
Package: ashapesampler (via r-universe)
August 28, 2024

Title Generating Alpha Shapes

Version 1.0.0

Description Understanding morphological variation is an important task
in many applications. Recent studies in computational biology
have focused on developing computational tools for the task of
sub-image selection which aims at identifying structural
features that best describe the variation between classes of
shapes. A major part in assessing the utility of these
approaches is to demonstrate their performance on both
simulated and real datasets. However, when creating a model for
shape statistics, real data can be difficult to access and the
sample sizes for these data are often small due to them being
expensive to collect. Meanwhile, the landscape of current shape
simulation methods has been mostly limited to approaches that
use black-box inference---making it difficult to systematically
assess the power and calibration of sub-image models. In this R
package, we introduce the alpha-shape sampler: a probabilistic
framework for simulating realistic 2D and 3D shapes based on
probability distributions which can be learned from real data
or explicitly stated by the user. The 'ashapesampler' package
supports two mechanisms for sampling shapes in two and three
dimensions. The first, empirically sampling based on an
existing data set, was highlighted in the original main text of
the paper. The second, probabilistic sampling from a known
distribution, is the computational implementation of the theory
derived in that paper. Work based on Winn-Nunez et al. (2024)
<doi:10.1101/2024.01.09.574919>.

License GPL (>= 3)

Imports pracma, alphahull, alphashape3d, truncnorm, stats, Rvcg, TDA,
doParallel, foreach, parallel, dplyr

Suggests knitr, testthat, rgl, ggplot2, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

1

https://doi.org/10.1101/2024.01.09.574919

2 Contents

Depends R (>= 3.1.0)

NeedsCompilation no

Author Emily Winn-Nunez [aut, cre]
(<https://orcid.org/0000-0001-6759-5406>), Lorin Crawford [aut]
(<https://orcid.org/0000-0003-0178-8242>)

Maintainer Emily Winn-Nunez <emily_winn-nunez@brown.edu>

Repository CRAN

Date/Publication 2024-01-30 12:00:02 UTC

Contents
calc_overlap_2D . 3
calc_overlap_3D . 3
cap_intersect_vol . 4
circle_overlap_cc . 4
circle_overlap_ia . 5
circumcenter_face . 5
circumcenter_tet . 6
circ_face_2D . 6
circ_face_3D . 7
circ_tet_3D . 7
count_neighbors . 8
euclid_dists_point_cloud_2D . 8
euclid_dists_point_cloud_3D . 9
extract_complex_edges . 9
extract_complex_faces . 10
extract_complex_tet . 10
extreme_pts . 11
generate_ashape2d . 11
generate_ashape3d . 12
get_alpha_complex . 13
get_area . 14
get_volume . 14
n_bound_connect_2D . 15
n_bound_connect_3D . 15
n_bound_homology_2D . 16
n_bound_homology_3D . 17
readOFF . 17
read_alpha_txt . 18
runif_annulus . 18
runif_ball_3D . 19
runif_cube . 19
runif_disk . 20
runif_shell_3D . 21
runif_square . 21
sampling2Dashape . 22

https://orcid.org/0000-0001-6759-5406
https://orcid.org/0000-0003-0178-8242

calc_overlap_2D 3

sampling3Dashape . 23
sphere_overlap_cs . 24
sphere_overlap_is . 25
spherical_cap . 25
tau_bound . 26
write_alpha_txt . 26

Index 28

calc_overlap_2D Calculate Overlap 2D

Description

This function calculates the minimum coverage percentage of an alpha ball over the bounded area
being considered. 0 is no coverage, 1 means complete coverage. For the square, r is the length of
the side. For circle, r is the radius. For the annulus, r and min_r are the two radii.

