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Abstract

The availability of geocoded health data and the inherent temporal structure of com-
municable diseases have led to an increased interest in statistical models and software
for spatio-temporal data with epidemic features. The R package surveillance can handle
various levels of aggregation at which infective events have been recorded. This vignette
illustrates the analysis of area-level time series of counts using the endemic-epidemic mul-
tivariate time-series model “hhh4” described in, e.g., Meyer and Held (2014, Section 3).
See vignette("hhh4") for a more general introduction to hhh4 models, including the uni-
variate and non-spatial bivariate case. We first describe the general modeling approach
and then exemplify data handling, model fitting, visualization, and simulation methods
for weekly counts of measles infections by district in the Weser-Ems region of Lower Sax-
ony, Germany, 2001–2002.

Keywords: areal time series of counts, endemic-epidemic modeling, infectious disease epidemi-
ology, branching process with immigration.

1. Model class: hhh4

An endemic-epidemic multivariate time-series model for infectious disease counts Yit from
units i = 1, . . . , I during periods t = 1, . . . , T was proposed by Held, Höhle, and Hofmann
(2005) and was later extended in a series of papers (Paul, Held, and Toschke 2008; Paul and
Held 2011; Held and Paul 2012; Meyer and Held 2014). In its most general formulation, this
so-called “hhh4” model assumes that, conditional on past observations, Yit has a negative
binomial distribution with mean

µit = eit νit + λit Yi,t−1 + ϕit

∑
j ̸=i

wji Yj,t−1 (1)

and overdispersion parameter ψi > 0 such that the conditional variance of Yit is µit(1+ψiµit).
Shared overdispersion parameters, e.g., ψi ≡ ψ, are supported as well as replacing the negative
binomial by a Poisson distribution, which corresponds to the limit ψi ≡ 0.
Similar to the point process models in vignette("twinstim") and vignette("twinSIR"),
the mean (1) decomposes additively into endemic and epidemic components. The endemic
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mean is usually modeled proportional to an offset of expected counts eit. In spatial applica-
tions of the multivariate hhh4 model as in this paper, the “unit” i refers to a geographical
region and we typically use (the fraction of) the population living in region i as the endemic
offset. The observation-driven epidemic component splits up into autoregressive effects, i.e.,
reproduction of the disease within region i, and neighborhood effects, i.e., transmission from
other regions j. Overall, Equation 1 becomes a rich regression model by allowing for log-linear
predictors in all three components:

log(νit) = α
(ν)
i + β(ν)⊤

z
(ν)
it , (2)

log(λit) = α
(λ)
i + β(λ)⊤

z
(λ)
it , (3)

log(ϕit) = α
(ϕ)
i + β(ϕ)⊤

z
(ϕ)
it . (4)

The intercepts of these predictors can be assumed identical across units, unit-specific, or
random (and possibly correlated). The regression terms often involve sine-cosine effects of
time to reflect seasonally varying incidence, but may, e.g., also capture heterogeneous vacci-
nation coverage (Herzog, Paul, and Held 2011). Data on infections imported from outside the
study region may enter the endemic component (Geilhufe, Held, Skrøvseth, Simonsen, and
Godtliebsen 2014), which generally accounts for cases not directly linked to other observed
cases, e.g., due to edge effects.
For a single time series of counts Yt, hhh4 can be regarded as an extension of glm.nb
from package MASS (Ripley and Venables 2024) to account for autoregression. See the
vignette("hhh4") for examples of modeling univariate and bivariate count time series using
hhh4. With multiple regions, spatio-temporal dependence is adopted by the third component
in Equation 1 with weights wji reflecting the flow of infections from region j to region i.
These transmission weights may be informed by movement network data (Paul et al. 2008;
Geilhufe et al. 2014), but may also be estimated parametrically. A suitable choice to reflect
epidemiological coupling between regions (Keeling and Rohani 2008, Chapter 7) is a power-
law distance decay wji = o−d

ji defined in terms of the adjacency order oji in the neighborhood
graph of the regions (Meyer and Held 2014). Note that we usually normalize the transmis-
sion weights such that

∑
iwji = 1, i.e., the Yj,t−1 cases are distributed among the regions

proportionally to the jth row vector of the weight matrix (wji).
Likelihood inference for the above multivariate time-series model has been established by
Paul and Held (2011) with extensions for parametric neighborhood weights by Meyer and
Held (2014). Supplied with the analytical score function and Fisher information, the function
hhh4 by default uses the quasi-Newton algorithm available through the R function nlminb to
maximize the log-likelihood. Convergence is usually fast even for a large number of param-
eters. If the model contains random effects, the penalized and marginal log-likelihoods are
maximized alternately until convergence. Computation of the marginal Fisher information is
accelerated using the Matrix package (Bates, Maechler, and Jagan 2024).

