Package 'bayesdistreg'

Title: Bayesian Distribution Regression
Description: Implements Bayesian Distribution Regression methods. This package contains functions for three estimators (non-asymptotic, semi-asymptotic and asymptotic) and related routines for Bayesian Distribution Regression in Huang and Tsyawo (2018) <doi:10.2139/ssrn.3048658> which is also the recommended reference to cite for this package. The functions can be grouped into three (3) categories. The first computes the logit likelihood function and posterior densities under uniform and normal priors. The second contains Independence and Random Walk Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithms as functions and the third category of functions are useful for semi-asymptotic and asymptotic Bayesian distribution regression inference.
Authors: Emmanuel Tsyawo [aut, cre], Weige Huang [aut]
Maintainer: Emmanuel Tsyawo <[email protected]>
License: GPL-2
Version: 0.1.0
Built: 2024-11-28 06:50:26 UTC
Source: CRAN

Help Index


Asymmetric simultaneous bayesian confidence bands

Description

asymcnfB obtains asymmetric bayesian distribution confidence bands

Usage

asymcnfB(DF, DFmat, alpha = 0.05, scale = FALSE)

Arguments

DF

the target distribution/quantile function as a vector

DFmat

the matrix of draws of the distribution, rows correspond to elements in DF

alpha

level such that 1-alpha is the desired probability of coverage

scale

logical for scaling using the inter-quartile range

Value

cstar - a constant to add and subtract from DF to create confidence bands if no scaling=FALSE else a vector of length DF.

Examples

set.seed(14); m=matrix(rbeta(500,1,4),nrow = 5) + 1:5
DF = apply(m,1,mean); plot(1:5,DF,type="l",ylim = c(min(m),max(m)), xlab = "Index")
asyCB<- asymcnfB(DF,DFmat = m)
lines(1:5,DF-asyCB$cmin,lty=2); lines(1:5,DF+asyCB$cmax,lty=2)

Bayesian distribution regression

Description

distreg draws randomly from the density of F(yo) at a threshold value yo

Usage

distreg(thresh, data0, MH = "IndepMH", ...)

Arguments

thresh

threshold value that is used to binarise the continuous outcome variable

data0

original data set with the first column being the continuous outcome variable

MH

metropolis-hastings algorithm to use; default:"IndepMH", alternative "RWMH"

...

any additional inputs to pass to the MH algorithm

Value

fitob a vector of fitted values corresponding to the distribution at threshold thresh

Examples

data0=faithful[,c(2,1)]; qnt<-quantile(data0[,1],0.25)
distob<- distreg(qnt,data0,iter = 102, burn = 2); 
plot(density(distob,.1),main="Kernel density plot")

Counterfactual bayesian distribution regression

Description

distreg draws randomly from the density of counterfactual of F(yo) at a threshold value yo

Usage

distreg_cfa(thresh, data0, MH = "IndepMH", cft, cfIND, ...)

Arguments

thresh

threshold value that is used to binarise the continuous outcome variable

data0

original data set with the first column being the continuous outcome variable

MH

metropolis-hastings algorithm to use; default:"IndepMH", alternative "RWMH"

cft

column vector of counterfactual treatment

cfIND

the column index(indices) of treatment variable(s) to replace with cft in data0

...

any additional inputs to pass to the MH algorithm

Value

robj a list of a vector of fitted values corresponding to random draws from F(yo), counterfactual F(yo), and the parameters

Examples

data0=faithful[,c(2,1)]; qnt<-quantile(data0[,1],0.25)
cfIND=2 #Note: the first column is the outcome variable. 
cft=0.95*data0[,cfIND] # a decrease by 5%
dist_cfa<- distreg_cfa(qnt,data0,cft,cfIND,MH="IndepMH",iter = 102, burn = 2)
par(mfrow=c(1,2)); plot(density(dist_cfa$counterfactual,.1),main="Original")
plot(density(dist_cfa$counterfactual,.1),main="Counterfactual"); par(mfrow=c(1,1))

Semi-asymptotic counterfactual distribution

Description

distreg_cfa.sas takes input object from dr_asympar() for counterfactual semi asymptotic bayesian distribution. This involves taking random draws from the normal approximation of the posterior at each threshold value.

