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Abstract

This design document works out details of approximate maximum
likelihood estimation for aster models with random e�ects. Fixed and
random e�ects are estimated by penalized log likelihood. Variance
components are estimated by integrating out the random e�ects in the
Laplace approximation of the complete data likelihood (this can be
done analytically) and maximizing the resulting approximate missing
data likelihood. A further approximation treats the second derivative
matrix of the cumulant function of the exponential family where it
appears in the approximate missing data log likelihood as a constant
(not a function of parameters). Then �rst and second derivatives of
the approximate missing data log likelihood can be done analytically.
Minus the second derivative matrix of the approximate missing data
log likelihood is treated as approximate Fisher information and used
to estimate standard errors.

1 Theory

Aster models (Geyer, Wagenius and Shaw, 2007; Shaw, Geyer, Wagenius,

Hangelbroek, and Etterson, 2008) have attracted much recent attention. Sev-

eral researchers have raised the issue of incorporating random e�ects in aster

models, and we do so here.

1.1 Complete Data Log Likelihood

Although we are particularly interested in aster models (Geyer et al.,

2007), our theory works for any exponential family model. The log likelihood

can be written

l(φ) = yTφ− c(φ),
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where y is the canonical statistic vector, φ is the canonical parameter vector,

and the cumulant function c satis�es

µ(φ) = Eφ(y) = c′(φ) (1)

W (φ) = varφ(y) = c′′(φ) (2)

where c′(φ) denotes the vector of �rst partial derivatives and c′′(φ) denotes
the matrix of second partial derivatives.

We assume a canonical a�ne submodel with random e�ects determined

by

φ = a+Mα+ Zb, (3)

where a is a known vector, M and Z are known matrices, b is a normal

random vector with mean vector zero and variance matrix D. The vector a
is called the o�set vector and the matrices M and Z are called the model

matrices for �xed and random e�ects, respectively, in the terminology of the

R function glm. (The vector a is called the origin in the terminology of

the R function aster. Design matrix is alternative terminology for model

matrix.) The matrix D is assumed to be diagonal, so the random e�ects

are independent random variables. The diagonal components of D are called

variance components in the classical terminology of random e�ects models

(Searle et al., 1992). Typically the components of b are divided into blocks

having the same variance (Searle et al., 1992, Section 6.1), so there are only

a few variance components but many random e�ects, but nothing in this

document uses this fact.

The unknown parameter vectors are α and ν, where ν is the vector of

variance components. Thus D is a function of ν, although this is not indi-

cated by the notation.

The �complete data log likelihood� (i. e., what the log likelihood would

be if the random e�ect vector b were observed) is

lc(α, b, ν) = l(a+Mα+ Zb)− 1
2b
TD−1b− 1

2 log det(D) (4)

in case none of the variance components are zero. We deal with the case of

zero variance components in Sections 1.9, 1.10, and 1.11 below.

1.2 Missing Data Likelihood

Ideally, inference about the parameters should be based on the missing

data likelihood, which is the complete data likelihood with random e�ects b
integrated out

Lm(α, ν) =

∫
elc(α,b,ν) db (5)
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Maximum likelihood estimates (MLE) of α and ν are the values that max-

imize (5). However MLE are hard to �nd. The integral in (5) cannot be

done analytically, nor can it be done by numerical integration except in very

simple cases. There does exist a large literature on doing such integrals by or-

dinary or Markov chain Monte Carlo (Thompson and Guo, 1991; Geyer and

Thompson, 1992; Geyer, 1994; Shaw, Promislow, Tatar, Hughes, and Geyer,

1999; Shaw, Geyer and Shaw, 2002; Sung and Geyer, 2007), but these meth-

ods take a great deal of computing time and are di�cult for ordinary users

to apply. We wish to avoid that route if at all possible.

1.3 A Digression on Minimization

The theory of constrained optimization (Section 1.10 below) has a bias in

favor of minimization rather than maximization. The explication below will

be simpler if we switch now from maximization to minimization (minimizing

minus the log likelihood) rather than switch later.

1.4 Laplace Approximation

Breslow and Clayton (1993) proposed to replace the integrand in (5) by

its Laplace approximation, which is a normal probability density function

so the random e�ects can be integrated out analytically. Let b∗ denote the

result of maximizing (4) considered as a function of b for �xed α and ν. Then
− logLm(α, ν) is approximated by

q(α, ν) = 1
2 log det[κ

′′(b∗)] + κ(b∗)

where

κ(b) = −lc(a+Mα+ Zb)

κ′(b) = −ZT [y + µ(a+Mα+ Zb)] +D−1b

κ′′(b) = ZTW (a+Mα+ Zb)Z +D−1

Hence

q(α, ν) = −lc(α, b∗, ν) + 1
2 log det

[
κ′′(b∗)

]
= −l(a+Mα+ Zb∗) + 1

2(b
∗)TD−1b∗ + 1

2 log det(D)

+ 1
2 log det

[
ZTW (a+Mα+ Zb∗)Z +D−1

]
= −l(a+Mα+ Zb∗) + 1

2(b
∗)TD−1b∗

+ 1
2 log det

[
ZTW (a+Mα+ Zb∗)ZD + I

]
(6)
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where I denotes the identity matrix of the appropriate dimension (which

must be the same as the dimension of D for the expression it appears in to

make sense), where b∗ is a function of α and ν and D is a function of ν, al-
though this is not indicated by the notation, and where the last equality uses

the rule sum of logs is log of product and the rule product of determinants

is determinant of matrix product (Harville, 1997, Theorem 13.3.4).

Since minus the log likelihood of an exponential family is a convex func-

tion (Barndor�-Nielsen, 1978, Theorem 9.1) and the middle term on the

right-hand side of (4) is a strictly convex function, it follows that (4) con-

sidered as a function of b for �xed α and ν is a strictly convex function.