2. Data structure: sts

In public health surveillance, routine reports of infections to public health authorities give rise
to spatio-temporal data, which are usually made available in the form of aggregated counts
by region and period. The Robert Koch Institute (RKI) in Germany, for example, maintains

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=Matrix
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a database of cases of notifiable diseases, which can be queried via the SurvStat@RKI online
service (https://survstat.rki.de). To exemplify area-level hhh4 models in the remainder
of this manuscript, we use weekly counts of measles infections by district in the Weser-Ems
region of Lower Saxony, Germany, 2001–2002, downloaded from SurvStat@RKI (as of Annual
Report 2005). These data are contained in surveillance as data("measlesWeserEms") – an
object of the S4-class sts (“surveillance time series”) used for data input in hhh4 models
and briefly introduced below. See Höhle and Mazick (2010) and Salmon, Schumacher, and
Höhle (2016) for more detailed descriptions of this class, which is also used for the prospective
aberration detection facilities of the surveillance package.
The epidemic modeling of multivariate count time series essentially involves three data ma-
trices: a T × I matrix of the observed counts, a corresponding matrix with potentially time-
varying population numbers (or fractions), and an I × I neighborhood matrix quantifying
the coupling between the I units. In our example, the latter consists of the adjacency or-
ders oji between the districts. A map of the districts in the form of a SpatialPolygons object
(defined by the sp package of Pebesma and Bivand 2024) can be used to derive the matrix
of adjacency orders automatically using the functions poly2adjmat and nbOrder, where the
former wraps functionality of package spdep (Bivand 2022):

R> weserems_adjmat <- poly2adjmat(map)
R> weserems_nbOrder <- nbOrder(weserems_adjmat)

Visual inspection of the adjacencies identified by poly2adjmat is recommended, e.g., via
labelling each district with the number of its neighbors, i.e., rowSums(weserems_adjmat).
If adjacencies are not detected, this is probably due to sliver polygons. In that case either
increase the snap tolerance in poly2adjmat or use rmapshaper (Teucher and Russell 2020)
to simplify and snap adjacent polygons in advance.
Given the aforementioned ingredients, the sts object measlesWeserEms has been constructed
as follows:

R> measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52,
+ population = populationFrac, neighbourhood = weserems_nbOrder, map = map)

Here, start and frequency have the same meaning as for classical time-series objects of
class ts, i.e., (year, sample number) of the first observation and the number of observa-
tions per year. Note that data("measlesWeserEms") constitutes a corrected version of
data("measles.weser") originally analyzed by Held et al. (2005, Section 3.2). Differences
are documented on the associated help page.
We can visualize such sts data in four ways: individual time series, overall time series, map
of accumulated counts by district, or animated maps. For instance, the two plots in Figure 1
have been generated by the following code:

R> plot(measlesWeserEms, type = observed ~ time)
R> plot(measlesWeserEms, type = observed ~ unit,
+ population = measlesWeserEms@map$POPULATION / 100000,
+ labels = list(font = 2), colorkey = list(space = "right"),
+ sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05),
+ scale = 50, labels = c("0", "50 km"), height = 0.03))

https://survstat.rki.de
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=rmapshaper
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(a) Time series of weekly counts.
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(b) Disease incidence (per 100 000 inhabitants).

Figure 1: Measles infections in the Weser-Ems region, 2001–2002.

The overall time-series plot in Figure 1a reveals strong seasonality in the data with slightly
different patterns in the two years. The spatial plot in Figure 1b is a tweaked spplot (package
sp) with colors from colorspace (Ihaka, Murrell, Hornik, Fisher, Stauffer, Wilke, McWhite,
and Zeileis 2024) using √-equidistant cut points.
The default plot type is observed ~ time | unit and displays the district-specific time
series. Here we show the output of the equivalent autoplot-method (Figure 2), which is
based on and requires ggplot2 (Wickham 2016):

R> if (require("ggplot2")) {
+ autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0))
+ } else plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0))

The districts 03401 (SK Delmenhorst) and 03405 (SK Wilhelmshaven) without any reported
cases are excluded in Figure 2. Obviously, the districts have been affected by measles to a
very heterogeneous extent during these two years.
An animation of the data can be easily produced as well. We recommend to use converters
of the animation package (Xie 2013), e.g., to watch the series of plots in a web browser. The
following code will generate weekly disease maps during the year 2001 with the respective
total number of cases shown in a legend and – if package gridExtra (Auguie 2017) is available
– an evolving time-series plot at the bottom:

R> animation::saveHTML(
+ animate(measlesWeserEms, tps = 1:52, total.args = list()),
+ title = "Evolution of the measles epidemic in the Weser-Ems region, 2001",
+ ani.width = 500, ani.height = 600)

https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=colorspace
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=animation
https://CRAN.R-project.org/package=gridExtra


Sebastian Meyer, Leonhard Held, Michael Höhle 5

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03402

time

N
o.

 in
fe

ct
ed

2001

II

2002

II
0

10
30

50 03403

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03404

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03451

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03452

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03453

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03454

time

N
o.

 in
fe

ct
ed

2001

II

2002

II
0

10
30

50 03455

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03456

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03457

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03458

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03459

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03460

time

N
o.

 in
fe

ct
ed

2001

II

2002

II
0

10
30

50 03461

time

N
o.

 in
fe

ct
ed

2001

II

2002

II

0
10

30
50 03462

Figure 2: Count time series of the 15 affected districts.