Usage

calc_overlap_2D(alpha, r = 1, rmin = 0.01, bound = "square")

Arguments

alpha radius of alpha ball

r length of square, radius of circle, or outer radius of annulus

rmin inner radius of annulus

bound manifold shape, options are "square", "circle", or "annulus"

Value

area of overlap

calc_overlap_3D calculate overlap in three dimensions (calc_overlap_3D)

Description

Calculates the volume of intersection divided by the volume of the manifold. For the cube, r is the
length of the side. For sphere, r is the radius. For the annulus, r and min_r are the two radii.

Usage

calc_overlap_3D(alpha, r = 1, rmin = 0.01, bound = "cube")

4 circle_overlap_cc

Arguments

alpha radius of one sphere

r radius of second sphere or outer radius of shell or length of cube side

rmin inner radius of shell, only needed if bound=shell

bound manifold type, options are "cube", "shell", and "sphere"

Value

volume of overlap

cap_intersect_vol Intersection of spheres

Description

Called for sphere overlaps with alpha > r*sqrt(2). Integral precalculated and numbers plugged in.

Usage

cap_intersect_vol(alpha, r)

Arguments

alpha radius 1

r radius 2

Value

volume of intersection of spheres.

circle_overlap_cc Circle Overlap Centered on Circumference

Description

Circle overlap cc is subfunction for repeated code in calc_overlap_2D Returns the area of two over-
lapping circles where one is centered on the other’s Circumference. (cc = centered on circumference
)

Usage

circle_overlap_cc(alpha, r = 1)

circle_overlap_ia 5

Arguments

alpha radius 1

r radius 2

Value

area of overlap

circle_overlap_ia Circle Overlap Inner Annulus

Description

Circle overlap ia (inner annulus) calculates area needed to subtract when calculating area of overlap
of annulus and circle.

Usage

circle_overlap_ia(alpha, R, r)

Arguments

alpha radius of circle

R outer radius of annulus

r inner radius of annulus

Value

area of overlap

circumcenter_face circumcenter Face

Description

This function finds the circumcenters of the faces of a simplicial complex given the list of vertex
coordinates and the set of faces.

Usage

circumcenter_face(v_list, f_list)

Arguments

v_list matrix of vertex coordinates

f_list matrix with 3 columns with face information.

6 circ_face_2D

Value

circ_mat, matrix of coordinates of circumcenters of faces.

circumcenter_tet circumcenter Tetrahedra

Description

This function finds the circumcenters of the tetrahedra/3-simplices of a simplicial complex given
the list of vertex coordinates and the set of tetrahedra.

Usage

circumcenter_tet(v_list, t_list)

Arguments

v_list matrix of vertex coordinates

t_list matrix of 4 columns with tetrahedra

Value

circ_mat, matrix of coordinates of circumcenters of teterahedra

circ_face_2D Circumcenter face - three points in 2D Given 3 sets of coordinates,
calculates the circumcenter

Description

Circumcenter face - three points in 2D Given 3 sets of coordinates, calculates the circumcenter

Usage

circ_face_2D(points)

Arguments

points 3x2 matrix

Value

1x2 vector, coordinates of circumcenter

circ_face_3D 7

circ_face_3D Circumcenter face - three points in 3D Given 3 sets of coordinates,
calculates the circumcenter

Description

Circumcenter face - three points in 3D Given 3 sets of coordinates, calculates the circumcenter

Usage

circ_face_3D(points)

Arguments

points 3x3 matrix

Value

1x3 vector, coordinates of circumcenter

circ_tet_3D Circumcenter tetrahedron - 4 points in 3D Given 3D coordinates of 4
points, calculates circumcenter

Description

Circumcenter tetrahedron - 4 points in 3D Given 3D coordinates of 4 points, calculates circumcenter

Usage

circ_tet_3D(points)

Arguments

points 4x3 matrix

Value

1x3 vector, coordinates of circumcenter

8 euclid_dists_point_cloud_2D

count_neighbors Neighbors function - finds number of neighbors for each point in point
cloud.

Description

Neighbors function - finds number of neighbors for each point in point cloud.