Moreover, this function has bounded level sets, because the middle term on

the right-hand side of (4) does. It follows that there is unique global mini-

mizer (Rockafellar and Wets, 2004, Theorems 1.9 and 2.6). Thus b∗(α, ν) is
well de�ned for all values of α and ν.

The key idea is to use (6) as if it were the log likelihood for the unknown

parameters (α and ν), although it is only an approximation. However, this

is also problematic. In doing likelihood inference using (6) we need �rst and

second derivatives of it (to calculate Fisher information), but W is already

the second derivative matrix of the cumulant function, so �rst derivatives

of (6) would involve third derivatives of the cumulant function and second

derivatives of (6) would involve fourth derivatives of the cumulant function.

For aster models there are no published formulas for derivatives higher than

second of the aster model cumulant function nor does software (the R package

aster, Geyer, 2015) provide such � the derivatives do, of course, exist

because every cumulant function of a regular exponential family is in�nitely

di�erentiable at every point of the canonical parameter space (Barndor�-

Nielsen, 1978, Theorem 8.1) � they are just not readily available. Breslow

and Clayton (1993) noted the same problem in the context of GLMM, and

proceeded as ifW were a constant function of its argument, so all derivatives

ofW were zero. This is not a bad approximation because �in asymptopia� the

aster model log likelihood is exactly quadratic and W is a constant function,

this being a general property of likelihoods (Geyer, 2013). Hence we adopt

this idea too, more because we are forced to by the di�culty of di�erentiating

W than by our belief that we are �in asymptopia.�

This leads to the following idea. Rather than basing inference on (6), we

actually use

q(α, ν) = −l(a+Mα+ Zb∗) + 1
2(b

∗)TD−1b∗ + 1
2 log det

[
ZT ŴZD + I

]
(7)

where Ŵ is a constant matrix (not a function of α and ν). This makes sense

for any choice of Ŵ that is symmetric and positive semide�nite, but we will
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choose Ŵ that are close to W (a +Mα̂ + Zb̂), where α̂ and ν̂ are the joint

minimizers of (6) and b̂ = b∗(α̂, ν̂). Note that (7) is a rede�nition of q(α, ν).
Hereafter we will no longer use the de�nition (6).

1.5 A Key Concept

Introduce

p(α, b, ν) = −l(a+Mα+ Zb) + 1
2b
TD−1b+ 1

2 log det
[
ZT ŴZD + I

]
(8)

where, as the left-hand side says, α, b, and ν are all free variables and, as

usual, D is a function of ν, although the notation does not indicate this.

Since the terms that contain b are the same in both (4) and (8), b∗ can also

be de�ned at the result of minimizing (8) considered as a function of b for
�xed α and ν. Thus (7) is a pro�le of (8) and (α̂, b̂, ν̂) is the joint minimizer

of (8).

Since p(α, b, ν) is a much simpler function than q(α, ν), the latter having
no closed form expression and requiring an optimization as part of each

evaluation, it is much simpler to �nd (α̂, b̂, ν̂) by minimizing the former

rather than the latter.

1.6 A Digression on Partial Derivatives

Let f(α, b, ν) be a scalar-valued function of three vector variables. We

write partial derivative vectors using subscripts: fα(α, b, ν) denotes the vec-
tor of partial derivatives with respect to components of α. Our convention
is that we take this to be a column vector. Similarly for fb(α, b, ν). We also

use this convention for partial derivatives with respect to single variables:

fνk(α, b, ν), which are, of course, scalars. We use this convention for any

scalar-valued function of any number of vector variables.

We continue this convention for second partial derivatives: fαb(α, b, ν)
denotes the matrix of partial derivatives having i, j component that is the

(mixed) second partial derivative of f with respect to αi and bj . Thus the

row dimension of fαb(α, b, ν) is the dimension of α, the column dimension is

the dimension of b, and fbα(α, b, ν) is the transpose of fαb(α, b, ν).
This convention allows easy indication of points at which partial deriva-

tives are evaluated. For example, fαb(α, b
∗, ν) indicates that b∗ is plugged in

for b in the expression for fαb(α, b, ν).
We also use this convention of subscripts denoting partial derivatives

with vector-valued functions. If f(α, b, ν) is a column-vector-valued function

of vector variables, then fα(α, b, ν) denotes the matrix of partial derivatives

5



having i, j component that is the partial derivative of the i-th component of

fα(α, b, ν) with respect to αj . Thus the row dimension of fα(α, b, ν) is the
dimension of f(α, b, ν) and the column dimension is the dimension of α.

1.7 First Derivatives

Start with (8). Its derivatives are

pα(α, b, ν) = −MT
[
y − µ(a+Mα+ Zb)

]
(9)

pb(α, b, ν) = −ZT
[
y − µ(a+Mα+ Zb)

]
+D−1b (10)

and

pνk(α, b, ν) = −1
2b
TD−1EkD

−1b+ 1
2 tr
([
ZT ŴZD + I

]−1
ZT ŴZEk

)
(11)

where

Ek = Aνk(ν) (12)

is the diagonal matrix whose components are equal to one if the correspond-

ing components of D are equal to νk by de�nition (rather than by accident

when some other component of ν also has the same value) and whose compo-

nents are otherwise zero. The formula for the derivative of a matrix inverse

comes from Harville (1997, Chapter 15, Equation 8.15). The formula for the

derivative of the log of a determinant comes from Harville (1997, Chapter 15,

Equation 8.6).

The estimating equation for b∗ can be written

pb
(
α, b∗, ν

)
= 0 (13)

and by the multivariate chain rule (Browder, 1996, Theorem 8.15) we have

qα(α, ν) = pα(α, b
∗, ν) + b∗α(α, ν)

T pb(α, b
∗, ν)

= pα(α, b
∗, ν)

(14)

by (13), and

qνk(α, ν) = b∗νk(α, ν)
T pb(α, b

∗, ν) + pνk(α, b
∗, ν)

= pνk(α, b
∗, ν)

(15)

again by (13).
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1.8 Second Derivatives

We will proceed in the opposite direction from the preceding section,

calculating abstract derivatives before particular formulas for random e�ects

aster models, because we need to see what work needs to be done before

doing it (we may not need all second derivatives).

