Package 'banditpam'

Title: Almost Linear-Time k-Medoids Clustering
Description: Interface to a high-performance implementation of k-medoids clustering described in Tiwari, Zhang, Mayclin, Thrun, Piech and Shomorony (2020) "BanditPAM: Almost Linear Time k-medoids Clustering via Multi-Armed Bandits" <https://proceedings.neurips.cc/paper/2020/file/73b817090081cef1bca77232f4532c5d-Paper.pdf>.
Authors: Balasubramanian Narasimhan [aut, cre], Mo Tiwari [aut] (https://motiwari.com)
Maintainer: Balasubramanian Narasimhan <[email protected]>
License: MIT + file LICENSE
Version: 1.0-1
Built: 2024-12-28 06:38:37 UTC
Source: CRAN

Help Index


banditpam is a package for fast clustering using medoids

Description

banditpam is a high-performance package for almost linear-time k-medoids clustering. The methods are described in Tiwari, et al. 2020 (Advances in Neural Information Processing Systems 33).

Author(s)

Balasubramanian Narasimhan and Mo Tiwari


Return the number of threads banditpam is using

Description

Return the number of threads banditpam is using

Usage

bpam_num_threads()

Value

the number of threads banditpam is using


KMedoids Class

Description

This class wraps around the C++ KMedoids class and exposes methods and fields of the C++ object.

Active bindings

k

(integer(1))
The number of medoids/clusters to create

max_iter

(integer(1))
max_iter the maximum number of SWAP steps the algorithm runs

build_conf

(integer(1))
Parameter that affects the width of BUILD confidence intervals, default 1000

swap_conf

(integer(1))
Parameter that affects the width of SWAP confidence intervals, default 10000

loss_fn

(character(1))
The loss function, "lp" (for p integer > 0) or one of "manhattan", "cosine", "inf" or "euclidean"

Methods

Public methods


Method new()

Create a new KMedoids object

Usage
KMedoids$new(
  k = 5L,
  algorithm = c("BanditPAM", "PAM", "FastPAM1"),
  max_iter = 1000L,
  build_conf = 1000,
  swap_conf = 10000L
)
Arguments
k

number of medoids/clusters to create, default 5

algorithm

the algorithm to use, one of "BanditPAM", "PAM", "FastPAM1"

max_iter

the maximum number of SWAP steps the algorithm runs, default 1000

build_conf

parameter that affects the width of BUILD confidence intervals, default 1000

swap_conf

parameter that affects the width of SWAP confidence intervals, default 10000

Returns

a KMedoids object which can be used to fit the banditpam algorithm to data


Method get_algorithm()

Return the algorithm used

Usage
KMedoids$get_algorithm()
Returns

a string indicating the algorithm


Method fit()

Fit the KMedoids algorthm given the data and loss. It is advisable to set the seed before calling this method for reproducible results.

Usage
KMedoids$fit(data, loss, dist_mat = NULL)
Arguments
data

the data matrix

loss

the loss function, either "lp" (p, integer indicating L_p loss) or one of "manhattan", "cosine", "inf" or "euclidean"

dist_mat

an optional distance matrix


Method get_medoids_final()

Return the final medoid indices after clustering

Usage
KMedoids$get_medoids_final()
Returns

a vector indices of the final mediods


Method get_statistic()

Get the specified statistic after clustering

Usage
KMedoids$get_statistic(what)
Arguments
what

a string which should one of "dist_computations", "dist_computations_and_misc", "misc_dist", "build_dist", "swap_dist", "cache_writes", "cache_hits", or "cache_misses"

return

the statistic


Method print()

Printer.

Usage
KMedoids$print(...)
Arguments
...

(ignored).


Method clone()

The objects of this class are cloneable with this method.

Usage
KMedoids$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

# Generate data from a Gaussian Mixture Model with the given means:
set.seed(10)
n_per_cluster <- 40
means <- list(c(0, 0), c(-5, 5), c(5, 5))
X <- do.call(rbind, lapply(means, MASS::mvrnorm, n = n_per_cluster, Sigma = diag(2)))
obj <- KMedoids$new(k = 3)
obj$fit(data = X, loss = "l2")
meds <- obj$get_medoids_final()
plot(X[, 1], X[, 2])
points(X[meds, 1], X[meds, 2], col = "red", pch = 19)