3. Modeling and inference
For multivariate surveillance time series of counts such as the measlesWeserEms data, the
function hhh4 fits models of the form (1) via (penalized) maximum likelihood. We start
by modeling the measles counts in the Weser-Ems region by a slightly simplified version of
the original negative binomial model used by Held et al. (2005). Instead of district-specific
intercepts α(ν)

i in the endemic component, we first assume a common intercept α(ν) in order
to not be forced to exclude the two districts without any reported cases of measles. After
the estimation and illustration of this basic model, we will discuss the following sequential
extensions: covariates (district-specific vaccination coverage), estimated transmission weights,
and random effects to eventually account for unobserved heterogeneity of the districts.

3.1. Basic model

Our initial model has the following mean structure:

µit = ei νt + λYi,t−1 + ϕ
∑
j ̸=i

wjiYj,t−1 , (5)

log(νt) = α(ν) + βtt+ γ sin(ωt) + δ cos(ωt) . (6)

To account for temporal variation of disease incidence, the endemic log-linear predictor νt in-
corporates an overall trend and a sinusoidal wave of frequency ω = 2π/52. As a basic district-
specific measure of disease incidence, the population fraction ei is included as a multiplicative
offset. The epidemic parameters λ = exp(α(λ)) and ϕ = exp(α(ϕ)) are assumed homogeneous
across districts and constant over time. Furthermore, we define wji = I(j ∼ i) = I(oji = 1)
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for the time being, which means that the epidemic can only arrive from directly adjacent
districts. This hhh4 model transforms into the following list of control arguments:

R> measlesModel_basic <- list(
+ end = list(f = addSeason2formula(~1 + t, period = frequency(measlesWeserEms)),
+ offset = population(measlesWeserEms)),
+ ar = list(f = ~1),
+ ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1),
+ family = "NegBin1")

The formulae of the three predictors log νt, log λ and log ϕ are specified as element f of the
end, ar, and ne lists, respectively. For the endemic formula we use the convenient function
addSeason2formula to generate the sine-cosine terms, and we take the multiplicative offset
of population fractions ei from the measlesWeserEms object. The autoregressive part only
consists of the intercept α(λ), whereas the neighborhood component specifies the intercept α(ϕ)

and also the matrix of transmission weights (wji) to use – here a simple indicator of first-
order adjacency. The chosen family corresponds to a negative binomial model with a common
overdispersion parameter ψ for all districts. Alternatives are "Poisson", "NegBinM" (ψi), or
a factor determining which groups of districts share a common overdispersion parameter.
Together with the data, the complete list of control arguments is then fed into the hhh4
function to estimate the model:

R> measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)

The fitted model is summarized below:

R> summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE)

Call:
hhh4(stsObj = measlesWeserEms, control = measlesModel_basic)

Coefficients:
Estimate Std. Error

exp(ar.1) 0.64540 0.07927
exp(ne.1) 0.01581 0.00420
exp(end.1) 1.08025 0.27884
exp(end.t) 1.00119 0.00426
end.A(2 * pi * t/52) 1.16423 0.19212
end.s(2 * pi * t/52) -0.63436 0.13350
overdisp 2.01384 0.28544

Epidemic dominant eigenvalue: 0.72

Log-likelihood: -971.7
AIC: 1957
BIC: 1996

Number of units: 17
Number of time points: 103
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The idx2Exp argument of the summary method requests the estimates for λ, ϕ, α(ν) and
exp(βt) instead of their respective internal log-values. For instance, exp(end.t) represents
the seasonality-adjusted factor by which the basic endemic incidence increases per week. The
amplitudeShift argument transforms the internal coefficients γ and δ of the sine-cosine terms
to the amplitude A and phase shift φ of the corresponding sinusoidal wave A sin(ωt + φ) in
log νt (Paul et al. 2008). The resulting multiplicative effect of seasonality on νt is shown in
Figure 3 produced by:

R> plot(measlesFit_basic, type = "season", components = "end", main = "")

0 10 20 30 40 50

0.5
1.0
1.5
2.0
2.5
3.0

week

Figure 3: Estimated multiplicative effect of seasonality on the endemic mean.

The epidemic potential of the process as determined by the parameters λ and ϕ is best
investigated by a combined measure: the dominant eigenvalue (maxEV) of the matrix Λ which
has the entries (Λ)ii = λ on the diagonal and (Λ)ij = ϕwji for j ̸= i (Paul et al. 2008). If
the dominant eigenvalue is smaller than 1, it can be interpreted as the epidemic proportion
of disease incidence. In the above model, the estimate is 72%.
Another way to judge the relative importance of the three model components is via a plot of
the fitted mean components along with the observed counts. Figure 4 shows this for the five
districts with more than 50 cases as well as for the sum over all districts:

R> districts2plot <- which(colSums(observed(measlesWeserEms)) > 50)
R> par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1)
R> plot(measlesFit_basic, type = "fitted", units = districts2plot,
+ hide0s = TRUE, par.settings = NULL, legend = 1)
R> plot(measlesFit_basic, type = "fitted", total = TRUE,
+ hide0s = TRUE, par.settings = NULL, legend = FALSE) -> fitted_components

We can see from the plots that the largest portion of the fitted mean indeed results from the
within-district autoregressive component with very little contribution of cases from adjacent
districts and a rather small endemic incidence.
The plot method invisibly returns the component values in a list of matrices (one by unit).
In the above code, we have assigned the result from plotting the overall fit (via total =
TRUE) to the object fitted_components. Here we show the values for the weeks 20 to 22
(corresponding to the weeks 21 to 23 of the measles time series):

R> fitted_components$Overall[20:22,]

mean epidemic endemic epi.own epi.neighbours ar.exppred ne.exppred end.exppred
[1,] 22.57 19.11 3.453 18.07 1.0431 10.97 0.2687 58.70
[2,] 18.41 15.08 3.329 14.20 0.8851 10.97 0.2687 56.59
[3,] 34.73 31.57 3.158 29.69 1.8808 10.97 0.2687 53.69
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Figure 4: Fitted components in the initial model measlesFit_basic for the five districts with
more than 50 cases as well as summed over all districts (bottom right). Dots are only drawn
for positive weekly counts.