By the multivariate chain rule (Browder, 1996, Theorem 8.15)

qαα(α, ν) = pαα(α, b
∗, ν) + pαb(α, b

∗, ν)b∗α(α, ν)

qαν(α, ν) = pαν(α, b
∗, ν) + pαb(α, b

∗, ν)b∗ν(α, ν)

qνν(α, ν) = pνν(α, b
∗, ν) + pνb(α, b

∗, ν)b∗ν(α, ν)

The estimating equation (13) de�nes b∗ implicitly. Thus derivatives of b∗

are computed using the implicit function theorem (Browder, 1996, Theo-

rem 8.29)

b∗α(α, ν) = −pbb(α, b∗, ν)−1pbα(α, b
∗, ν) (16)

b∗ν(α, ν) = −pbb(α, b∗, ν)−1pbν(α, b
∗, ν) (17)

This theorem requires that pbb(α, b
∗, ν) be invertible, and we shall see below

that it is. Then the second derivatives above can be rewritten

qαα(α, ν) = pαα(α, b
∗, ν)− pαb(α, b

∗, ν)pbb(α, b
∗, ν)−1pbα(α, b

∗, ν)

qαν(α, ν) = pαν(α, b
∗, ν)− pαb(α, b

∗, ν)pbb(α, b
∗, ν)−1pbν(α, b

∗, ν)

qνν(α, ν) = pνν(α, b
∗, ν)− pνb(α, b

∗, ν)pbb(α, b
∗, ν)−1pbν(α, b

∗, ν)

a particularly simple and symmetric form. If we combine all the parameters

in one vector ψ = (α, ν) and write p(ψ, b) instead of p(α, b, ν) we have

qψψ(ψ) = pψψ(ψ, b
∗)− pψb

(
ψ, b∗

)
pbb
(
ψ, b∗

)−1
pbψ
(
ψ, b∗

)
(18)

This form is familiar from the conditional variance formula for normal dis-

tributions if (
Σ11 Σ12

Σ21 Σ22

)
(19)

is the partitioned variance matrix of a partitioned normal random vector

with components X1 and X2, then the variance matrix of the conditional

distribution of X1 given X2 is

Σ11 − Σ12Σ
−1
22 Σ21 (20)
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assuming that X2 is nondegenerate (Anderson, 2003, Theorem 2.5.1). More-

over, if the conditional distribution is degenerate, that is, if there exists a

nonrandom vector v such that var(vTX1 | X2) = 0, then

vTX1 = vTΣ12Σ
−1
22 X2

with probability one, assuming X1 and X2 have mean zero (also by An-

derson, 2003, Theorem 2.5.1), and the joint distribution of X1 and X2 is

also degenerate. Thus we conclude that if the (joint) Hessian matrix of p is
nonsingular, then so is the (joint) Hessian matrix of q given by (18).

The remaining work for this section is deriving the second derivatives of

p that we need (it has turned out that we need all of them)

pαα(α, b, ν) =MTW (a+Mα+ Zb)M

pαb(α, b, ν) =MTW (a+Mα+ Zb)Z

pbb(α, b, ν) = ZTW (a+Mα+ Zb)Z +D−1

pανk(α, b, ν) = 0

pbνk(α, b, ν) = −D−1EkD
−1b

pνjνk(α, b, ν) = bTD−1EjD
−1EkD

−1b

− 1
2 tr
([
ZT ŴZD + I

]−1
ZT ŴZEj[

ZT ŴZD + I
]−1

ZT ŴZEk

)
This �nishes the derivation of all the derivatives we need. Recall that in our

use of the implicit function theorem we needed pbb(α, b
∗, ν) to be invertible.

From the explicit form given above we see that it is actually negative de�nite,

because W (a+Mα+ Zb) is positive semide�nite by (2).

1.9 Zero Variance Components

When some variance components are zero, the corresponding diagonal

components of D are zero, and the corresponding components of b are zero
almost surely. The order of the components of b does not matter, so long

as the rows of Z and the rows and columns of D are reordered in the same

way. So suppose these objects are partitioned as

b =

(
b1
b2

)
Z =

(
Z1

Z2

)
D =

(
D1 0
0 D2

)
where D2 = 0 and the diagonal components of D1 are all strictly positive,

so the components of b2 are all zero almost surely and the components of b1
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are all nonzero almost surely. Since Zb = Z1b1 almost surely, the value of

Z2 is irrelevant. In the expression for D we are using the convention that 0
denotes the zero matrix of the dimension needed for the expression it appears

in to make sense, so the two appearances of 0 in the expression for D as a

partitioned matrix denote di�erent submatrices having all components zero

(they are transposes of each other).

Then the correct expression for the complete data log likelihood is

lc(α, b, ν) = l(a+Mα+ Z1b1)− 1
2b
T
1D

−1
1 b1 − 1

2 log det(D1) (21)

that is, the same as (4) except with subscripts 1 on b, Z, and D. And this

leads to the correct expression for the approximate log likelihood

q(α, ν) = −l(a+Mα+ Z1b
∗
1) +

1
2(b

∗
1)
TD−1

1 b∗1

+ 1
2 log det

[
ZT1 ŴZ1D1 + I

] (22)

where again I denotes the identity matrix of the appropriate dimension

(which now must be the dimension of D1 for the expression it appears in

to make sense) and where b∗1 denotes the maximizer of (21) considered as

a function of b1 with α and ν �xed, so it is actually a function of α and ν
although the notation does not indicate this. Since

ZT ŴZD + I =

(
ZT1 ŴZ1D1 + I ZT1 ŴZ2D2

ZT2 ŴZ1D1 ZT2 ŴZ2D2 + I

)

