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First addressed by [1] in dealing with correlations between stock prices, di�culty arises when data is not available
for all stocks on each day, which is unfortunately a common occurrence. To help address this situation, correlations are
calculated for pairs of stocks only when data is available for both stocks on any given day. The resulting correlation
matrix is only approximate in that it is not necessarily positive semide�nite.

This problem was cast by [1] as

minimize
X

||R−X||F
subject to

diag(X) = 1
X ∈ Sn

where R is the approximate correlation matrix and || · ||F denotes the Frobenius norm. Unfortunately, the Frobenius
norm in the objective function prevents the problem being formatted as a conic linear optimization problem.

Since the matrix X is constrained to have unit diagonal and be symmetric, and the matrix R is an approximate
correlation matrix, meaning it will also have unit diagonal and be symmetric, we can re-write the objective function
as

||R−X||F = 2 ∗ ||svec(R)− svec(X)|| = 2 ∗ ||e||

Now, introduce a variable e0 such that e0 ≥ ||e||, and de�ne e∗ = [e0; e]. The vector e∗ is now restricted to be in
the quadratic cone Qn(n+1)/2+1. This work leads to the formulation of [3]

minimize
e∗, X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e

∗

diag(X) = 1
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

Here, [X,Y] denotes column binding of the two matrices Xn×p and Yn×m to form a matrix of size n × (p +m).
By minimizing e0, we indirectly minimize e = svec(R)− svec(X), since recall we have e0 ≥ ||e||, which is the goal of
the original objective function.

To see this as a conic linear optimization problem, notice that e0 can be written as ⟨Cq, Xq⟩ by letting Cq =
[1;0n(n+1)/2] and Xq = e∗. Since the matrix X (i.e. Xs) does not appear in the objective function, the matrix Cs is
an n× n matrix of zeros.

Re-writing the �rst constraint as

svec(X) + [0, In(n+1)/2] e
∗ = svec(R)

we can easily de�ne the constraint matrices and right hand side of the �rst constraint as
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As
1 = In(n+1)/2

Aq
1 = [0, In(n+1)/2]

b1 = svec(R)

The second constraint is identical to the constraint from the Max-Cut problem, where each diagonal element of X
is constrained to be equal to 1. De�ne b2 = 1, and for the kth diagonal element of X, de�ne the matrix Ak as

Ak = [aij ] =

{
1, i = j = k

0, otherwise

yielding ⟨Ak,X⟩ = xkk. To write this as (As
2)

T
Xs, de�ne

As
2 = [svec(A1), ..., svec(An)]

Since e∗ does not appear in the second constraint, Aq
2 = 0n(n+1)/2+1.

The �nal step is to combine the individual constraint matrices from each constraint to form one constraint matrix
for each variable, which is done by de�ning As = [As

1, As
2], A

q = [Aq
1, Aq

2]. We also concatenate both right hand
side vectors to form a single vector by de�ning b = [b1; b2]. Here, the notation [X;Y] is used to denote two matrices
Xp×m and Yq×m bound vertically to form a matrix of size (p + q) × m. With this, the nearest correlation matrix
problem is written as a conic linear optimization.

To solve this problem using sqlp, we �rst de�ne blk. There are two optimization variables in the formulation of
the nearest correlation matrix - X is an n×n matrix constrained to be in a semide�nite cone, and y is an n(n+1)/2+1
length vector constrained to be in a quadratic cone, so

R> blk <- c("s" = n, "q" = n*(n+1)/2+1)

Note that X does not appear in the objective function, so the C entry corresponding to the block variable X is an
n× n matrix of zeros, which de�nes C as

R> C1 <- matrix(0,nrow=n,ncol=n)

R> C2 <- rbind(1, matrix(0,nrow=n2,ncol=1))

R> C = list(C1,C2)

Next comes the constraint matrix for X

R> At <- matrix(list(),nrow=2,ncol=1)

R>

R> #Constraint Matrix for Upper Triangular Elements of X

R> A1s <- diag(1,nrow=n2,ncol=n2)

R>

R> #Construct Ak matrices

R> Aks <- matrix(list(),nrow=1,ncol=n)

R> for(k in 1:n){

R> Aks[[k]] <- matrix(0,nrow=n,ncol=n)

R> diag(Aks[[k]])[k] <- 1

R> }

R>

R> A2s <- svec(blk[1,],Aks)

R>

R> #Combined Constraint Matrix for X

R> At1 <- cbind(A1s,A2s)
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then the constraint matrix for e∗.

R> A1q<- matrix(0,nrow=n,ncol=n2+1)

R>

R> A2q1 <- matrix(0,nrow=n2,ncol=1)

R> A2q2 <- diag(1,nrow=n2,ncol=n2)

R> A2q <- cbind(A211, A212)

R>

R> At2 <- rbind(A1q, A2q)

and the right hand side vector b

R> b <- rbind(svec(blk[1],R,1),matrix(1,n,1))

The nearest correlation matrix problem is now solved by

R> sqlp(blk, list(At1,At2), C, b)

To demonstrate the nearest correlation matrix problem, we will modify an existing correlation matrix by exploring
the e�ect of changing the sign of just one of the pairwise correlations. In the context of stock correlations, we make use
of tools available in the R package quantmod ([2]) to access stock data from �ve tech �rms (Microsoft, Apple, Amazon,
Alphabet/Google, and IBM) beginning in 2007.

R> library(quantmod)

R> getSymbols(c("MSFT", "AAPL", "AMZN", "GOOGL", "IBM"))

R> stock.close <- as.xts(merge(MSFT, AAPL, AMZN, GOOGL,IBM))[,c(4,10,16,22,28)]

The correlation matrix for these �ve stocks is

R> stock.corr <- cor(stock.close)

R> stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close

MSFT.Close 1.0000000 -0.2990463 0.9301085 0.5480033 0.2825698

AAPL.Close -0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127

AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390

GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146

IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Next, consider the e�ect of having a positive correlation between Microsoft and Apple

R> stock.corr[1,2] <- -1 * stock.corr[1,2]

R> stock.corr[2,1] <- stock.corr[1,2]

R> stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close

MSFT.Close 1.0000000 0.2990463 0.9301085 0.5480033 0.2825698

AAPL.Close 0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127

AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390

GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146

IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000
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Unfortunately, this correlation matrix is not positive semide�nite

R> eigen(stock.corr)$values

[1] 2.8850790 1.4306393 0.4902211 0.3294150 -0.1353544

Given the approximate correlation matrix stock.corr, the built-in function nearcorr provides the optimal solution
using sqlp

R> out <- nearcorr(stock.corr)

Since this is a minimization problem, and thus a primal formulation of the SQLP, the output X from sqlp will
provide the optimal solution to the problem - that is, X will be the nearest correlation matrix to stock.corr.

foo$X

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.25388359 0.86150833 0.5600734 0.3126420

[2,] 0.2538836 1.00000000 -0.09611382 0.3808981 0.6643566

[3,] 0.8615083 -0.09611382 1.00000000 0.6115212 0.3480430

[4,] 0.5600734 0.38089811 0.61152116 1.0000000 0.5935021

[5,] 0.3126420 0.66435657 0.34804303 0.5935021 1.0000000

The matrix above is symmetric with unit diagonal and all entries in [−1, 1]. By checking the eigenvalues,

eigen(X)

$values

[1] 2.846016e+00 1.384062e+00 4.570408e-01 3.128807e-01 9.680507e-11

we can see that X is indeed a correlation matrix.
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