Usage

count_neighbors(v_list, complex)

Arguments

v_list 2 or 3 column matrix

complex simplicial complex object

Value

n_list vector where each entry is number of neighbors for a point

euclid_dists_point_cloud_2D

Euclidean Distance Point Cloud 2D

Description

Calculates the distance matrix of a point from the point cloud.

Usage

euclid_dists_point_cloud_2D(point, point_cloud)

Arguments

point cartesian coordinates of 2D point

point_cloud 3 column matrix with cartesian coordinates of 2D point cloud

Value

vector of distances from the point to each point in the point cloud

euclid_dists_point_cloud_3D 9

euclid_dists_point_cloud_3D

Euclidean Distance Point Cloud 3D

Description

Calculates the distance matrix of a point from the point cloud.

Usage

euclid_dists_point_cloud_3D(point, point_cloud)

Arguments

point cartesian coordinates of 3D point

point_cloud 3 column matrix with cartesian coordinates of 3D point cloud

Value

vector of distances from the point to each point in the point cloud

extract_complex_edges Returns the edges of complex.

Description

Returns the edges of complex.

Usage

extract_complex_edges(complex, n_vert = 0)

Arguments

complex complex object from TDA packages

n_vert number of vertices in complex; default is 0, specifying this parameter speeds up
the function

Value

edge_list data frame or if empty NULL

10 extract_complex_tet

extract_complex_faces Returns faces of complex.

Description

Returns faces of complex.

Usage

extract_complex_faces(complex, n_vert = 0)

Arguments

complex complex object from TDA package

n_vert number of vertices in the complex; default is 0, specifying this parameter speeds
up function

Value

face_list data frame of points forming faces in complex

extract_complex_tet Returns tetrahedra of complex (3 dimensions)

Description

Returns tetrahedra of complex (3 dimensions)

Usage

extract_complex_tet(complex, n_vert = 0)

Arguments

complex complex object from TDA package

n_vert number of vertices in the complex; default is 0, specifying this parameter speeds
up function

Value

tet_list data frame of points forming tetrahedra in complex

extreme_pts 11

extreme_pts Extreme points Finds the boundary points of a simplicial complex

Description

Extreme points Finds the boundary points of a simplicial complex

Usage

extreme_pts(complex, n_vert, dimension)

Arguments

complex complex list object

n_vert number of vertices in the complex

dimension number, 2 or 3

Value

vector of all vertices on the boundary

generate_ashape2d Generate 2D alpha shape

Description

Generate 2D alpha shape

Usage

generate_ashape2d(
point_cloud,
J,
tau,
delta = 0.05,
afixed = TRUE,
mu = NULL,
sig = NULL,
sample_rad = NULL,
acc_rad = NULL,
k_min = 2,
eps = 1e-04,
cores = 1

)

12 generate_ashape3d

Arguments

point_cloud 2 column matrix of all points from all shapes in initial data set

J number of shapes in initial (sub) data set

tau tau bound vector for shapes input

delta probability of not preserving homology; default is 0.05

afixed boolean, whether to sample alpha or leave fixed based on tau. Default FALSE

mu mean of truncated distribution from which alpha sampled; default tau/3

sig standard deviation of truncated distribution from which alpha sampled; default
tau/12

sample_rad radius of ball around each point in point cloud from which to sample; default
tau/8

acc_rad radius of ball to check around potential sampled points for whether to accept or
reject new point; default tau/4

k_min number of points needed in radius tau of point cloud to accept a sample

eps amount to subtract from tau/2 to give alpha. Defaul 1e-4.

cores number of computer cores for parallelizing. Default 1.