=

(
ZT1 ŴZ1D1 + I 0

ZT2 ŴZ1D1 I

)
where again we are using the convention that I denotes the identity matrix of

the appropriate dimension and 0 denotes the zero matrix of the appropriate

dimension, so I denotes di�erent identity matrices in di�erent parts of this

equation, having the dimension of D on the left-hand side, the dimension of

D1 in the �rst column of both partitioned matrices, and the dimension of

D2 in the second column of both partitioned matrices,

det(ZT ŴZD + I) = det(ZT1 ŴZ1D1 + I) det(I)

= det(ZT1 ŴZ1D1 + I)

by the rule that the determinant of a blockwise lower triangular partitioned

matrix is the product of the determinants of the blocks on the diagonal

(Harville, 1997, Theorem 13.3.1). And since Z1b1 = Zb almost surely,

q(α, ν) = −l(a+Mα+ Zb∗) + 1
2(b

∗
1)
TD−1

1 b∗1

+ 1
2 log det

[
ZT ŴZD + I

] (23)
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that is, the subscripts 1 are only needed in the term where the matrix inverse

appears and are necessary there because D−1 does not exist. Breslow and

Clayton (1993, Section 2.3) suggest using the Moore-Penrose pseudoinverse

(Harville, 1997, Chapter 20)

D+ =

(
D−1

1 0
0 0

)
which gives

q(α, ν) = −l(a+Mα+Zb∗) + 1
2(b

∗)TD+b∗ + 1
2 log det

[
ZT ŴZD+ I

]
(24)

for the approximate log likelihood. This hides but does not eliminate the

partitioning. Although there is no explicit partitioning in (24), it is still

there in the de�nition of b∗.
Although this proposal (Breslow and Clayton, 1993, Section 2.3) does

deal with the situation where the zero variance components are somehow

known, it does not adequately deal with estimating which variance compo-

nents are zero. That is the subject of the following two sections.

1.10 The Theory of Constrained Optimization

1.10.1 Incorporating Constraints in the Objective Function

When zero variance components arise, optimization of (8) puts us in the

realm of constrained optimization. The theory of constrained optimization

(Rockafellar and Wets, 2004) has a notational bias towards minimization

(Rockafellar and Wets, 2004, p. 5). One can, of course, straightforwardly

translate every result in Rockafellar andWets (2004) from the context of min-

imization to the context of maximization, because for any objective function

f , maximizing f is the same as minimizing−f , and Rockafellar andWets give

infrequent hints and discussions of alternative terminology in aid of this. But

since the theory of constrained optimization is strange to most statisticians,

especially the abstract theory that is needed here (Karush-Kuhn-Tucker the-

ory is not helpful here, as we shall see), it is much simpler to switch from

maximization to minimization so we can use all of the theory in Rockafellar

and Wets (2004) without modi�cation. And we have done so.

The theory of constrained optimization incorporates constraints in the

objective function by the simple device of de�ning the objective function

(for a minimization problem) to have the value +∞ o� the constraint set

(Rockafellar and Wets, 2004, Section 1A). Since no point where the objective

function has the value +∞ can minimize it, unless the the objective function
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has the value +∞ everywhere, which is not the case in any application, the

unconstrained minimizer of this sort of objective function is the same as the

constrained minimizer.

Thus we need to impose constraints on our key function (8), requiring

that each component of ν be nonnegative and when any component of ν is

zero the corresponding components of b are also zero. However, the formula
(8) does not make sense when components of ν are zero, so we will have to

proceed di�erently.

1.10.2 Lower Semicontinuous Regularization

Since all but the middle term on the right-hand side of (8) are actually

de�ned on some neighborhood of each point of the constraint set and dif-

ferentiable at each point of the constraint set, we only need to deal with

the middle term. It is the sum of terms of the form b2i /νk, where νk is the

variance of bi. Thus we investigate functions of this form

h(b, ν) = b2/ν (25)

where, temporarily, b and ν are scalars rather than vectors (representing

single components of the vectors). In case ν > 0 we have derivatives

hb(b, ν) = 2b/ν

hν(b, ν) = −b2/ν2

hbb(b, ν) = 2/ν

hbν(b, ν) = −2b/ν2

hνν(b, ν) = 2b2/ν3

The Hessian matrix

h′′(b, ν) =

(
2/ν −2b/ν2

−2b/ν2 2b2/ν3

)
has nonnegative determinants of its principal submatrices, since the diagonal

components are positive and det
(
h′′(b, ν)

)
is zero. Thus the Hessian matrix

is nonnegative de�nite (Harville, 1997, Theorem 14.9.11), which implies that

h itself is convex (Rockafellar and Wets, 2004, Theorem 2.14) on the set

where ν > 0.
We then extend h to the whole of the constraint set (this just adds the

origin to the points already considered) in two steps. First we de�ne it to
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have the value +∞ at all points not yet considered (those where any com-

ponent of ν is nonpositive). This gives us an extended-real-valued convex

function de�ned on all of R2. Second we take it to be the lower semicontinu-

ous (LSC) regularization (Rockafellar and Wets, 2004, p. 14) of the function

just de�ned. The LSC regularization of a convex function is convex (Rock-

afellar and Wets, 2004, Proposition 2.32). For any sequences bn → b ̸= 0
and νn ↘ 0 we have h(bn, νn) → ∞. Thus the LSC regularization has the

value +∞ for ν = 0 but b ̸= 0. If bn = 0 and νn ↘ 0 we have h(bn, νn) = 0
for all n. Since h(b, ν) ≥ 0 for all b and ν ≥ 0, we conclude

lim inf
b→0
ν↘0

h(b, ν) = 0

Thus the LSC regularization has the value 0 for b = ν = 0. In summary

h(b, ν) =


b2/ν, ν > 0

0, ν = 0 and b = 0

+∞, otherwise

(26)

is an LSC convex function, which agrees with our original de�nition in case

ν > 0. Note that h(b, 0) considered as a function of b is minimized at b = 0
because that is the only point where this function is �nite.