Usage

distreg_cfa.sas(ind, drabj, data, cft, cfIND, vcovfn = "vcov",
  iter = 100)

Arguments

ind

index of object in list drabj (i.e. a threshold value) from which to take draws

drabj

object from dr_asympar()

data

dataframe, first column is the outcome

cft

column vector of counterfactual treatment

cfIND

the column index(indices) of treatment variable(s) to replace with cft in data0

vcovfn

a string denoting the function to extract the variance-covariance. Defaults at "vcov". Other variance-covariance estimators in the sandwich package are usable.

iter

number of draws to simulate

Value

fitob vector of random draws from density of F(yo) using semi-asymptotic BDR

Examples

y = faithful$waiting
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
qtaus = quantile(y,c(0.05,0.25,0.5,0.75,0.95))
drabj<- dr_asympar(y=y,x=x,thresh = qtaus); data = data.frame(y,x)
cfIND=2 #Note: the first column is the outcome variable. 
cft=0.95*data[,cfIND] # a decrease by 5%
cfa.sasobj<- distreg_cfa.sas(ind=2,drabj,data,cft,cfIND,vcovfn="vcov")
par(mfrow=c(1,2)); plot(density(cfa.sasobj$original,.1),main="Original")
plot(density(cfa.sasobj$counterfactual,.1),main="Counterfactual"); par(mfrow=c(1,1))

Asymptotic distribution regression

Description

distreg.asymp takes input object from dr_asympar() for asymptotic bayesian distribution.

Usage

distreg.asymp(ind, drabj, data, vcovfn = "vcov", ...)

Arguments

ind

index of object in list drabj (i.e. a threshold value) from which to take draws

drabj

object from dr_asympar()

data

dataframe, first column is the outcome

vcovfn

a string denoting the function to extract the variance-covariance. Defaults at "vcov". Other variance-covariance estimators in the sandwich package are usable.

...

additional input to pass to vcovfn

Value

a mean Fhat and a variance varF

Examples

y = faithful$waiting
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
qtaus = quantile(y,c(0.05,0.25,0.5,0.75,0.95))
drabj<- dr_asympar(y=y,x=x,thresh = qtaus); data = data.frame(y,x)
(asymp.obj<- distreg.asymp(ind=2,drabj,data,vcovfn="vcov"))

Semi-asymptotic bayesian distribution

Description

distreg.sas takes input object from dr_asympar() for semi asymptotic bayesian distribution. This involves taking random draws from the normal approximation of the posterior at each threshold value.

Usage

distreg.sas(ind, drabj, data, vcovfn = "vcov", iter = 100)

Arguments

ind

index of object in list drabj (i.e. a threshold value) from which to take draws

drabj

object from dr_asympar()

data

dataframe, first column is the outcome

vcovfn

a string denoting the function to extract the variance-covariance. Defaults at "vcov". Other variance-covariance estimators in the sandwich package are usable.

iter

number of draws to simulate

Value

fitob vector of random draws from density of F(yo) using semi-asymptotic BDR

Examples

y = faithful$waiting
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
qtaus = quantile(y,c(0.05,0.25,0.5,0.75,0.95))
drabj<- dr_asympar(y=y,x=x,thresh = qtaus); data = data.frame(y,x)
drsas1 = lapply(1:5,distreg.sas,drabj=drabj,data=data,iter=100)
drsas2 = lapply(1:5,distreg.sas,drabj=drabj,data=data,vcovfn="vcovHC",iter=100)
par(mfrow=c(3,2));invisible(lapply(1:5,function(i)plot(density(drsas1[[i]],.1))));par(mfrow=c(1,1))
par(mfrow=c(3,2));invisible(lapply(1:5,function(i)plot(density(drsas2[[i]],.1))));par(mfrow=c(1,1))

Binary glm object at several threshold values

Description

dr_asympar computes a normal approximation of the likelihood at a vector of threshold values

Usage

dr_asympar(y, x, thresh, ...)

Arguments

y

outcome variable

x

matrix of covariates

thresh

vector of threshold values on the support of outcome y

...

additional arguments to pass to lapl_aprx2

Value

a list of glm objects corresponding to thresh

Examples

y = faithful$waiting
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
qtaus = quantile(y,c(0.05,0.25,0.5,0.75,0.95))
drabj<- dr_asympar(y=y,x=x,thresh = qtaus)
lapply(drabj,coef); lapply(drabj,vcov) 
# mean and covariance at respective threshold values

The distribution of mean fitted logit probabilities

Description

fitdist function generates a vector of mean fitted probabilities that constitute the distribution. This involves marginalising out covariates.