Value

new_ashape two dimensional alpha shape object from alphahull library

generate_ashape3d Generate 3D alpha shape

Description

Generate 3D alpha shape

Usage

generate_ashape3d(
point_cloud,
J,
tau,
delta = 0.05,
afixed = TRUE,
mu = NULL,
sig = NULL,
sample_rad = NULL,
acc_rad = NULL,
k_min = 3,
eps = 1e-04,
cores = 1

)

get_alpha_complex 13

Arguments

point_cloud 3 column matrix of all points from all shapes in initial data set

J number of shapes in initial data set

tau tau bound for the shapes

delta probability of not preserving homology; default is 0.05

afixed boolean, whether to sample alpha or leave fixed based on tau. Default FALSE

mu mean of truncated distribution from which alpha sampled; default tau/3

sig standard deviation of truncated distribution from which alpha sampled; default
tau/12

sample_rad radius of ball around each point in point cloud from which to sample; default
tau/8

acc_rad radius of ball to check around potential sampled points for whether to accept or
reject new point; default tau/4

k_min number of points needed in radius 2 alpha of point cloud to accept a sample

eps amount to subtract from tau/2 to give alpha. Defaul 1e-4.

cores number of cores for parallelizing. Default 1.

Value

new_ashape three dimensional alpha shape object from alphashape3d library

get_alpha_complex Get alpha complex

Description

Generates alpha complex for a set of points and parameter alpha

Usage

get_alpha_complex(points, alpha)

Arguments

points point cloud for alpha complex, in form of 2 column of 3 column matrix with
nonzero number of rows

alpha alpha parameter for building the alpha complex

Value

complex list of vertices, edges, faces, and tetrahedra.

14 get_volume

get_area Get area

Description

Quickly calculate which area needed for a homology bound; here to clean up code above

Usage

get_area(r, rmin, bound)

Arguments

r side length (square) or radius (circle, annulus)

rmin radius of inner circle for annulus

bound square, circle, or annulus

Value

area, number

get_volume Get volume

Description

Quickly calculate which volume needed for a homology bound; here to clean up code above

Usage

get_volume(r, rmin, bound)

Arguments

r side length (cube) or radius (sphere, shell)

rmin radius of inner sphere for shell

bound cube, sphere, shell

Value

volume, number

n_bound_connect_2D 15

n_bound_connect_2D n Bound Connect 2D

Description

This is the bound for connectivity based on samples.

Usage

n_bound_connect_2D(alpha, delta = 0.05, r = 1, rmin = 0.01, bound = "square")

Arguments

alpha alpha parameter for alpha shape

delta probability of isolated point

r length of square, radius of circle, or outer radius of annulus

rmin inner radius of annulus

bound manifold shape, options are "square", "circle", or "annulus"

Value

minimum number of points to meet probability threshold.

n_bound_connect_3D N Bound Connect 3D

Description

Function returns the minimum number of points to preserve the homology with an open cover of
radius alpha.

Usage

n_bound_connect_3D(alpha, delta = 0.05, r = 1, rmin = 0.01, bound = "cube")

Arguments

alpha radius of open balls around points

delta probability of isolated point

r radius of sphere, outer radius of shell, or length of cube side

rmin inner radius of shell

bound manifold from which points sampled. Options are sphere, shell, cube

16 n_bound_homology_2D

Value

integer of minimum number of points needed

Examples

For a cube with probability 0.05 of isolated points
n_bound_connect_3D(0.2, 0.05,0.9)
For a sphere with probability 0.01 of isolated points
n_bound_connect_3D(0.2, 0.01, 1, bound="sphere")
For a shell with probability 0.1 isolated points.
n_bound_connect_3D(0.2, 0.1, 1, 0.25, bound="shell")

n_bound_homology_2D n Bound Homology 2D

Description

#’ Function returns the minimum number of points to preserve the homology with an open cover of
radius alpha.

Usage

n_bound_homology_2D(area, epsilon, tau = 1, delta = 0.05)

Arguments

area area of manifold from which points being sampled

epsilon size of balls of cover

tau number bound

delta probability of not recovering homology

Value

n, number of points needed

n_bound_homology_3D 17

n_bound_homology_3D n Bound Homology 3D

Description

Calculates number of points needed to be samped from manifold for open ball cover to have same
homology as original manifold. See Niyogi et al 2008

Usage

n_bound_homology_3D(volume, epsilon, tau = 1, delta = 0.05)

Arguments

volume volume of manifold from which points being sampled

epsilon size of balls of cover

tau number bound

delta probability of not recovering homology

Value

n, number of points needed

readOFF Read OFF File

Description

This is a function to read OFF files for triangular meshes into the form that is required to use other
functions in the package.