The first column of this matrix refers to the fitted mean (epidemic + endemic). The four
following columns refer to the epidemic (own + neighbours), endemic, autoregressive (“own”),
and neighbourhood components of the mean. The last three columns refer to the point
estimates of λ, ϕ, and νt, respectively. These values allow us to calculate the (time-averaged)
proportions of the mean explained by the different components:

R> colSums(fitted_components$Overall)[3:5] / sum(fitted_components$Overall[,1])

endemic epi.own epi.neighbours
0.14876 0.76060 0.09063

Note that the “epidemic proportion” obtained here (85%) is a function of the observed time
series (so could be called “empirical”), whereas the dominant eigenvalue calculated further
above is a theoretical property derived from the autoregressive parameters alone.
Finally, the overdisp parameter from the model summary and its 95% confidence interval

R> confint(measlesFit_basic, parm = "overdisp")

2.5 % 97.5 %
overdisp 1.454 2.573

suggest that a negative binomial distribution with overdispersion is more adequate than a
Poisson model corresponding to ψ = 0. We can underpin this finding by an AIC comparison,
taking advantage of the convenient update method for hhh4 fits:
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R> AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson"))

df AIC
measlesFit_basic 7 1957
update(measlesFit_basic, family = "Poisson") 6 2479

Other plot types and methods for fitted hhh4 models as listed in Table 1 will be applied in
the course of the following model extensions.

Display Extract Modify Other

print nobs update predict
summary coef simulate
plot fixef pit

ranef scores
vcov calibrationTest
confint all.equal
coeflist oneStepAhead
logLik
residuals
terms
formula
getNEweights

Table 1: Generic and non-generic functions applicable to hhh4 objects.

3.2. Covariates

The hhh4 model framework allows for covariate effects on the endemic or epidemic contribu-
tions to disease incidence. Covariates may vary over both regions and time and thus obey
the same T × I matrix structure as the observed counts. For infectious disease models, the
regional vaccination coverage is an important example of such a covariate, since it reflects
the (remaining) susceptible population. In a thorough analysis of measles occurrence in the
German federal states, Herzog et al. (2011) found vaccination coverage to be associated with
outbreak size. We follow their approach of using the district-specific proportion 1 − vi of
unvaccinated children just starting school as a proxy for the susceptible population. As vi we
use the proportion of children vaccinated with at least one dose among the ones presenting
their vaccination card at school entry in district i in the year 2004.1 This time-constant
covariate needs to be transformed to the common matrix structure for incorporation in hhh4:

R> Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004,
+ nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE)
R> summary(Sprop[1, ])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0306 0.0481 0.0581 0.0675 0.0830 0.1398

There are several ways to account for the susceptible proportion in our model, among which
the simplest is to update the endemic population offset ei by multiplication with (1 − vi).

1First year with data for all districts; more recent data is available from the public health department of
Lower Saxony (https://www.nlga.niedersachsen.de/impfreport/).

https://www.nlga.niedersachsen.de/impfreport/
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Herzog et al. (2011) found that the susceptible proportion is best added as a covariate in the
autoregressive component in the form

λi Yi,t−1 = exp
(
α(λ) + βs log(1 − vi)

)
Yi,t−1 = exp

(
α(λ)) (1 − vi)βs Yi,t−1

according to the mass action principle (Keeling and Rohani 2008). A higher proportion of
susceptibles in district i is expected to boost the generation of new infections, i.e., βs > 0.
Alternatively, this effect could be assumed as an offset, i.e., βs ≡ 1. To choose between
endemic and/or autoregressive effects, and multiplicative offset vs. covariate modeling, we
perform AIC-based model selection. First, we set up a grid of possible component updates:

R> Soptions <- c("unchanged", "Soffset", "Scovar")
R> SmodelGrid <- expand.grid(end = Soptions, ar = Soptions)
R> row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|")))

Then we update the initial model measlesFit_basic according to each row of SmodelGrid:

R> measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) {
+ updatecomp <- function (comp, option) switch(option, "unchanged" = list(),
+ "Soffset" = list(offset = comp$offset * Sprop),
+ "Scovar" = list(f = update(comp$f, ~. + log(Sprop))))
+ update(measlesFit_basic,
+ end = updatecomp(measlesFit_basic$control$end, options[1]),
+ ar = updatecomp(measlesFit_basic$control$ar, options[2]),
+ data = list(Sprop = Sprop))
+ })

The resulting object measlesFits_vacc is a list of 9 hhh4 fits, which are named according
to the corresponding Soptions used for the endemic and autoregressive components. We
construct a call of the function AIC taking all list elements as arguments:

R> aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name),
+ envir = as.environment(measlesFits_vacc))

R> aics_vacc[order(aics_vacc[, "AIC"]), ]

df AIC
`Scovar|unchanged` 8 1917
`Scovar|Scovar` 9 1919
`Soffset|unchanged` 7 1922
`Soffset|Scovar` 8 1924
`Scovar|Soffset` 8 1934
`Soffset|Soffset` 7 1937
unchanged|unchanged 7 1957
`unchanged|Scovar` 8 1959
`unchanged|Soffset` 7 1967

Hence, AIC increases if the susceptible proportion is only added to the autoregressive compo-
nent, but we see a remarkable improvement when adding it to the endemic component. The
best model is obtained by leaving the autoregressive component unchanged (λ) and adding
the term βs log(1 − vi) to the endemic predictor in Equation 6.
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R> measlesFit_vacc <- update(measlesFit_basic,
+ end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))),
+ data = list(Sprop = Sprop))
R> coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ]

Estimate Std. Error
1.7181 0.2877

The estimated exponent β̂s is both clearly positive and different from the offset assumption.
In other words, if a district’s fraction of susceptibles is doubled, the endemic measles incidence
is estimated to multiply by 2β̂s :

R> 2^cbind("Estimate" = coef(measlesFit_vacc),
+ confint(measlesFit_vacc))["end.log(Sprop)",]

Estimate 2.5 % 97.5 %
3.290 2.226 4.864

3.3. Spatial interaction

Up to now, the model assumed that the epidemic can only arrive from directly adjacent
districts (wji = I(j ∼ i)), and that all districts have the same ability ϕ to import cases
from neighboring regions. Given that humans travel further and preferably to metropolitan
areas, both assumptions seem overly simplistic and should be tuned toward a “gravity” model
for human interaction. First, to reflect commuter-driven spread in our model, we scale the
district’s susceptibility with respect to its population fraction by multiplying ϕ with e

βpop

i :

R> measlesFit_nepop <- update(measlesFit_vacc,
+ ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms)))

As in a similar analyses of influenza (Geilhufe et al. 2014; Meyer and Held 2014), we find
strong evidence for such an agglomeration effect: AIC decreases from 1917 to 1887 and the
estimated exponent β̂pop is

R> cbind("Estimate" = coef(measlesFit_nepop),
+ confint(measlesFit_nepop))["ne.log(pop)",]

Estimate 2.5 % 97.5 %
2.852 1.831 3.873

Second, to account for long-range transmission of cases, Meyer and Held (2014) proposed to
estimate the weights wji as a function of the adjacency order oji between the districts. For
instance, a power-law model assumes the form wji = o−d

ji , for j ̸= i and wjj = 0, where the
decay parameter d is to be estimated. Normalization to wji/

∑
k wjk is recommended and

applied by default when choosing W_powerlaw as weights in the neighborhood component:

R> measlesFit_powerlaw <- update(measlesFit_nepop,
+ ne = list(weights = W_powerlaw(maxlag = 5)))
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Figure 5: Estimated weights as a function of adjacency order.

The argument maxlag sets an upper bound for spatial interaction in terms of adjacency
order. Here we set no limit since max(neighbourhood(measlesWeserEms)) is 5. The decay
parameter d is estimated to be

R> cbind("Estimate" = coef(measlesFit_powerlaw),
+ confint(measlesFit_powerlaw))["neweights.d",]

Estimate 2.5 % 97.5 %
4.102 2.034 6.170

which represents a strong decay of spatial interaction for higher-order neighbors. As an
alternative to the parametric power law, unconstrained weights up to maxlag can be estimated
by using W_np instead of W_powerlaw. For instance, W_np(maxlag = 2) corresponds to a
second-order model, i.e., wji = 1 · I(oji = 1) + eω2 · I(oji = 2), which is also row-normalized
by default:

R> measlesFit_np2 <- update(measlesFit_nepop,
+ ne = list(weights = W_np(maxlag = 2)))

Figure 5b shows both the power-law model o−d̂ and the second-order model. Alternatively,
the plot type = "neweights" for hhh4 fits can produce a stripplot (Sarkar 2024) of wji

against oji as shown in Figure 5a for the power-law model:

R> library("lattice")
R> plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot,
+ panel = function (...) {panel.stripplot(...); panel.average(...)},
+ jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji]))

Note that only horizontal jitter is added in this case. Because of normalization, the weight
wji for transmission from district j to district i is determined not only by the districts’
neighborhood oji but also by the total amount of neighborhood of district j in the form of∑

k ̸=j o
−d
jk , which causes some variation of the weights for a specific order of adjacency. The

function getNEweights can be used to extract the estimated weight matrix (wji).
An AIC comparison of the different models for the transmission weights yields:
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R> AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2)

df AIC
measlesFit_nepop 9 1887
measlesFit_powerlaw 10 1882
measlesFit_np2 10 1881

AIC improves when accounting for transmission from higher-order neighbors by a power law
or a second-order model. In spite of the latter resulting in a slightly better fit, we will use the
power-law model as a basis for further model extensions since the stand-alone second-order
effect is not always identifiable in more complex models and is scientifically implausible.