Let k denote the map from indices for b to indices for ν that gives cor-

responding components: νk(i) is the variance of bi. Let dim(b) denote the

number of random e�ects. Then our objective function can be written

p(α, b, ν) = −l(a+Mα+Zb) + 1
2

dim(b)∑
i=1

h(bi, νk(i)) +
1
2 log det

[
ZT ŴZD+ I

]
(27)

where h is given by (26), provided all of the components of ν are nonnegative.
The proviso is necessary because the third term on the right-hand side is

not de�ned for all values of ν, only those such that the argument of the

determinant is a positive de�nite matrix. Hence, we must separately de�ne

p(α, b, ν) = +∞ whenever any component of ν is negative.

1.10.3 Subderivatives

In calculus we learn that the �rst derivative is zero at a local minimum

and, therefore, to check points where the �rst derivative is zero. This is called

Fermat's rule. This rule no longer works for nonsmooth functions, including
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those that incorporate constraints, such as (27). It does, of course, still work

at points in the interior of the constraint set where (27) is di�erentiable.

It does not work to check points on the boundary. There we need what

Rockafellar and Wets (2004, Theorem 10.1) call Fermat's rule, generalized:

at a local minimum the subderivative function is nonnegative.

For any extended-real-valued function f on Rd, the subderivative func-

tion, denoted df(x) is also an extended-real-valued function on Rd de�ned

by

df(x)(w̄) = lim inf
τ↘0
w→w̄

f(x+ τw)− f(x)

τ

(Rockafellar and Wets, 2004, De�nition 8.1). The notation on the left-hand

side is read the subderivative of f at the point x in the direction w̄. Fortu-
nately, we do not have to use this de�nition to calculate subderivatives we

want, because the calculus of subderivatives allows us to use simpler formu-

las in special cases. Firstly, there is the notion of subdi�erential regularity

(Rockafellar and Wets, 2004, De�nition 7.25), which we can use without

knowing the de�nition. The sum of regular functions is regular and the sub-

derivative of a sum is the sum of the subderivatives (Rockafellar and Wets,

2004, Corollary 10.9). A smooth function is regular and the subderivative is

given by

df(x)(w) = wT f ′(x), (28)

where, as in Sections 1.1 and 1.4 above, f ′(x) denotes the gradient vector

(the vector of partial derivatives) of f at the point x (Rockafellar and Wets,

2004, Exercise 8.20). Every LSC convex function is regular (Rockafellar and

Wets, 2004, Example 7.27). Thus in computing subderivatives of (27) we

may compute them term by term, and for the �rst and last terms, they

are given in terms of the partial derivatives already computed by (28). For

an LSC convex function f , we have the following characterization of the

subderivative (Rockafellar and Wets, 2004, Proposition 8.21). At any point

x where f(x) is �nite, the limit

g(w) = lim
τ↘0

f(x+ τw)− f(x)

τ

exists and de�nes a sublinear function g, and then df(x) is the LSC regu-

larization of g. An extended-real-valued function g is sublinear if g(0) = 0
and

g(a1x1 + a2x2) ≤ a1g(x1) + a2g(x2)
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for all vectors x1 and x2 and positive scalars a1 and a2 (Rockafellar and

Wets, 2004, De�nition 3.18). The subderivative function of every regular

LSC function is sublinear (Rockafellar and Wets, 2004, Theorem 7.26).

So let us proceed to calculate the subderivative of (26). In the interior

of the constraint set, where this function is smooth, we can use the partial

derivatives already calculated

dh(b, ν)(u, v) =
2bu

ν
− b2v

ν2

where the notation on the left-hand side means the subderivative of h at the

point (b, ν) in the direction (u, v). On the boundary of the constraint set,

which consists of the single point (0, 0), we take limits. In case v > 0, we
have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= lim

τ↘0

τ2u2/(τv)

τ
= lim

τ↘0

u2

v
=
u2

v

In case v ≤ 0 and u ̸= 0, we have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= lim

τ↘0
(+∞) = +∞

In case v = 0 and u = 0, we have

lim
τ↘0

h(τu, τv)− h(0, 0)

τ
= 0

Thus if we de�ne

g(u, v) =


u2/v, v > 0

0, u = v = 0

+∞, otherwise

The theorem says dh(0, 0) is the LSC regularization of g. But we recognize
g = h, so g is already LSC, and we have

dh(0, 0)(u, v) = h(u, v)

1.10.4 Applying the Generalization of Fermat's Rule

The theory of constrained optimization tells us nothing we did not al-

ready know (from Fermat's rule) about smooth functions. The only way

we can have df(x)(w) = wT f ′(x) ≥ 0 for all vectors w is if f ′(x) = 0. It is
only at points where the function is nonsmooth, in the cases of interest to us,
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points on the boundary of the constraint set, where the theory of constrained

optimization tells us things we did not know and need to know.

Even on the boundary, the conclusions of the theory about components

of the state that are not on the boundary agree with what we already knew.

We have

dp(α, b, ν)(s, u, v) = sT pα(α, b, ν) + terms not containing s

and the only way this can be nonnegative for all s is if

pα(α, b, ν) = 0 (29)

in which case dp(α, b, ν)(s, u, v) is a constant function of s, or, what is the
same thing in other words, the terms of dp(α, b, ν)(s, u, v) that appear to

involve s are all zero (and so do not actually involve s).
Similarly, dp(α, b, ν)(s, u, v) ≥ 0 for all ui and vj such that νj > 0 and

k(i) = j only if

pνj (α, b, ν) = 0, j such that νj > 0

pbi(α, b, ν) = 0, i such that νk(i) > 0
(30)

in which case we conclude that dp(α, b, ν)(s, u, v) is a constant function of

such ui and vj .
Thus, assuming that we are at a point (α, b, ν) where (29) and (30) hold,

and we do assume this throughout the rest of this section, dp(α, b, ν)(s, u, v)
actually involves only vj and ui such that νj = 0 and k(i) = j. De�ne

p̄(α, b, ν) = −l(a+Mα+ Zb) + 1
2 log det

[
ZT ŴZD + I

]
(31)