Usage

readOFF(file_name)

Arguments

file_name path and name of file to be read

Value

complex_info list object containing two components, "Vertices" which holds the vertex coordinates
and "cmplx" which holds the complex list object.

18 runif_annulus

read_alpha_txt Read alpha text file

Description

Read alpha text file

Usage

read_alpha_txt(file_name)

Arguments

file_name name and path of file to be read. File is of format output by write_alpha_txt
function

Value

alpha shape object

runif_annulus Uniform Sampling from Annulus

Description

Returns points uniformly sampled from annulus in plane

Usage

runif_annulus(n, rmax = 1, rmin = 0.5)

Arguments

n number of points to sample
rmax radius of outer circle of annulus
rmin radius of inner circle of annulus

Value

n by 2 matrix of points sampled

Examples

Sample 100 points from annulus with rmax=1 and rmin=0.5
runif_annulus(100)
Sample 100 points from annulus with rmax=0.75 and rmin=0.25
runif_annulus(100, 0.75, 0.25)

runif_ball_3D 19

runif_ball_3D Uniform Ball 3D

Description

Returns points uniformly centered from closed ball of radius r in 3D space

Usage

runif_ball_3D(n, r = 1)

Arguments

n number of points
r radius of ball, default r=1

Value

n by 3 matrix of points

Examples

Sample 100 points from unit ball
runif_ball_3D(100)
Sample 100 points from ball of radius 0.5
runif_ball_3D(100, r=0.5)

runif_cube r Uniform Cube

Description

Returns points uniformly sampled from cube or rectangular prism in space.

Usage

runif_cube(n, xmin = 0, xmax = 1, ymin = 0, ymax = 1, zmin = 0, zmax = 1)

Arguments

n number of points to be sampled
xmin miniumum x coordinate
xmax maximum x coordinate
ymin minimum y coordinate
ymax maximum y coordinate
zmin minimum z coordinate
zmax maximum z coordinate

20 runif_disk

Value

n by 3 matrix of points

Examples

Sample 100 points from unit cube
runif_cube(100)
Sample 100 points from unit cube centered on origin
runif_cube(100, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

runif_disk Uniform sampling from disk

Description

Returns points uniformly sampled from disk of radius r in plane

Usage

runif_disk(n, r = 1)

Arguments

n number of points to sample

r radius of disk

Value

points n by 2 matrix of points sampled

Examples

Sample 100 points from unit disk
runif_disk(100)
Sample 100 points from disk of radius 0.7
runif_disk(100, 0.7)

runif_shell_3D 21

runif_shell_3D Uniform Shell 3D

Description

Returns points uniformly sampled from spherical shell in 3D

Usage

runif_shell_3D(n, rmax = 1, rmin = 0.5)

Arguments

n number of points

rmax radius of outer sphere

rmin radius of inner sphere

Value

n by 3 matrix of points

Examples

Sample 100 points with defaults rmax=1, rmin=0.5
runif_shell_3D(100)
Sample 100 points with rmax=0.75, rmin=0.25
runif_shell_3D(100, 0.75, 0.25)

runif_square Uniform Sampling from Square

Description

Returns points uniformly sampled from square or rectangle in plane.

Usage

runif_square(n, xmin = 0, xmax = 1, ymin = 0, ymax = 1)

Arguments

n number of points

xmin minimum x coordinate

xmax maximum x coordinate

ymin minimum y coordinate

ymax maximum y coordinate

22 sampling2Dashape

Value

n by 2 matrix of points

Examples

Sample 100 points from unit square
runif_square(100)
Sample 100 points from unit square centered at origin
runif_square(100, 0.5, 0.5, 0.5, 0.5)

sampling2Dashape Sampling 2D alpha shapes

Description

This function takes parameter input from user and returns list of two dimensional alpha shape
objects from the ahull package.