3.4. Random effects

Paul and Held (2011) introduced random effects for hhh4 models, which are useful if the
districts exhibit heterogeneous incidence levels not explained by observed covariates, and
especially if the number of districts is large. For infectious disease surveillance data, a typical
example of unobserved heterogeneity is underreporting. Our measles data even contain two
districts without any reported cases, while the district with the smallest population (03402, SK
Emden) had the second-largest number of cases reported and the highest overall incidence
(see Figures 1b and 2). Hence, allowing for district-specific intercepts in the endemic or
epidemic components is expected to improve the model fit. For independent random effects
α

(ν)
i

iid∼ N(α(ν), σ2
ν), α(λ)

i
iid∼ N(α(λ), σ2

λ), and α
(ϕ)
i

iid∼ N(α(ϕ), σ2
ϕ) in all three components, we

update the corresponding formulae as follows:

R> measlesFit_ri <- update(measlesFit_powerlaw,
+ end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)),
+ ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)),
+ ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1)))

R> summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE)

Call:
hhh4(stsObj = object$stsObj, control = control)

Random effects:
Var Corr

ar.ri(iid) 1.08
ne.ri(iid) 1.29 0
end.ri(iid) 1.31 0 0

Fixed effects:
Estimate Std. Error

ar.ri(iid) -1.61389 0.38197
ne.log(pop) 3.42406 1.07722
ne.ri(iid) 6.62429 2.81553
end.t 0.00578 0.00480
end.A(2 * pi * t/52) 1.20359 0.20149
end.s(2 * pi * t/52) -0.47916 0.14205
end.log(Sprop) 1.79350 0.69159
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end.ri(iid) 4.42260 1.94605
neweights.d 3.60640 0.77602
overdisp 0.97723 0.15132

Epidemic dominant eigenvalue: 0.84

Penalized log-likelihood: -868.6
Marginal log-likelihood: -54.2

Number of units: 17
Number of time points: 103

The summary now contains an extra section with the estimated variance components σ2
λ,

σ2
ϕ, and σ2

ν . We did not assume correlation between the three random effects, but this is
possible by specifying ri(corr = "all") in the component formulae. The implementation
also supports a conditional autoregressive formulation for spatially correlated intercepts via
ri(type = "car").
The estimated district-specific deviations α(·)

i − α(·) can be extracted by the ranef-method:

R> head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3)

ar.ri(iid) ne.ri(iid) end.ri(iid)
03401 0.0000 -0.05673 -1.0045
03402 1.2235 0.04312 1.5264
03403 -0.8273 1.55878 -0.6199

The exp-transformed deviations correspond to district-specific multiplicative effects on the
model components, which can be visualized via the plot type = "ri" as follows (Figure 6):

R> for (comp in c("ar", "ne", "end")) {
+ print(plot(measlesFit_ri, type = "ri", component = comp, exp = TRUE,
+ labels = list(cex = 0.6)))
+ }
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Figure 6: Estimated multiplicative effects on the three components.
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For the autoregressive component in Figure 6a, we see a pronounced heterogeneity between
the three western districts in pink and the remaining districts. These three districts have
been affected by large local outbreaks and are also the ones with the highest overall num-
bers of cases. In contrast, the city of Oldenburg (03403) is estimated with a relatively low
autoregressive coefficient: λi = exp(α(λ)

i ) can be extracted using the intercept argument as

R> exp(ranef(measlesFit_ri, intercept = TRUE)["03403", "ar.ri(iid)"])

[1] 0.08706

However, this district seems to import more cases from other districts than explained by its
population (Figure 6b). In Figure 6c, the two districts without any reported measles cases
(03401 and 03405) appear in cyan, which means that they exhibit a relatively low endemic
incidence after adjusting for the population and susceptible proportion. Such districts could
be suspected of a larger amount of underreporting.
We plot the new model fit (Figure 7) for comparison with the initial fit shown in Figure 4:

R> par(mfrow = c(2,3), mar = c(3, 5, 2, 1), las = 1)
R> plot(measlesFit_ri, type = "fitted", units = districts2plot,
+ hide0s = TRUE, par.settings = NULL, legend = 1)
R> plot(measlesFit_ri, type = "fitted", total = TRUE,
+ hide0s = TRUE, par.settings = NULL, legend = FALSE)
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Figure 7: Fitted components in the random effects model measlesFit_ri for the five districts
with more than 50 cases as well as summed over all districts. Compare to Figure 4.

For some of these districts, a great amount of cases is now explained via transmission from
neighboring regions while others are mainly influenced by the local autoregression.
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The decomposition of the estimated mean by district can also be seen from the related plot
type = "maps" (Figure 8):

R> plot(measlesFit_ri, type = "maps",
+ which = c("epi.own", "epi.neighbours", "endemic"),
+ prop = TRUE, labels = list(cex = 0.6))
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Figure 8: Maps of the fitted component proportions averaged over all weeks.

The extra flexibility of the random effects model comes at a price. First, the runtime of
the estimation increases considerably from 0.1 seconds for the previous power-law model
measlesFit_powerlaw to 1.1 seconds with random effects. Furthermore, we no longer obtain
AIC values, since random effects invalidate simple AIC-based model comparisons. For quan-
titative comparisons of model performance we have to resort to more sophisticated techniques
presented in the next section.