(the part of (27) consisting of the smooth terms). Then

dp(α, b, ν)(s, u, v) =
∑
j∈J

[
vj p̄νj (α, b, ν)

+
∑

i∈k−1(j)

(
uip̄bi(α, b, ν) + h(ui, vj)

)] (32)

where J is the set of j such that νj = 0, where k−1(j) denotes the set of i
such that k(i) = j, and where h is de�ned by (26). Fermat's rule generalized

says we must consider all of the terms of (32) together. We cannot consider

partial derivatives, because the partial derivatives do not exist. To check
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that we are at a local minimum we need to show that (32) is nonnegative for

all vectors u and v. Conversely, to verify that we are not at a local minimum,

we need to �nd one pair of vectors u and v such that (32) is negative. Such

a pair (u, v) we call a descent direction. Since Fermat's rule generalized is a

necessary but not su�cient condition (like the ordinary Fermat's rule), the

check that we are at a local minimum is not de�nitive, but the check that

we are not is. If a descent direction is found, then moving in that direction

away from the current value of (α, b, ν) will decrease the objective function
(27).

So how do we �nd a descent direction? We want to minimize (32) consid-

ered as a function of u and v for �xed α, b, and ν. On further consideration,

we can consider the terms of (32) for each j separately. If the minimum of

vj p̄νj (α, b, ν) +
∑

i∈k−1(j)

(
uip̄bi(α, b, ν) + h(ui, vj)

)
(33)

over all vectors u and v is nonnegative, then the minimum is zero, because

(33) has the value zero when u = 0 and v = 0. Thus we can ignore this j in
calculating the descent direction.

On the other hand, if the minimum is negative, then the minimum does

not occur at v = 0 and the minimum is actually−∞ by the sublinearity of the

subderivative, one consequence of sublinearity being positive homogeneity

df(x)(τw) = τdf(x)(w), τ ≥ 0

which holds for for any subderivative. Thus (as our terminology hints) we

are only trying to �nd a descent direction, the length of the vector (u, v)
does not matter, only its direction. Thus to get a �nite minimum we can

do a constrained minimization of (33), constraining (u, v) to lie in a ball.

This is found by the well-known Karush-Kuhn-Tucker theory of constrained

optimization to be the minimum of the Lagrangian function

L(u, v) = λv2j + vj p̄νj (α, b, ν) +
∑

i∈k−1(j)

(
λu2i + uip̄bi(α, b, ν) +

u2i
vj

)
(34)

where λ > 0 is the Lagrange multiplier, which would have to be adjusted if

we were interested in constraining (u, v) to lie in a particular ball. Since we

do not care about the length of (u, v) we can use any λ. We have replaced

h(ui, vi) by u
2
i /vj because we know that if we are �nding an actual descent
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direction, then we will have vj > 0. Now

Lui(u, v) = 2λui + p̄bi(α, b, ν) +
2ui
vj
, i ∈ k−1(j)

Lvj (u, v) = 2λvj + p̄νj (α, b, ν)−
∑

i∈k−1(j)

u2i
v2j

The minimum occurs where these are zero. Setting the �rst equal to zero

and solving for ui gives

ûi(vj) = − p̄bi(α, b, ν)

2(λ+ 1/vj)

plugging this back into the second gives

Lvj
(
û(v), v

)
= 2λvj + p̄νj (α, b, ν)−

1

4(λvj + 1)2

∑
i∈k−1(j)

p̄bi(α, b, ν)
2

and we seek zeros of this. The right-hand is clearly an increasing function

of vj so it is negative somewhere only if it is negative when vj = 0 where it

has the value

p̄νj (α, b, ν)−
1

4

∑
i∈k−1(j)

p̄bi(α, b, ν)
2 (35)

So that gives us a test for a descent direction: we have a descent direction if

and only if (35) is negative. Conversely, we appear to have ν̂j = 0 if (35) is

nonnegative.

That �nishes our treatment of the theory of constrained optimization.

We have to ask is all of this complication really necessary? It turns out that

it is and it isn't. We can partially avoid it by a change of variables. But

the cure is worse than the disease in some ways. This is presented in the

following section.

1.11 Square Roots

We can avoid constrained optimization by the following change of pa-

rameter. Introduce new parameter variables by

νj = σ2j

b = Ac
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where A is diagonal and A2 = D, so the i-th diagonal component of A is

σk(i). Then the objective function (8) becomes

p̃(α, c, σ) = −l(a+Mα+ ZAc) + 1
2c
T c+ 1

2 log det
[
ZT ŴZA2 + I

]
(36)

There are now no constraints and (36) is a continuous function of all vari-

ables.

The drawback is that by symmetry we must have p̃σj (α, c, σ) equal to
zero when σj = 0. Thus �rst derivatives become useless for checking for

descent directions, and second derivative information is necessary. However,

that is not the way unconstrained optimizers like the R functions optim and

nlminb work. They do not expect such pathological behavior and do not

deal with it correctly. If we want to use such optimizers to �nd local minima

of (36), then we must provide starting points that have no component of ν
equal to zero, and hope that the optimizer will never get any component of

ν close to zero unless zero actually is a solution. But this is only a hope.

The theory that guided the design of these optimizers does not provide any

guarantees for this kind of objective function.

Moreover, optimizer algorithms stop when close to but not exactly at a

solution, a consequence of inexactness of computer arithmetic. Thus when

the optimizer stops and declares convergence with one or more components

of ν close to zero, how do we know whether the true solution is exactly zero

or not? We don't unless we return to the original parameterization and apply

the theory of the preceding section. The question of whether the MLE of

the variance components are exactly zero or not is of scienti�c interest, so

it seems that the device of this section does not entirely avoid the theory of

constrained optimization. We must change back to the original parameters

and use (35) to determine whether or not we have νj = 0.
Finally, there is another issue with this �square root� parameterization.

