Title: | Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model |
---|---|
Description: | Performs Bayesian estimation of the additive main effects and multiplicative interaction (AMMI) model. The method is explained in Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G. and Cornelius, P.L. (2011) (<doi:10.2135/cropsci2010.06.0343>). |
Authors: | Muhammad Yaseen [aut, cre], Jose Crossa [aut, ctb], Sergio Perez-Elizalde [aut, ctb], Diego Jarquin [aut, ctb], Jose Miguel Cotes [aut, ctb], Kert Viele [aut, ctb], Genzhou Liu [aut, ctb], Paul L. Cornelius [aut, ctb], Julian Garcia Abadillo Velasco [aut, ctb] |
Maintainer: | Muhammad Yaseen <[email protected]> |
License: | GPL-2 |
Version: | 0.3.0 |
Built: | 2024-11-23 17:26:38 UTC |
Source: | CRAN |
Performs Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model
## Default S3 method: bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)
## Default S3 method: bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.rep |
Replication Factor |
.nIter |
Number of Iterations |
Genotype by Environment Interaction Model
Muhammad Yaseen ([email protected])
Jose Crossa ([email protected])
Sergio Perez-Elizalde ([email protected])
Diego Jarquin ([email protected])
Jose Miguel Cotes
Kert Viele
Genzhou Liu
Paul L. Cornelius
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) fm1 <- bayes_ammi( .data = Maiz , .y = y , .gen = entry , .env = site , .rep = rep , .nIter = 20 ) names(fm1) fm1$mu1 fm1$tau1 fm1$tao1 fm1$delta1 fm1$lambdas1 fm1$alphas1 fm1$gammas1 library(ggplot2) Plot1Mu <- ggplot(data = fm1$mu1, mapping = aes(x = 1:nrow(fm1$mu1), y = mu)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(mu), x = "Iterations") + theme_bw() print(Plot1Mu) Plot2Mu <- ggplot(data = fm1$mu1, mapping = aes(mu)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(mu)) + theme_bw() print(Plot2Mu) Plot1Sigma2 <- ggplot(data = fm1$tau1, mapping = aes(x = 1:nrow(fm1$tau1), y = tau)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(sigma^2), x = "Iterations") + theme_bw() print(Plot1Sigma2) Plot2Sigma2 <- ggplot(data = fm1$tau1, mapping = aes(tau)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(sigma^2)) + theme_bw() print(Plot2Sigma2) # Plot of Alphas Plot1Alpha1 <- ggplot(data = fm1$tao1, mapping = aes(x = 1:nrow(fm1$tao1), y = tao1)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(alpha[1]), x = "Iterations") + theme_bw() print(Plot1Alpha1) Plot2Alpha1 <- ggplot(data = fm1$tao1, mapping = aes(tao1)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(alpha[1])) + theme_bw() print(Plot2Alpha1) Plot1Alpha2 <- ggplot(data = fm1$tao1, mapping = aes(x = 1:nrow(fm1$tao1), y = tao2)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(alpha[2]), x = "Iterations") + theme_bw() print(Plot1Alpha2) Plot2Alpha2 <- ggplot(data = fm1$tao1, mapping = aes(tao2)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(alpha[2])) + theme_bw() print(Plot2Alpha2) # Plot of Betas Plot1Beta1 <- ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta1)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(beta[1]), x = "Iterations") + theme_bw() print(Plot1Beta1) Plot2Beta1 <- ggplot(data = fm1$delta1, mapping = aes(delta1)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(beta[1])) + theme_bw() print(Plot2Beta1) Plot1Beta2 <- ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta2)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(beta[2]), x = "Iterations") + theme_bw() print(Plot1Beta2) Plot2Beta2 <- ggplot(data = fm1$delta1, mapping = aes(delta2)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(beta[2])) + theme_bw() print(Plot2Beta2) Plot1Beta3 <- ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta3)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(beta[3]), x = "Iterations") + theme_bw() print(Plot1Beta3) Plot2Beta3 <- ggplot(data = fm1$delta1, mapping = aes(delta3)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(beta[3])) + theme_bw() print(Plot2Beta3) BiplotAMMI <- ggplot(data = fm1$alphas0, mapping = aes(x = alphas1, y = alphas2)) + geom_point() + geom_hline(yintercept = 0) + geom_vline(xintercept = 0) + geom_text(aes(label = 1:nrow(fm1$alphas0)), vjust = "inward", hjust = "inward") + geom_point(data = fm1$gammas0, mapping = aes(x = gammas1, y = gammas2)) + geom_segment(data = fm1$gammas0, aes(x = 0, y = 0, xend = gammas1, yend = gammas2), arrow = arrow(length = unit(0.2, "cm")) , alpha = 0.75, color = "red") + geom_text(data = fm1$gammas0, aes(x = gammas1, y = gammas2, label = paste0("E", 1:nrow(fm1$gammas0))), vjust = "inward", hjust = "inward") + scale_x_continuous( limits = c(-max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))) , max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))))) + scale_y_continuous( limits = c(-max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))) , max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))))) + labs(title = "MCO Method", x = expression(PC[1]), y = expression(PC[2])) + theme_bw() + theme(plot.title = element_text(hjust = 0.5)) print(BiplotAMMI) BiplotBayesAMMI <- ggplot(data = fm1$alphas1, mapping = aes(x = alphas1, y = alphas2)) + geom_point() + geom_hline(yintercept = 0) + geom_vline(xintercept = 0) + geom_text(aes(label = 1:nrow(fm1$alphas1)), vjust = "inward", hjust = "inward") + geom_point(data = fm1$gammas1, mapping = aes(x = gammas1, y = gammas2)) + geom_segment(data = fm1$gammas1, aes(x = 0, y = 0, xend = gammas1, yend = gammas2), arrow = arrow(length = unit(0.2, "cm")) , alpha = 0.75, color = "red") + geom_text(data = fm1$gammas1, aes(x = gammas1, y = gammas2, label = paste0("E", 1:nrow(fm1$gammas1))), vjust = "inward", hjust = "inward") + scale_x_continuous( limits = c(-max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))) , max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))))) + scale_y_continuous( limits = c(-max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))) , max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))))) + labs(title = "Bayesian Method", x = expression(PC[1]), y = expression(PC[2])) + theme_bw() + theme(plot.title = element_text(hjust = 0.5)) print(BiplotBayesAMMI)
data(Maiz) fm1 <- bayes_ammi( .data = Maiz , .y = y , .gen = entry , .env = site , .rep = rep , .nIter = 20 ) names(fm1) fm1$mu1 fm1$tau1 fm1$tao1 fm1$delta1 fm1$lambdas1 fm1$alphas1 fm1$gammas1 library(ggplot2) Plot1Mu <- ggplot(data = fm1$mu1, mapping = aes(x = 1:nrow(fm1$mu1), y = mu)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(mu), x = "Iterations") + theme_bw() print(Plot1Mu) Plot2Mu <- ggplot(data = fm1$mu1, mapping = aes(mu)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(mu)) + theme_bw() print(Plot2Mu) Plot1Sigma2 <- ggplot(data = fm1$tau1, mapping = aes(x = 1:nrow(fm1$tau1), y = tau)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(sigma^2), x = "Iterations") + theme_bw() print(Plot1Sigma2) Plot2Sigma2 <- ggplot(data = fm1$tau1, mapping = aes(tau)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(sigma^2)) + theme_bw() print(Plot2Sigma2) # Plot of Alphas Plot1Alpha1 <- ggplot(data = fm1$tao1, mapping = aes(x = 1:nrow(fm1$tao1), y = tao1)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(alpha[1]), x = "Iterations") + theme_bw() print(Plot1Alpha1) Plot2Alpha1 <- ggplot(data = fm1$tao1, mapping = aes(tao1)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(alpha[1])) + theme_bw() print(Plot2Alpha1) Plot1Alpha2 <- ggplot(data = fm1$tao1, mapping = aes(x = 1:nrow(fm1$tao1), y = tao2)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(alpha[2]), x = "Iterations") + theme_bw() print(Plot1Alpha2) Plot2Alpha2 <- ggplot(data = fm1$tao1, mapping = aes(tao2)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(alpha[2])) + theme_bw() print(Plot2Alpha2) # Plot of Betas Plot1Beta1 <- ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta1)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(beta[1]), x = "Iterations") + theme_bw() print(Plot1Beta1) Plot2Beta1 <- ggplot(data = fm1$delta1, mapping = aes(delta1)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(beta[1])) + theme_bw() print(Plot2Beta1) Plot1Beta2 <- ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta2)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(beta[2]), x = "Iterations") + theme_bw() print(Plot1Beta2) Plot2Beta2 <- ggplot(data = fm1$delta1, mapping = aes(delta2)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(beta[2])) + theme_bw() print(Plot2Beta2) Plot1Beta3 <- ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta3)) + geom_line(color = "blue") + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = expression(beta[3]), x = "Iterations") + theme_bw() print(Plot1Beta3) Plot2Beta3 <- ggplot(data = fm1$delta1, mapping = aes(delta3)) + geom_histogram() + scale_x_continuous(labels = scales::comma) + scale_y_continuous(labels = scales::comma) + labs(y = "Frequency", x = expression(beta[3])) + theme_bw() print(Plot2Beta3) BiplotAMMI <- ggplot(data = fm1$alphas0, mapping = aes(x = alphas1, y = alphas2)) + geom_point() + geom_hline(yintercept = 0) + geom_vline(xintercept = 0) + geom_text(aes(label = 1:nrow(fm1$alphas0)), vjust = "inward", hjust = "inward") + geom_point(data = fm1$gammas0, mapping = aes(x = gammas1, y = gammas2)) + geom_segment(data = fm1$gammas0, aes(x = 0, y = 0, xend = gammas1, yend = gammas2), arrow = arrow(length = unit(0.2, "cm")) , alpha = 0.75, color = "red") + geom_text(data = fm1$gammas0, aes(x = gammas1, y = gammas2, label = paste0("E", 1:nrow(fm1$gammas0))), vjust = "inward", hjust = "inward") + scale_x_continuous( limits = c(-max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))) , max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))))) + scale_y_continuous( limits = c(-max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))) , max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))))) + labs(title = "MCO Method", x = expression(PC[1]), y = expression(PC[2])) + theme_bw() + theme(plot.title = element_text(hjust = 0.5)) print(BiplotAMMI) BiplotBayesAMMI <- ggplot(data = fm1$alphas1, mapping = aes(x = alphas1, y = alphas2)) + geom_point() + geom_hline(yintercept = 0) + geom_vline(xintercept = 0) + geom_text(aes(label = 1:nrow(fm1$alphas1)), vjust = "inward", hjust = "inward") + geom_point(data = fm1$gammas1, mapping = aes(x = gammas1, y = gammas2)) + geom_segment(data = fm1$gammas1, aes(x = 0, y = 0, xend = gammas1, yend = gammas2), arrow = arrow(length = unit(0.2, "cm")) , alpha = 0.75, color = "red") + geom_text(data = fm1$gammas1, aes(x = gammas1, y = gammas2, label = paste0("E", 1:nrow(fm1$gammas1))), vjust = "inward", hjust = "inward") + scale_x_continuous( limits = c(-max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))) , max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))))) + scale_y_continuous( limits = c(-max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))) , max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))))) + labs(title = "Bayesian Method", x = expression(PC[1]), y = expression(PC[2])) + theme_bw() + theme(plot.title = element_text(hjust = 0.5)) print(BiplotBayesAMMI)
biplots
## Default S3 method: biplots( model, burnin = 0.3, thin = 0.2, pb = 0.05, plot_stable = TRUE, plot_unstable = TRUE, ncolors = 5 )
## Default S3 method: biplots( model, burnin = 0.3, thin = 0.2, pb = 0.05, plot_stable = TRUE, plot_unstable = TRUE, ncolors = 5 )
model |
Output from 'bayes_ammi()'. This should contain the results of the Bayesian AMMI model, including all sampled iterations. |
burnin |
Numeric. Percentage of iterations to discard as burn-in to avoid the effects of random initializations during sampling. For example, 'burnin = 0.1' removes the first 10% of iterations. |
thin |
Numeric. Proportion of sampled iterations to retain for analysis. For example, 'thin = 0.2' keeps 20% of the iterations, selecting 1 out of every 5 iterations. |
pb |
Numeric. Significance levels for the contours in the plot. Smaller values of 'pb' result in wider contours, while higher values create smaller, more specific contours. |
plot_stable |
Logical. If 'TRUE', stable instances are highlighted in the output plot. |
plot_unstable |
Logical. If 'TRUE', unstable instances are highlighted in the output plot. |
ncolors |
Integer. Specifies the number of distinct colors to use in the plot. Adjust this to control the visual differentiation of elements in the plot. |
A list with the following components:
A plot displaying the contours and final biplot values.
A 'data.frame' containing the data used to create the contours.
A 'data.frame' containing the data used to recreate the final biplot values.