3.5. Predictive model assessment

Paul and Held (2011) suggest to evaluate one-step-ahead forecasts from competing models
using proper scoring rules for count data (Czado, Gneiting, and Held 2009). These scores
measure the discrepancy between the predictive distribution P from a fitted model and the
later observed value y. A well-known example is the squared error score (“ses”) (y − µP )2,
which is usually averaged over a set of forecasts to obtain the mean squared error. The Dawid-
Sebastiani score (“dss”) additionally evaluates sharpness. The logarithmic score (“logs”) and
the ranked probability score (“rps”) assess the whole predictive distribution with respect to
calibration and sharpness. Lower scores correspond to better predictions.
In the hhh4 framework, predictive model assessment is made available by the functions
oneStepAhead, scores, pit, and calibrationTest. We will use the second quarter of 2002
as the test period, and compare the basic model, the power-law model, and the random effects
model. First, we use the "final" fits on the complete time series to compute the predictions,
which then simply correspond to the fitted values during the test period:

R> tp <- c(65, 77)
R> models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri"))
R> measlesPreds1 <- lapply(mget(models2compare), oneStepAhead,
+ tp = tp, type = "final")
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Note that in this case, the log-score for a model’s prediction in district i in week t equals the
associated negative log-likelihood contribution. Comparing the mean scores from different
models is thus essentially a goodness-of-fit assessment:

R> SCORES <- c("logs", "rps", "dss", "ses")
R> measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE)
R> t(sapply(measlesScores1, colMeans, dims = 2))

logs rps dss ses
measlesFit_basic 1.089 0.7358 1.2911 5.289
measlesFit_powerlaw 1.101 0.7307 2.2223 5.394
measlesFit_ri 1.007 0.6381 0.9656 4.823

All scoring rules claim that the random effects model gives the best fit during the second
quarter of 2002. Now we turn to true one-week-ahead predictions of type = "rolling",
which means that we always refit the model up to week t to get predictions for week t+ 1:

R> measlesPreds2 <- lapply(mget(models2compare), oneStepAhead,
+ tp = tp, type = "rolling", which.start = "final")

Figure 9 shows fanplots (Abel 2021) of the sequential one-week-ahead forecasts from the
random effects models for the same districts as in Figure 7:

R> for (unit in names(districts2plot))
+ plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit,
+ key.args = if (unit == tail(names(districts2plot),1)) list())

The plot-method for oneStepAhead predictions is based on the associated quantile-method
(a confint-method is also available). Note that the sum of these negative binomial dis-
tributed forecasts over all districts is not negative binomial distributed. The package distr
(Ruckdeschel and Kohl 2014) could be used to approximate the distribution of the aggregated
one-step-ahead forecasts (not shown here).
Looking at the average scores of these forecasts over all weeks and districts, the most parsi-
monious initial model measlesFit_basic actually turns out best:

R> measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE)
R> t(sapply(measlesScores2, colMeans, dims = 2))

logs rps dss ses
measlesFit_basic 1.102 0.7478 1.339 5.404
measlesFit_powerlaw 1.136 0.7654 2.929 5.865
measlesFit_ri 1.110 0.7632 2.349 7.080

Statistical significance of the differences in mean scores can be investigated by a permutationTest
for paired data or a paired t-test:

R> set.seed(321)
R> sapply(SCORES, function (score) permutationTest(
+ measlesScores2$measlesFit_ri[, , score],
+ measlesScores2$measlesFit_basic[, , score],
+ nPermutation = 999))

https://CRAN.R-project.org/package=fanplot
https://CRAN.R-project.org/package=distr
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Figure 9: Fan charts of rolling one-week-ahead forecasts during the second quarter of 2002,
as produced by the random effects model measlesFit_ri, for the five most affected districts.

logs rps dss ses
diffObs 0.007822 0.01541 1.01 1.677
pVal.permut 0.86 0.734 0.51 0.202
pVal.t 0.8541 0.7165 0.3737 0.1711

Hence, there is no clear evidence for a difference between the basic and the random effects
model with regard to predictive performance during the test period.
Whether predictions of a particular model are well calibrated can be formally investigated by
calibrationTests for count data as recently proposed by Wei and Held (2014). For example:

R> calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps")

Calibration Test for Count Data (based on RPS)

data: measlesPreds2[["measlesFit_ri"]]
z = 0.80671, n = 221, p-value = 0.4198

Thus, there is no evidence of miscalibrated predictions from the random effects model. Czado
et al. (2009) describe an alternative informal approach to assess calibration: probability
integral transform (PIT) histograms for count data (Figure 10).

R> for (m in models2compare)
+ pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m))

Under the hypothesis of calibration, i.e., yit ∼ Pit for all predictive distributions Pit in the
test period, the PIT histogram is uniform. Underdispersed predictions lead to U-shaped
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Figure 10: PIT histograms of competing models to check calibration of the one-week-ahead
predictions during the second quarter of 2002.

histograms, and bias causes skewness. In this aggregate view of the predictions over all
districts and weeks of the test period, predictive performance is comparable between the
models, and there is no evidence of badly dispersed predictions. However, the right-hand
decay in all histograms suggests that all models tend to predict higher counts than observed.
This is most likely related to the seasonal shift between the years 2001 and 2002. In 2001, the
peak of the epidemic was in the second quarter, while it already occurred in the first quarter
in 2002 (cp. Figure 1a).

