Usage

## S3 method for class 'beaver_mcmc_bma'
posterior(
  x,
  doses = attr(x, "doses"),
  reference_dose = NULL,
  prob = c(0.025, 0.975),
  return_stats = TRUE,
  return_samples = FALSE,
  new_data = NULL,
  contrast = NULL,
  reference_type = c("difference", "ratio"),
  ...
)

Arguments

x

an object output from beaver_mcmc().

doses

doses at which to obtain the posterior.

reference_dose

dose to which to compare as either a difference or ratio.

prob

the percentiles of the posterior to calculate for each dose.

return_stats

logical indicating if the posterior mean and quantiles should be returned.

return_samples

logical indicating if posterior mean samples should be returned.

new_data

a dataframe for which the posterior will be calculated for each observation's covariate values.

contrast

a matrix containing where each row contains a contrast for which the posterior will be calculated.

reference_type

whether to provide the posterior of the difference or the ratio between each dose and the reference dose.

...

additional arguments will throw an error.

Value

A list with the elements stats and samples. When using this function with default settings, samples is NULL and stats is a dataframe summarizing the posterior samples. stats contains, at a minimum, the columns "dose", ".contrast_index", "(Intercept)", "value", and variables corresponding to the values passed in prob ("2.50%" and "97.50%" by default). When return_stats is set to FALSE, stats is NULL. When return_samples is set to TRUE, samples is a dataframe with the posterior samples for each iteration of the MCMC. The dataframe will have, at a minimum, the columns "iter" and "model", indicating the MCMC iteration and the model that was used in the calculations, as well as the columns "dose", ".contrast_index", "(Intercept)", and "value". The functions used for each model are defined within the model_negbin_XYZ() functions and used in the beaver_mcmc() function.

See Also

Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi_g_comp(), pr_eoi()

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Calculate Probability of Meeting Effect of Interest

Description

Calculate a posterior quantity such as Pr(trt_arm1 - trt_arm2 > eoi)

Usage

pr_eoi(
  x,
  eoi,
  doses = attr(x, "doses"),
  reference_dose = NULL,
  new_data = NULL,
  contrast = NULL,
  reference_type = c("difference", "ratio"),
  direction = c("greater", "less")
)

Arguments

x

an object output from beaver_mcmc() or (internal function) run_mcmc().

eoi

effects of interest in the probability equation.

doses

doses at which to obtain the posterior.

reference_dose

dose to which to compare as either a difference or ratio.

new_data

a dataframe for which the posterior will be calculated for each observation's covariate values.

contrast

a matrix containing where each row contains a contrast for which the posterior will be calculated.

reference_type

whether to provide the posterior of the difference or the ratio between each dose and the reference dose.

direction

calculate whether the posterior quantity is greater or less than the eoi

Value

A dataframe or tibble with the posterior quantities.

See Also

Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi_g_comp()

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")

Calculate Probability of Meeting Effect of Interest using G-Computation

Description

Calculate a posterior quantity such as Pr(trt_arm1 - trt_arm2 > eoi) based on the posterior marginal treatment effect at each dose.

Usage

pr_eoi_g_comp(
  x,
  eoi,
  doses = attr(x, "doses"),
  reference_dose = NULL,
  new_data = NULL,
  reference_type = c("difference", "ratio"),
  direction = c("greater", "less")
)

Arguments

x

an object output from beaver_mcmc() or (internal function) run_mcmc().

eoi

effects of interest in the probability equation.

doses

doses at which to obtain the posterior.

reference_dose

dose to which to compare as either a difference or ratio.

new_data

a dataframe containing all the variables used in the covariate adjustments to the model used to obtain x. Usually this will be the same dataframe used to fit the model.

reference_type

whether to provide the posterior of the difference or the ratio between each dose and the reference dose.

direction

calculate whether the posterior quantity is greater or less than the eoi

Value

A dataframe or tibble with the posterior quantities.