Usage

sampling2Dashape(
N,
n.dependent = TRUE,
nconnect = TRUE,
nhomology = FALSE,
n.noise = FALSE,
afixed = FALSE,
mu = 0.24,
sigma = 0.05,
delta = 0.05,
n = 20,
alpha = 0.24,
lambda = 3,
r = 1,
rmin = 0.25,
bound = "square"

)

Arguments

N number of alpha shapes to sample

n.dependent boolean, whether the number of points n are dependent on alpha

nconnect boolean, whether user wants shapes to have one connected component with high
probability

nhomology boolean, whether user wants shapes to preserve homology of underlying mani-
fold with high probability

sampling3Dashape 23

n.noise boolean, whether to add noise variable to number of points n for more variety in
shapes

afixed boolean, whether alpha is fixed for all shapes sampled

mu mean value of truncated normal from which alpha is sampled

sigma standard deviation of truncated normal distribution from which alpha is sampled

delta probability of getting disconnected shape or not preserving homology

n minimum number of points to be sampled for each alpha shape

alpha chosen fixed alpha; only used if afixed = TRUE

lambda parameter for adding noise to n; only used if n.noise=TRUE

r length of radius of circle, side length of square, or outer radius of annulus

rmin inner radius of annulus

bound compact manifold to be sampled from; either square, circle, or annulus

Value

list of alpha shapes of length N

sampling3Dashape Sample 3D alpha shapes

Description

This function takes parameter input from user and returns list of three dimensional alpha shape
objects from the ahull package.

Usage

sampling3Dashape(
N,
n.dependent = TRUE,
nconnect = TRUE,
nhomology = FALSE,
n.noise = FALSE,
afixed = FALSE,
mu = 0.24,
sigma = 0.05,
delta = 0.05,
n = 20,
alpha = 0.24,
lambda = 3,
r = 1,
rmin = 0.25,
bound = "cube"

)

24 sphere_overlap_cs

Arguments

N number of alpha shapes to sample
n.dependent boolean, whether the number of points n are dependent on alpha
nconnect boolean, whether user wants shapes to have one connected component with high

probability
nhomology boolean, whether user wants shapes to preserve homology of underlying mani-

fold with high probability
n.noise boolean, whether to add noise variable to number of points n for more variety in

shapes
afixed boolean, whether alpha is fixed for all shapes sampled
mu mean value of truncated normal from which alpha is sampled
sigma standard deviation of truncated normal distribution from which alpha is sampled
delta probability of getting disconnected shape or not preserving homology
n minimum number of points to be sampled for each alpha shape
alpha chosen fixed alpha; only used if afixed = TRUE
lambda parameter for adding noise to n; only used if n.noise=TRUE
r length of radius of circle, side length of square, or outer radius of annulus
rmin inner radius of annulus
bound compact manifold to be sampled from; either cube, sphere, or shell

Value

list of alpha shapes of length N

sphere_overlap_cs sphere overlap when one is centered on circumference of the other

Description

Sphere overlap cs is subfunction for repeated code in calc_overlap_3D Returns the area of two
overlapping spheres where one is centered on the other’s surface (cs = centered on surface)

Usage

sphere_overlap_cs(alpha, r)

Arguments

alpha radius 1
r radius 2

Value

volume of intersection

sphere_overlap_is 25

sphere_overlap_is sphere overlap inner shell

Description

Sphere overlap is (inner shell) calculates area needed to subtract when calculating volume of overlap
of shell and sphere.

