Title: | Various Methods to Estimate the AUC |
---|---|
Description: | Estimate the AUC using a variety of methods as follows: (1) frequentist nonparametric methods based on the Mann-Whitney statistic or kernel methods. (2) frequentist parametric methods using the likelihood ratio test based on higher-order asymptotic results, the signed log-likelihood ratio test, the Wald test, or the approximate ''t'' solution to the Behrens-Fisher problem. (3) Bayesian parametric MCMC methods. |
Authors: | Dai Feng [aut, cre], Damjan Manevski [auc], Maja Pohar Perme [auc] |
Maintainer: | Dai Feng <[email protected]> |
License: | GPL |
Version: | 0.2-1 |
Built: | 2024-11-11 07:17:59 UTC |
Source: | CRAN |
Obtain the point estimate and the confidence interval of the AUC using kernel methods.
auc.nonpara.kernel(x, y, conf.level=0.95, integration=c("FALSE","TRUE"), bw=c("nrd0", "sj"), nint=512, method=c("mw", "jackknife", "bootstrapP", "bootstrapBCa"), nboot)
auc.nonpara.kernel(x, y, conf.level=0.95, integration=c("FALSE","TRUE"), bw=c("nrd0", "sj"), nint=512, method=c("mw", "jackknife", "bootstrapP", "bootstrapBCa"), nboot)
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
integration |
a logical value. If its value is |
bw |
method used for bandwidth selection. |
nint |
the number of equally spaced points at which the density is to be estimated. The default if 512. |
method |
a method used to construct the CI. |
nboot |
number of bootstrap iterations. |
The AUC essentially depends on the CDFs of two classes N and P. We could use kernel smoothing methods to obtain the CDFs. The methods implemented in this function construct the CI based on two different strategies: the first uses kernel smoothing to estimate the PDFs and then the CDFs; and the second starts from the estimate of the CDFs directly. Gaussian kernel is used.
Point estimate and lower and upper bounds of the CI of the AUC.
The observations from class P tend to have larger values then that from class N.
Dai Feng
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2015) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research DOI: 10.1177/0962280215602040
Simon Sheather and Michael Jones (1991) A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society. Series B (Methodological) 53 683-690
#Example 1 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.nonpara.kernel(x, y) ## Not run: #Example 2 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE) auc.nonpara.kernel(x, y, integration="TRUE", bw="sj", method="bootstrapBCa", nboot=999) ## End(Not run)
#Example 1 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.nonpara.kernel(x, y) ## Not run: #Example 2 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE) auc.nonpara.kernel(x, y, integration="TRUE", bw="sj", method="bootstrapBCa", nboot=999) ## End(Not run)
Obtain the point estimate and the confidence interval of the AUC by various methods based on the Mann-Whitney statistic.
auc.nonpara.mw(x, y, conf.level=0.95, method=c("newcombe", "pepe", "delong", "DL.corr", "jackknife", "bootstrapP", "bootstrapBCa"), nboot)
auc.nonpara.mw(x, y, conf.level=0.95, method=c("newcombe", "pepe", "delong", "DL.corr", "jackknife", "bootstrapP", "bootstrapBCa"), nboot)
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
method |
a method used to construct the CI. |
nboot |
number of bootstrap iterations. |
The function implements various methods based on the Mann-Whitney statistic.
Point estimate and lower and upper bounds of the CI of the AUC.
The observations from class P tend to have larger values then that from class N.
Dai Feng, Damjan Manevski, Maja Pohar Perme
Elizabeth R Delong, David M Delong, and Daniel L Clarke-Pearson (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44 837-845
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2017) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research 26(6) 2603-2621 DOI: 10.1177/0962280215602040
Robert G Newcombe (2006) Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: asymptotic methods and evaluation. Statistics in Medicine 25(4) 559-573
Margaret Sullivan Pepe (2003) The statistical evaluation of medical tests for classification and prediction. Oxford University Press
Maja Pohar Perme and Damjan Manevski (2018) Confidence intervals for the Mann-Whitney test. Statistical Methods in Medical Research DOI: 10.1177/0962280218814556
data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.nonpara.mw(x, y) auc.nonpara.mw(x, y, method="delong")
data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.nonpara.mw(x, y) auc.nonpara.mw(x, y, method="delong")
Obtain the point estimate and the credible interval of the AUC using the Bayesian MCMC.
auc.para.bayes(x, y, conf.level=0.95, dist=c("normalDV", "normalEV", "exponential"), nburn=1000, niter=10000, nthin=1, seed=100)
auc.para.bayes(x, y, conf.level=0.95, dist=c("normalDV", "normalEV", "exponential"), nburn=1000, niter=10000, nthin=1, seed=100)
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
dist |
the name of a parametric distribution. |
nburn |
number of burn-in. The default is 1000. |
niter |
number of iterations. The default is 10000. |
nthin |
number of thinnng interval. The default is 1. |
seed |
the seed. The default is 100. |
Use the Bayesian MCMC to estimate the parameters of the distributions and hence the AUC values.
Point estimate and lower and upper bounds of the CI of the AUC.
The observations from class P tend to have larger values then that from class N.
Dai Feng
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2015) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research DOI: 10.1177/0962280215602040
#Example 1 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.para.bayes(x, y, dist="exp") #Example 2 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE) auc.para.bayes(x, y, dist="normalDV")
#Example 1 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.para.bayes(x, y, dist="exp") #Example 2 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE) auc.para.bayes(x, y, dist="normalDV")
Obtain the point estimate and the confidence interval of the AUC using some frequentist parametric methods.
auc.para.frequentist(x, y, conf.level=0.95, dist=c("normalDV", "normalEV", "exponential"), method=c("lrstar", "lr", "wald", "RG1", "RG2"))
auc.para.frequentist(x, y, conf.level=0.95, dist=c("normalDV", "normalEV", "exponential"), method=c("lrstar", "lr", "wald", "RG1", "RG2"))
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
dist |
the name of a parametric distribution. |
method |
a method used to construct the CI. |
Use a variety of frequentist methods for different parametric models to estimate the AUC.
Point estimate and lower and upper bounds of the CI of the AUC.
The observations from class P tend to have larger values then that from class N.
Dai Feng
Giuliana Cortese and Laura Ventura (2013) Accurate higher-order likelihood inference on P(Y < X). Computational Statistics 28(3) 1035-1059
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2015) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research DOI: 10.1177/0962280215602040
Benjamin Reiser and Irwin Guttman (1986) Statistical inference for Pr(Y < X): The normal case. Technometrics 28(3) 253-257
#Example 1 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.para.frequentist(x, y, dist="exp") #Example 2 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE) auc.para.frequentist(x, y, method="RG1")
#Example 1 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE) auc.para.frequentist(x, y, dist="exp") #Example 2 data(petBrainGlioma) y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE) x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE) auc.para.frequentist(x, y, method="RG1")
SUVs from FDG PET and ACE PET used in differentiating brain tumors.
petBrainGlioma
petBrainGlioma
A data-frame presenting the SUVs.
Tatsuro Tsuchida, Hiroaki Takeuchi, Hidehiko Okazawa, Tetsuya Tsujikawa, and Yasuhisa Fujibayashi (2008) Grading of brain glioma with 1-$^11$C-acetate PET: comparison with $^18$F-FDG PET. Nuclear medicine and biology 35(2) 171-176