The analogs of the second derivative formulas derived in Section 1.8 above,

for this new parameterization are extraordinarily ill-behaved. The Hessian

matrices are badly conditioned and sometimes turn out to be not positive

de�nite when calculated by the computer's arithmetic (which is inexact) even

though theory says they must be positive de�nite. We know this because

at one point we thought that this �square root� parameterization was the

answer to everything and tried to use it everywhere. Months of frustration

ensued where it mostly worked, but failed on a few problems. It took us a

long time to see that it is fundamentally wrong-headed. As we said above,

the cure is worse than the disease.

Thus we concluded that, while we may use this �square root� parameteri-

zation to do unconstrained rather than constrained minimization, we should
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only use it only for that. The test (35) should be used to determine whether

variance components are exactly zero or not, and the formulas in Section 1.8

should be used to derive Fisher information.

1.11.1 First Derivatives

Some of R's optimization routines can use �rst derivative information,

thus we derive �rst derivatives in this parameterization.

p̃α(α, c, σ) = −MT [y − µ(a+Mα+ ZAc)] (37)

p̃c(α, c, σ) = −AZT [y − µ(a+Mα+ ZAc)] + c (38)

p̃σj (α, c, σ) = −cTEjZT [y − µ(a+Mα+ ZAc)]

+ tr
(
[ZT ŴZA2 + I

]−1
ZT ŴZAEj

)
(39)

where Ej is given by (12).

1.12 Fisher Information

The observed Fisher information matrix is minus the second derivative

matrix of the log likelihood. As we said above, we want to do this in the

original parameterization.

Assembling stu� derived in preceding sections and introducing

µ∗ = µ
(
a+Mα+ Zb∗(α, ν)

)
W ∗ =W

(
a+Mα+ Zb∗(α, ν)

)
H∗ = ZTW ∗Z +D−1

Ĥ = ZT ŴZD + I

we obtain

qαα(α, ν) =MTW ∗M −MTW ∗Z(H∗)−1ZTW ∗M

qανj (α, ν) =MTW ∗Z(H∗)−1D−1EjD
−1b∗

qνjνk(α, ν) = (b∗)TD−1EjD
−1EkD

−1b∗

− 1
2 tr
(
Ĥ−1ZT ŴZEjĤ

−1ZT ŴZEk

)
− (b∗)TD−1EjD

−1(H∗)−1D−1EkD
−1b∗

In all of these b∗, µ∗, W ∗, and H∗ are functions of α and ν even though the

notation does not indicate this.
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It is tempting to think expected Fisher information simpli�es things be-

cause we �know� E(y) = µ and var(y) = W , except we don't know that!

What we do know is

E(y | b) = µ(a+Mα+ Zb)

but we don't know how to take the expectation of the right hand side (and

similarly for the variance). Rather than introduce further approximations

of dubious validity, it seems best to just use (approximate) observed Fisher

information.

1.13 Standard Errors for Random E�ects

Suppose that the approximate Fisher information derived in Section 1.12

can be used to give an approximate asymptotic variance for the parameter

vector ψ = (α, ν). This estimate of the asymptotic variance is qψψ(ψ̂)
−1,

where qψψ(ψ) is given by (18) and ψ̂ = (α̂, ν̂).

To apply the delta method to get asymptotic standard errors for b̂ we
need the derivatives (16) and (17). Stacking these we obtain

b∗ψ(ψ̂) =

(
−pbb(α̂, b̂, ν̂)−1pbα(α̂, b̂, ν̂)

−pbb(α̂, b̂, ν̂)−1pbν(α̂, b̂, ν̂)

)
and the delta method gives

b∗ψ(ψ̂)
T qψ,ψ(ψ̂)

−1b∗ψ(ψ̂) (40)

for the asymptotic variance of the estimator b̂.
It must be conceded that in this section we are living what true believers

in random e�ects models would consider a state of sin. The random e�ects

vector b is not a parameter, yet b∗(ψ̂) treats it as a function of parameters

(which is thus a parameter) and the �asymptotic variance� (40) is derived by

considering b̂ just such a parameter estimate. So (40) is correct in what it

does, so long as we buy the assumption that qψψ(ψ̂) is approximate Fisher

information for ψ, but it fails to treat random e�ects as actually random.

Since any attempt to actually treat random e�ects as random would lead

us to integrals that we cannot do, we leave the subject at this point. The

asymptotic variance (40) may be philosophically incorrect in some circles,

but it seems to be the best we can do.

20



1.14 REML?

Breslow and Clayton (1993) do not maximize the approximate log like-

lihood (6), but make further approximations to give estimators motivated

by REML (restricted maximum likelihood) estimators for linear mixed mod-

els (LMM). Breslow and Clayton (1993) concede that the argument that

justi�es REML estimators for LMM does not carry over to their REML-

like estimators for generalized linear mixed models (GLMM). Hence these

REML-like estimators have no mathematical justi�cation. Even in LMM the

widely used procedure of following REML estimates of the variance compo-

nents with so-called BLUE estimates of �xed e�ects and BLUP estimates

of random e�ects, which are actually only BLUE and BLUP if the variance

components are assumed known rather than estimated, is obviously wrong:

ignoring the fact that the variance components are estimated cannot be jus-

ti�ed (and Breslow and Clayton say this in their discussion section). Hence

REML is not justi�ed even in LMM when �xed e�ects are the parameters

of interest. In aster models, because components of the response vector are

dependent and have distributions in di�erent families, it is very unclear what

REML-like estimators in the style of Breslow and Clayton (1993) might be.

The analogy just breaks down. Hence, we do not pursue this REML analogy

and stick with what we have described above.

2 Practice

Our goal is to minimize (6). We replace (6) with (7) in some steps because

of our inability to di�erentiate (6), but our whole procedure must minimize

(6).

2.1 Step 1

To get close to (α̂, ĉ, σ̂) starting from far away we minimize

r(σ) = −l(a+Mα̃+ ZAc̃) + 1
2 c̃
T c̃

+ 1
2 log det

[
ZTW (a+Mα̃+ ZAc̃)ZA2 + I

] (41)

where α̃ and c̃ are the joint minimizers of (36) considered as a function of

α and c for �xed σ. In (41), α̃, c̃, and A are all functions of σ although the

notation does not indicate this.