Usage

sphere_overlap_is(alpha, rmax, rmin)

Arguments

alpha radius of sphere

rmax outer radius of shell

rmin inner radius of shell

Value

volume of intersection

spherical_cap Spherical cap

Description

Calculates the volume of a sphere cap given radius r and height of cap h

Usage

spherical_cap(r, h)

Arguments

r radius

h height of cap

Value

v_c volume of spherical cap

26 write_alpha_txt

tau_bound tau_bound

Description

This function finds the bound of tau for one shape, which is the maximum length of the fiber bundle
off of a shape for determining the density of points necessary to recover the homology from the
open cover. See Niyogi et al 2008. Function checks length of edges and distances to circumcenters
from each vertex before checking against the rest of the point cloud and finds the minimum length.
We then keep the largest tau to account for the possibility of nonuniformity among points.

Usage

tau_bound(v_list, complex, extremes = NULL, cores = 1, sumstat = "mean")

Arguments

v_list matrix or data frame of cartesian coordinates of vertices in in point cloud

complex list of each vertex, edge, face, and (in 3D) tetrahedron in a simplicial complex;
same form as complex object in TDA package

extremes matrix or data frame of cartesian coordinates of vertices on the boundary of the
data frame. If no list given, function will assume all points are extreme and
check them all. Inclusion of this parameter speeds up the process both within
this function and when calculating alpha because you will get a bigger (but still
valid) tau bound.

cores number of cores for parallelizing. Default 1.

sumstat string for summary statistic to be used to get final tau for shape. Default is
’mean’. Options are ’median’, ’min’, and ’max’.

Value

tau_vec, vector real nonnegative number. Tau values for each point

write_alpha_txt Write Alpha Text file

Description

Write Alpha Text file

Usage

write_alpha_txt(ashape, file_name)

write_alpha_txt 27

Arguments

ashape alpha shape object, can be 2D or 3D alpha shape

file_name path and name of file to create and write text to

Value

does not return anything; writes file that can be read back to R via read_alpha_txt

Index

calc_overlap_2D, 3
calc_overlap_3D, 3
cap_intersect_vol, 4
circ_face_2D, 6
circ_face_3D, 7
circ_tet_3D, 7
circle_overlap_cc, 4
circle_overlap_ia, 5
circumcenter_face, 5
circumcenter_tet, 6
count_neighbors, 8

euclid_dists_point_cloud_2D, 8
euclid_dists_point_cloud_3D, 9
extract_complex_edges, 9
extract_complex_faces, 10
extract_complex_tet, 10
extreme_pts, 11

generate_ashape2d, 11
generate_ashape3d, 12
get_alpha_complex, 13
get_area, 14
get_volume, 14

n_bound_connect_2D, 15
n_bound_connect_3D, 15
n_bound_homology_2D, 16
n_bound_homology_3D, 17

read_alpha_txt, 18
readOFF, 17
runif_annulus, 18
runif_ball_3D, 19
runif_cube, 19
runif_disk, 20
runif_shell_3D, 21
runif_square, 21

sampling2Dashape, 22
sampling3Dashape, 23

sphere_overlap_cs, 24
sphere_overlap_is, 25
spherical_cap, 25

tau_bound, 26

write_alpha_txt, 26

28

	calc_overlap_2D
	calc_overlap_3D
	cap_intersect_vol
	circle_overlap_cc
	circle_overlap_ia
	circumcenter_face
	circumcenter_tet
	circ_face_2D
	circ_face_3D
	circ_tet_3D
	count_neighbors
	euclid_dists_point_cloud_2D
	euclid_dists_point_cloud_3D
	extract_complex_edges
	extract_complex_faces
	extract_complex_tet
	extreme_pts
	generate_ashape2d
	generate_ashape3d
	get_alpha_complex
	get_area
	get_volume
	n_bound_connect_2D
	n_bound_connect_3D
	n_bound_homology_2D
	n_bound_homology_3D
	readOFF
	read_alpha_txt
	runif_annulus
	runif_ball_3D
	runif_cube
	runif_disk
	runif_shell_3D
	runif_square
	sampling2Dashape
	sampling3Dashape
	sphere_overlap_cs
	sphere_overlap_is
	spherical_cap
	tau_bound
	write_alpha_txt
	Index

