--- title: "tutorial" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{tutorial} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## package preparation ```{r,warning=FALSE,message=FALSE} library(rms) library(base.rms) library(survival) ``` ## 1. transform between linear regressions ### base to rms ```{r,warning=FALSE} fit <- lm(mpg~cyl+vs,data=mtcars) lm2ols(fit) ``` ### rms to base ```{r} fit <- ols(mpg~cyl+vs,data=mtcars) ols2lm(fit) ``` ## 2. transform between logistic regressions ### base to rms ```{r} fit <- glm(vs~mpg,data=mtcars,family = binomial(link='logit')) logit2lrm(fit) ``` ### rms to base ```{r} fit <- lrm(vs~mpg,data=mtcars) lrm2logit(fit) ``` ## 3. transform between cox regressions ### base to rms ```{r} fit <- coxph(Surv(mpg,vs)~am+gear,data=mtcars) coxph2cph(fit) ``` ### rms to base ```{r} fit <- cph(Surv(mpg,vs)~am+gear,data=mtcars) cph2coxph(fit) ```