Usage

fitdist(Matparam, data)

Arguments

Matparam

an M x k matrix of parameter draws, each being a 1 x k vector

data

dataframe used to obtain Matparam

Value

dist fitted (marginalised) distribution


Fitted logit probabilities

Description

fitlogit obtains a vector of fitted logit probabilities given parameters (pars) and data

Usage

fitlogit(pars, data)

Arguments

pars

vector of parameters

data

data frame. The first column of the data frame ought to be the binary dependent variable

Value

vec vector of fitted logit probabilities


Independence Metropolis-Hastings Algorithm

Description

IndepMH computes random draws of parameters using a specified proposal distribution.

Usage

IndepMH(data, propob = NULL, posterior = NULL, iter = 1500,
  burn = 500, vscale = 1.5, start = NULL, prior = "Uniform",
  mu = 0, sig = 10)

Arguments

data

data required for the posterior distribution

propob

a list of mean and variance-covariance of the normal proposal distribution (default:NULL)

posterior

the posterior distribution. It is set to null in order to use the logit posterior. The user can specify log posterior as a function of parameters and data (pars,data)

iter

number of random draws desired (default: 1500)

burn

burn-in period for the MH algorithm (default: 500)

vscale

a positive value to scale up or down the variance-covariance matrix in the proposal distribution

start

starting values of parameters for the MH algorithm. It is automatically generated but the user can also specify.

prior

the prior distribution (default: "Normal", alternative: "Uniform")

mu

the mean of the normal prior distribution (default:0)

sig

the variance of the normal prior distribution (default:10)

Value

val a list of matrix of draws pardraws and the acceptance rate

Examples

y = indicat(faithful$waiting,70)
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
data = data.frame(y,x); propob<- lapl_aprx(y,x)
IndepMH_n<- IndepMH(data=data,propob,iter = 102, burn = 2) # prior="Normal"
IndepMH_u<- IndepMH(data=data,propob,prior="Uniform",iter = 102, burn = 2) # prior="Uniform"
par(mfrow=c(3,1));invisible(apply(IndepMH_n$Matpram,2,function(x)plot(density(x))))
invisible(apply(IndepMH_u$Matpram,2,function(x)plot(density(x))));par(mfrow=c(1,1))

Indicator function

Description

This function creates 0-1 indicators for a given threshold y0 and vector y

Usage

indicat(y, y0)

Arguments

y

vector y

y0

threshold value y0

Value

val


Joint asymptotic mutivariate density of parameters

Description

jdpar.asymp takes input object from dr_asympar() for asymptotic bayesian distribution. It returns objects for joint mutivariate density of parameters across several thresholds. Check for positive definiteness of the covariance matrix, else exclude thresholds yielding negative eigen values.

Usage

jdpar.asymp(drabj, data, jdF = FALSE, vcovfn = "vcovHC", ...)

Arguments

drabj

object from dr_asympar()

data

dataframe, first column is the outcome

jdF

logical to return joint density of F(yo) across thresholds in drabj

vcovfn

a string denoting the function to extract the variance-covariance. Defaults at "vcov". Other variance-covariance estimators in the sandwich package are usable.

...

additional input to pass to vcovfn

Value

mean vector Theta and variance-covariance matrix vcovpar of parameters across thresholds and if jdF=TRUE, a mean vector mnF and a variance-covariance matrix vcovF of F(yo)

Examples

y = faithful$waiting
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
qtaus = quantile(y,c(0.05,0.25,0.5,0.75,0.95))
drabj<- dr_asympar(y=y,x=x,thresh = qtaus); data = data.frame(y,x)
(drjasy = jdpar.asymp(drabj=drabj,data=data,jdF=TRUE))

Montiel Olea and Plagborg-Moller (2018) confidence bands

Description

jntCBOM implements calibrated symmetric confidence bands (algorithm 2) in Montiel Olea and Plagborg-Moller (2018).

Usage

jntCBOM(DF, DFmat, alpha = 0.05, eps = 0.001)

Arguments

DF

the target distribution/quantile function as a vector

DFmat

the matrix of draws of the distribution, rows correspond to indices elements in DF

alpha

level such that 1-alpha is the desired probability of coverage

eps

steps by which the grid on 1-alpha:alpha/2 is searched.