Because we cannot calculate derivatives of (41) we minimize using by the

R function optim with method = "Nelder-Mead", the so-called Nelder-Mead
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simplex algorithm, a no-derivative method nonlinear optimization, not to be

confused with the simplex algorithm for linear programming.

2.2 Step 2

Having found α, c, and σ close to the MLE values via the preceding step,

we then switch to minimization of (36) for which we have the derivative

formulas (37), (38), and (39). In this step we can use one of R's optimization

functions that uses �rst derivative information: nlm or nlminb or optim

with optional argument method = "BFGS" or method = "CG" or method =

"L-BFGS-B".

To de�ne (36) we also need a Ŵ , and we take the value at the current

values of α, c, and σ. Because W is typically a very large matrix (n × n,
where n is the number of nodes in complete aster graph, the number of nodes

in the subgraph for a single individual times the number of individuals), we

actually store ZT ŴZ, which is only r× r, where r is the number of random
e�ects. We set

ZT ŴZ = ZTW (a+Mα+ ZAc)Z (42)

where α, c, and A = A(σ) are the current values before we start minimizing

p̃(α, c, σ) and this value of ZT ŴZ is �xed throughout the minimization, as

is required by the de�nition of p̃(α, c, σ).
Having minimized p̃(α, c, σ) we are still not done, because now (42) is

wrong. We held it �xed at the values of α, c, and σ we had before the min-

imization, and now those values have changed. Thus we should re-evaluate

(42) and re-minimize, and continue doing this until convergence.

We terminate this iteration when σ values do not change (to within some

prespeci�ed tolerance) because the α and c values are, in theory, determined

by σ, because p̃ considered as a function of α and c for �xed σ is convex and

hence has at most one local minimizer, so we do not need to worry about

them converging.

When this iteration terminates we are done with this step, and we have

our point estimates α̂, ĉ, and σ̂. We also have our point estimates b̂ of the
random e�ects on the original scale given by A(ν̂)ĉ and our point estimates

νj = σ2j of the variance components.

2.3 Step 3

Having converted back to the original parameters, if any of the νj are
close to zero we use the check (35) to determine whether or not they are

exactly zero.
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2.4 To Do

A few issues that have not been settled. Points 1 and 2 in the following

list are not speci�c to random e�ects models. They arise in �xed e�ect

aster models too, even in generalized linear models and log-linear models in

categorical data analysis.

1. Verify no directions of recession of �xed-e�ects-only model.

2. Verify supposedly nested models are actually nested.

3. How about constrained optimization and hypothesis tests of variance

components being zero? How does the software automagically or edu-

cationally do the right thing? That is, do we just do the Right Thing

or somehow explain to lusers what the Right Thing is?

A Cholesky

How do we calculate log determinants and derivatives thereof? R has

a function determinant that calculates the log determinant. It uses LU
decomposition.

An alternative method is to use Cholesky decomposition, but that only

works when the given matrix is symmetric. This may be better because

there is a sparse version (the chol function in the Matrix package) that

may enable us to do much larger problems (perhaps after some other issues

getting in the way of scaling are also �xed).

We need to calculate the log determinant that appears in (8) or (36),

but the matrix is not symmetric. It can, however, be rewritten so as to be

symmetric. Assuming A is invertible

det
(
ZT ŴZA2 + I

)
= det

(
ZT ŴZA+A−1

)
det
(
A
)

= det
(
AZT ŴZA+ I

)
If A is singular, we can see by continuity that the two sides must agree there

too. That takes care of (36). The same trick works for (8); just replace A
by D1/2, which is the diagonal matrix whose diagonal components are the

nonnegative square roots of the corresponding diagonal components of D.

Cholesky can also be used to e�ciently calculate matrix inverses (done

by the chol2inv function in the Matrix package). So we investigate whether

we can use Cholesky to calculate derivatives.
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A.1 First Derivatives

For the trace in the formula (39) for p̃σj (α, c, σ) we have in case A is

invertible

tr
(
[ZT ŴZA2 + I

]−1
ZT ŴZAEj

)
= tr

(
[A−1(AZT ŴZA+ I)A

]−1
ZT ŴZAEj

)
= tr

(
A−1[AZT ŴZA+ I

]−1
AZT ŴZAEj

)
= tr

(
[AZT ŴZA+ I

]−1
AZT ŴZAEjA

−1
)

= tr
(
[AZT ŴZA+ I

]−1
AZT ŴZEj

)
the next-to-last equality being tr(AB) = tr(BA) and the last equality using

the fact that A, Ej , and A
−1 are all diagonal so they commute. Again we

see that we get the same identity of the �rst and last expressions even when

A is singular by continuity.

For the trace in the formula (11) for pνk(α, b, ν) we have in case D is

invertible

tr
([
ZT ŴZD + I

]−1
ZT ŴZEk

)
= tr

(
D−1/2

[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEk

)
= tr

([
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZD−1/2Ek

)
This, of course, does not work when D is singular. We already knew we

cannot di�erentiate p(α, b, ν) on the boundary of the constraint set.

A.2 Second Derivatives

For the trace in the formula in Section 1.8 for pνjνk(α, b, ν) we have in

case D is invertible

tr
([
ZT ŴZD + I

]−1
ZT ŴZEj

[
ZT ŴZD + I

]−1
ZT ŴZEk

)
= tr

(
D−1/2

[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEj

D−1/2
[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEk

)
= tr

([
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEjD

−1/2[
D1/2ZT ŴZD1/2 + I

]−1
D1/2ZT ŴZEkD

−1/2
)

24



Again, this does not work when D is singular.

The same trace occurs in the expression for qνjνk(α, ν) given in Sec-

tion 1.12 and can be calculated the same way.
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