3.6. Further modeling options

In the previous sections we extended our model for measles in the Weser-Ems region with
respect to spatial variation of the counts and their interaction. Temporal variation was only
accounted for in the endemic component, which included a long-term trend and a sinusoidal
wave on the log-scale. Held and Paul (2012) suggest to also allow seasonal variation of the
epidemic force by adding a superposition of S harmonic waves of fundamental frequency ω,∑S

s=1 {γs sin(s ωt) + δs cos(s ωt)}, to the log-linear predictors of the autoregressive and/or
neighborhood component – just like for log νt in Equation 6 with S = 1. However, given
only two years of measles surveillance and the apparent shift of seasonality with regard to the
start of the outbreak in 2002 compared to 2001, more complex seasonal models are likely to
overfit the data. Concerning the coding in R, sine-cosine terms can be added to the epidemic
components without difficulties by again using the convenient function addSeason2formula.
Updating a previous model for different numbers of harmonics is even simpler, since the
update-method has a corresponding argument S. The plots of type = "season" and type =
"maxEV" for hhh4 fits can visualize the estimated component seasonality.
Performing model selection and interpreting seasonality or other covariate effects across three
different model components may become quite complicated. Power-law weights actually en-
able a more parsimonious model formulation, where the autoregressive and neighbourhood
components are merged into a single epidemic component:

µit = eit νit + ϕit

∑
j

(oji + 1)−d Yj,t−1 . (7)

With only two predictors left, model selection and interpretation is simpler, and model ex-
tensions are more straightforward, for example stratification by age group (Meyer and Held
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2017) as mentioned further below. To fit such a two-component model, the autoregressive
component has to be excluded (ar = list(f = ~ -1)) and power-law weights have to be
modified to start from adjacency order 0 (via W_powerlaw(..., from0 = TRUE)).
All of our models for the measles surveillance data incorporated an epidemic effect of the
counts from the local district and its neighbors. Without further notice, we thereby assumed
a lag equal to the observation interval of one week. However, the generation time of measles is
around 10 days, which is why Herzog et al. (2011) aggregated their weekly measles surveillance
data into biweekly intervals. We can perform a sensitivity analysis by running the whole code
of the current section based on aggregate(measlesWeserEms, nfreq = 26). Doing so, the
parameter estimates of the various models retain their order of magnitude and conclusions
remain the same. However, with the number of time points halved, the complex random
effects model would not always be identifiable when calculating one-week-ahead predictions
during the test period.
We have shown several options to account for the spatio-temporal dynamics of infectious
disease spread. However, for directly transmitted human diseases, the social phenomenon of
“like seeks like” results in contact patterns between subgroups of a population, which extend
the pure distance decay of interaction. Especially for school children, social contacts are
highly age-dependent. A useful epidemic model should therefore be additionally stratified by
age group and take the inherent contact structure into account. How this extension can be
incorporated in the spatio-temporal endemic-epidemic modeling framework hhh4 has recently
been investigated by Meyer and Held (2017). The associated hhh4contacts package (Meyer
2024) contains a demo script to exemplify this modeling approach with surveillance data on
norovirus gastroenteritis and an age-structured contact matrix.

4. Simulation
Simulation from fitted hhh4 models is enabled by an associated simulate-method. Compared
to the point process models described in vignette("twinstim") and vignette("twinSIR"),
simulation is less complex since it essentially consists of sequential calls of rnbinom (or rpois).
At each time point t, the mean µit is determined by plugging in the parameter estimates and
the counts Yi,t−1 simulated at the previous time point. In addition to a model fit, we thus need
to specify an initial vector of counts y.start. As an example, we simulate 100 realizations of
the evolution of measles during the year 2002 based on the fitted random effects model and
the counts of the last week of the year 2001 in the 17 districts:

R> (y.start <- observed(measlesWeserEms)[52, ])

03401 03402 03403 03404 03405 03451 03452 03453 03454 03455 03456 03457 03458 03459
0 0 0 0 0 0 0 0 0 0 0 25 0 0

03460 03461 03462
0 0 0

R> measlesSim <- simulate(measlesFit_ri,
+ nsim = 100, seed = 1, subset = 53:104, y.start = y.start)

The simulated counts are returned as a 52×17×100 array instead of a list of 100 sts objects.
We can, e.g., look at the final size distribution of the simulations:

https://CRAN.R-project.org/package=hhh4contacts
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R> summary(colSums(measlesSim, dims = 2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
223 326 424 550 582 3971

A few large outbreaks have been simulated, but the mean size is below the observed number
of sum(observed(measlesWeserEms)[53:104, ]) = 779 cases in the year 2002. Using the
plot-method associated with such hhh4 simulations, Figure 11 shows the weekly number of
observed cases compared to the long-term forecast via a fan chart:

R> plot(measlesSim, "fan", means.args = list(), key.args = list())
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Figure 11: Simulation-based long-term forecast starting from the last week in 2001 (left-hand
dot). The plot shows the weekly counts aggregated over all districts. The fan chart represents
the 1% to 99% quantiles of the simulations in each week; their mean is displayed as a white
line. The circles correspond to the observed counts.

We refer to help("simulate.hhh4") and help("plot.hhh4sims") for further examples.
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