Value

CB - confidence band, zeta - the optimal level

Examples

set.seed(14); m=matrix(rbeta(500,1,4),nrow = 5) + 1:5
DF = apply(m,1,mean); plot(1:5,DF,type="l",ylim = c(min(m),max(m)), xlab = "Index")
jOMCB<- jntCBOM(DF,DFmat = m)
lines(1:5,jOMCB$CB[,1],lty=2); lines(1:5,jOMCB$CB[,2],lty=2)

Laplace approximation of posterior to normal

Description

This function generates mode and variance-covariance for a normal proposal distribution for the bayesian logit.

Usage

lapl_aprx(y, x, glmobj = FALSE)

Arguments

y

the binary dependent variable y

x

the matrix of independent variables.

glmobj

logical for returning the logit glm object

Value

val A list of mode variance-covariance matrix, and scale factor for proposal draws from the multivariate normal distribution.

Examples

y = indicat(faithful$waiting,mean(faithful$waiting)) 
 x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
 gg<- lapl_aprx(y,x)

Laplace approximation of posterior to normal

Description

lapl_aprx2 is a more flexible alternative to lapl_aprx. This creates glm objects from which joint asymptotic distributions can be computed.

Usage

lapl_aprx2(y, x, family = "binomial", ...)

Arguments

y

the binary dependent variable y

x

the matrix of independent variables.

family

a parameter to be passed glm(), defaults to the logit model

...

additional parameters to be passed to glm()

Value

val A list of mode variance-covariance matrix, and scale factor for proposal draws from the multivariate normal distribution.

Examples

y = indicat(faithful$waiting,mean(faithful$waiting)) 
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
(gg<- lapl_aprx2(y,x)); coef(gg); vcov(gg)

Logit likelihood function

Description

logit is the logistic likelihood function given data.

Usage

logit(start, data, Log = TRUE)

Arguments

start

vector of starting values

data

dataframe. The first column should be the dependent variable.

Log

a logical input (defaults to True) to take the log of the likelihood.

Value

like returns the likelihood function value.

Examples

y = indicat(faithful$waiting,mean(faithful$waiting)) 
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
data = data.frame(y,x)
logit(rep(0,3),data)

Parallel compute bayesian distribution regression

Description

par_distreg uses parallel computation to compute bayesian distribution regression for a given vector of threshold values and a data (with first column being the continuous outcome variable)

Usage

par_distreg(thresh, data0, fn = distreg, no_cores = 1,
  type = "PSOCK", ...)

Arguments

thresh

vector of threshold values.

data0

the original data set with a continous dependent variable in the first column

fn

bayesian distribution regression function. the default is distreg provided in the package

no_cores

number of cores for parallel computation

type

type passed to makeCluster() in the package parallel

...

any additional input parameters to pass to fn

Value

mat a G x M matrix of output (G is the length of thresh, M is the number of draws)

Examples

data0=faithful[,c(2,1)]; qnts<-quantile(data0[,1],c(0.05,0.25,0.5,0.75,0.95))
out<- par_distreg(qnts,data0,no_cores=1,iter = 102, burn = 2)
par(mfrow=c(3,2));invisible(apply(out,1,function(x)plot(density(x,30))));par(mfrow=c(1,1))

Parallel compute

Description

parLply uses parlapply from the parallel package with a function as input

Usage

parLply(vec, fn, type = "FORK", no_cores = 1, ...)

Arguments

vec

vector of inputs over which to parallel compute

fn

the function

type

this option is set to "FORK", use "PSOCK" on windows

no_cores

the number of cores to use. Defaults at 1

...

extra inputs to fn()

Value

out parallel computed output


Posterior distribution

Description

posterior computes the value of the posterior at parameter values pars

Usage

posterior(pars, data, Log = TRUE, mu = 0, sig = 25,
  prior = "Normal")