See Also

Other posterior calculations: beaver_mcmc(), posterior.beaver_mcmc_bma(), posterior.beaver_mcmc(), posterior_g_comp(), pr_eoi()

Examples

# The {beaver} package, by definition, performs MCMC for multiple models.
# Even with a small number of chains/burn-ins/samples, a minimally illustrative
# example requires >5s to run.

library(dplyr)

# No covariates----

set.seed(100)

df <- data_negbin_emax(
  n_per_arm = 10,
  doses = 0:3,
  b1 = 0,
  b2 = 2.5,
  b3 = 0.5,
  ps = 0.75
)

df %>%
  group_by(dose) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ 1,
  data = df,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc$w_post

draws <- try(draws(mcmc)) #draws() is intended for single model fits only
draws_emax <- draws(mcmc$models$emax$mcmc)
draws_linear <- draws(mcmc$models$linear$mcmc)
draws_quad <- draws(mcmc$models$quad$mcmc)
draws_exp <- draws(mcmc$models$exp$mcmc)

post <- posterior(
  mcmc,
  contrast = matrix(1, 1, 1),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc,
  eoi = c(5, 8),
  contrast = matrix(1, 1, 1),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp <- posterior_g_comp(
  mcmc,
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc,
  eoi = c(5, 8),
  new_data = df,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc, contrast = matrix(1, 1, 1))

# With covariates----

set.seed(1000)

x <-
  data.frame(
    gender = factor(sample(c("F", "M"), 40, replace = TRUE))
  ) %>%
  model.matrix(~ gender, data = .)

df_cov <-
  data_negbin_emax(
    n_per_arm = 10,
    doses = 0:3,
    b1 = c(0, 0.5),
    b2 = 2.5,
    b3 = 0.5,
    ps = 0.75,
    x = x
  ) %>%
  mutate(
    gender = case_when(
      genderM == 1 ~ "M",
      TRUE ~ "F"
    ),
    gender = factor(gender)
  ) %>%
  select(subject, dose, gender, response)

df_cov %>%
  group_by(dose, gender) %>%
  summarize(
    mean = mean(response),
    se = sd(response) / sqrt(n()),
    .groups = "drop"
  )

mcmc_cov <- beaver_mcmc(
  emax = model_negbin_emax(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  linear = model_negbin_linear(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    w_prior = 1 / 4
  ),
  quad = model_negbin_quad(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 1.5,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  exp = model_negbin_exp(
    mu_b1 = 0,
    sigma_b1 = 10,
    mu_b2 = 0,
    sigma_b2 = 10,
    mu_b3 = 0,
    sigma_b3 = 3,
    w_prior = 1 / 4
  ),
  formula = ~ gender,
  data = df_cov,
  n_iter = 1e2,
  n_chains = 1,
  quiet = TRUE
)

mcmc_cov$w_post

draws_cov <- try(draws(mcmc_cov)) #draws() is intended for single model fits only
draws_cov_emax <- draws(mcmc_cov$models$emax$mcmc)
draws_cov_linear <- draws(mcmc_cov$models$linear$mcmc)
draws_cov_quad <- draws(mcmc_cov$models$quad$mcmc)
draws_cov_exp <- draws(mcmc_cov$models$exp$mcmc)

post_cov <- posterior(
  mcmc_cov,
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  doses = 0:3,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi(
  mcmc_cov,
  eoi = c(5, 8),
  contrast = matrix(c(1, 1, 0, 1), 2, 2),
  reference_dose = 0,
  reference_type = "difference"
)

post_g_comp_cov <- posterior_g_comp(
  mcmc_cov,
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

pr_eoi_g_comp(
  mcmc_cov,
  eoi = c(5, 8),
  new_data = df_cov,
  reference_dose = 0,
  reference_type = "difference"
)

plot(mcmc_cov, new_data = df_cov, type = "g-comp")