Julian Garcia Abadillo Velasco ([email protected])
Diego Jarquin ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
## Not run: data(Maiz) fm1 <- bayes_ammi( .data = Maiz, .y = y, .gen = entry, .env = site, .rep = rep, .nIter = 200 ) library(ggplot2) output_05 <- biplots(model = fm1, plot_stable = TRUE, plot_unstable = TRUE, pb = 0.05) output_05 output_95 <- biplots(model = fm1, plot_stable = TRUE, plot_unstable = TRUE, pb = 0.95) output_95 ## End(Not run)
## Not run: data(Maiz) fm1 <- bayes_ammi( .data = Maiz, .y = y, .gen = entry, .env = site, .rep = rep, .nIter = 200 ) library(ggplot2) output_05 <- biplots(model = fm1, plot_stable = TRUE, plot_unstable = TRUE, pb = 0.05) output_05 output_95 <- biplots(model = fm1, plot_stable = TRUE, plot_unstable = TRUE, pb = 0.95) output_95 ## End(Not run)
Calcuates Environment Effects
## Default S3 method: e_eff(.data, .y, .gen, .env)
## Default S3 method: e_eff(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Environment Effects
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) e_eff( .data = Maiz , .y = y , .gen = entry , .env = site )
data(Maiz) e_eff( .data = Maiz , .y = y , .gen = entry , .env = site )
Calcuates Genotype Effects
## Default S3 method: g_eff(.data, .y, .gen, .env)
## Default S3 method: g_eff(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Genotype Effects
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) g_eff( .data = Maiz , .y = y , .gen = entry , .env = site )
data(Maiz) g_eff( .data = Maiz , .y = y , .gen = entry , .env = site )
Performs Additive Main Effects and Multiplication Interaction Analysis of Genotype by Environment Interaction Model
ge_ammi(.data, .y, .gen, .env, .rep) ## Default S3 method: ge_ammi(.data, .y, .gen, .env, .rep)
ge_ammi(.data, .y, .gen, .env, .rep) ## Default S3 method: ge_ammi(.data, .y, .gen, .env, .rep)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.rep |
Replication Factor |
Genotype by Environment Interaction Model
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) fm1 <- ge_ammi( .data = Maiz , .y = y , .gen = entry , .env = site , .rep = rep )
data(Maiz) fm1 <- ge_ammi( .data = Maiz , .y = y , .gen = entry , .env = site , .rep = rep )
Calcuates Genotype by Environment Interaction Effects
## Default S3 method: ge_eff(.data, .y, .gen, .env)
## Default S3 method: ge_eff(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Genotype by Environment Interaction Effects
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) ge_eff( .data = Maiz , .y = y , .gen = entry , .env = site )
data(Maiz) ge_eff( .data = Maiz , .y = y , .gen = entry , .env = site )
Calcuates Genotype by Environment Interaction Means
## Default S3 method: ge_mean(.data, .y, .gen, .env)
## Default S3 method: ge_mean(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Genotype by Environment Interaction Means
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) ge_mean( .data = Maiz , .y = y , .gen = entry , .env = site )
data(Maiz) ge_mean( .data = Maiz , .y = y , .gen = entry , .env = site )
Calcuates Genotype by Environment Interaction Model
ge_model(.data, .y, .gen, .env, .rep) ## Default S3 method: ge_model(.data, .y, .gen, .env, .rep)
ge_model(.data, .y, .gen, .env, .rep) ## Default S3 method: ge_model(.data, .y, .gen, .env, .rep)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.rep |
Replication Factor |
Genotype by Environment Interaction Model
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) fm1 <- ge_model( .data = Maiz , .y = y , .gen = entry , .env = site , .rep = rep )
data(Maiz) fm1 <- ge_model( .data = Maiz , .y = y , .gen = entry , .env = site , .rep = rep )
Calcuates Genotype by Environment Interaction Variances
## Default S3 method: ge_var(.data, .y, .gen, .env)
## Default S3 method: ge_var(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Genotype by Environment Interaction Variances
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz) ge_var( .data = Maiz , .y = y , .gen = entry , .env = site )
data(Maiz) ge_var( .data = Maiz , .y = y , .gen = entry , .env = site )
Maiz
is used for performing Genotypes by Environment Interaction (GEI) Analysis.
data(Maiz)
data(Maiz)
A data.frame
1320 obs. of 6 variables.
Gen Genotype
Institute Institute
Rep Replicate
Block Block
Env Environment
Yield Yield Response
Muhammad Yaseen ([email protected])
Jose Crossa ([email protected])
Sergio Perez-Elizalde ([email protected])
Diego Jarquin ([email protected])
Jose Miguel Cotes
Kert Viele
Genzhou Liu
Paul L. Cornelius
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
data(Maiz)
data(Maiz)
Gives k matrix
matrix_k(n) ## Default S3 method: matrix_k(n)
matrix_k(n) ## Default S3 method: matrix_k(n)
n |
Number of columns |
Matrix
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
Perform Orthogonal Normalization of a matrix
orthnorm(u = NULL, basis = TRUE, norm = TRUE) ## Default S3 method: orthnorm(u = NULL, basis = TRUE, norm = TRUE)
orthnorm(u = NULL, basis = TRUE, norm = TRUE) ## Default S3 method: orthnorm(u = NULL, basis = TRUE, norm = TRUE)
u |
Matrix |
basis |
Logical argument by default TRUE |
norm |
Logical argument by default TRUE |
Matrix
Muhammad Yaseen ([email protected])
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)