Arguments

pars

parameter values

data

dataframe. The first column must be the binary dependent variable

Log

logical to take the log of the posterior.(defaults to TRUE)

mu

mean of prior of each parameter value in case the prior is Normal (default: 0)

sig

standard deviation of prior of each parameter in case the prior is Normal (default: 25)

prior

string input of "Normal" or "Uniform" prior distribution to use

Value

val value function of the posterior

Examples

y = indicat(faithful$waiting,mean(faithful$waiting)) 
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
data = data.frame(y,x)
posterior(rep(0,3),data,Log = FALSE,mu=0,sig = 10,prior = "Normal") # no log
posterior(rep(0,3),data,Log = TRUE,mu=0,sig = 10,prior = "Normal") # log
posterior(rep(0,3),data,Log = TRUE) # use default values

Normal Prior distribution

Description

This normal prior distribution is a product of univariate N(mu,sig)

Usage

prior_n(pars, mu, sig, Log = FALSE)

Arguments

pars

parameter values

mu

mean value of each parameter value

sig

standard deviation of each parameter value

Log

logical to take the log of prior or not (defaults to FALSE)

Value

val Product of probability values for each parameter

Examples

prior_n(rep(0,6),0,10,Log = TRUE) #log of prior
prior_n(rep(0,6),0,10,Log = FALSE) #no log

Uniform Prior distribution

Description

This uniform prior distribution proportional to 1

Usage

prior_u(pars)

Arguments

pars

parameter values

Value

val value of joint prior =1 for the uniform prior


Quantile conversion of a bayesian distribution matrix

Description

quant_bdr converts a bayesian distribution regression matrix from par_distreg() output to a matrix of quantile distribution.

Usage

quant_bdr(taus, thresh, mat)

Arguments

taus

a vector of quantile indices

thresh

a vector of threshold values used in a par_distreg() type function

mat

bayesian distribution regression output matrix

Value

qmat matrix of quantile distribution


Random Walk Metropolis-Hastings Algorithm

Description

RWMH computes random draws of parameters using a specified proposal distribution. The default is the normal distribution

Usage

RWMH(data, propob = NULL, posterior = NULL, iter = 1500,
  burn = 500, vscale = 1.5, start = NULL, prior = "Normal",
  mu = 0, sig = 10)

Arguments

data

data required for the posterior distribution. First column is the outcome

propob

a list of mean and variance-covariance of the normal proposal distribution (default: NULL i.e. internally generated)

posterior

the posterior distribution. It is set to null in order to use the logit posterior. The user can specify log posterior as a function of parameters and data (pars,data)

iter

number of random draws desired

burn

burn-in period for the Random Walk MH algorithm

vscale

a positive value to scale up or down the variance-covariance matrix in the proposal distribution

start

starting values of parameters for the MH algorithm. It is automatically generated from the proposal distribution but the user can also specify.

prior

the prior distribution (default: "Normal", alternative: "Uniform")

mu

the mean of the normal prior distribution (default:0)

sig

the variance of the normal prior distribution (default:10)

Value

val a list of matrix of draws Matpram and the acceptance rate

Examples

y = indicat(faithful$waiting,70)
x = scale(cbind(faithful$eruptions,faithful$eruptions^2))
data = data.frame(y,x); propob<- lapl_aprx(y,x)
RWMHob_n<- RWMH(data=data,propob,iter = 102, burn = 2) # prior="Normal"
RWMHob_u<- RWMH(data=data,propob,prior="Uniform",iter = 102, burn = 2)
par(mfrow=c(3,1));invisible(apply(RWMHob_n$Matpram,2,function(x)plot(density(x))))
invisible(apply(RWMHob_u$Matpram,2,function(x)plot(density(x))));par(mfrow=c(1,1))

Symmetric simultaneous bayesian confidence bands

Description

simcnfB obtains symmetric bayesian distribution confidence bands

Usage

simcnfB(DF, DFmat, alpha = 0.05, scale = FALSE)

Arguments

DF

the target distribution/quantile function as a vector

DFmat

the matrix of draws of the distribution, rows correspond to elements in DF

alpha

level such that 1-alpha is the desired probability of coverage

scale

logical for scaling using the inter-quartile range

Value

cstar - a constant to add and subtract from DF to create confidence bands if no scaling=FALSE else a vector of length DF.

Examples

set.seed(14); m=matrix(rbeta(500,1,4),nrow = 5) + 1:5
DF = apply(m,1,mean); plot(1:5,DF,type="l",ylim = c(0,max(m)), xlab = "Index")
symCB<- simcnfB(DF,DFmat = m)
lines(1:5,DF-symCB,lty=2); lines(1:5,DF+symCB,lty=2)