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1 Introduction

Global sensitivity analysis is an essential tool for modellers in all application areas. Its aim is
to quantify and compare the influence of uncertain parameters (or other input variables) on the
output of a given model. There exist many different methods to perform sensitivity analysis, but
they are usually restricted to a single output variable. On the contrary, the R package multisensi
is specifically designed to perform global sensitivity analyses on a multivariate model output. It
calculates and represents graphically sensitivity indices on each output variable or on combinations
of output variables arising from dimension reduction techniques.

The initial version of multisensi was based on the combination of (i) a factorial design on the
uncertain model parameters; (ii) the application of principal components analysis on the model
output; (iii) anova-based sensitivity analyses on the first principal components. This idea was
proposed by Campbell et al. [1] and further studied by Lamboni et al. [5] (see also [11]). It is still
implemented in multisensi, but the present version includes alternative methods to perform the
dimension reduction : splines, bsplines and polynomial regression. In addition, several methods of
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global sensitivity analysis can now be used, including those implemented in the package sensitivity
[7].

Applications in agronomy and epidemiology are presented by Lamboni et al. [4] and Lurette
et al. [6]. For a detailed introduction to the methods of global sensitivity analysis, we refer to
Saltelli et al. [9] and Faivre et al. [2] (in French). Multivariate techniques are presented, for
example, in James et al. [3].

2 Case study: the Verhulst model of population dynamics

In the following, we illustrate the methods implemented in multisensi using a very simple model,
the dynamic population model of Verhulst.

Case study specifications The Verhulst model is given by the equation

Yt =
K

1 + (K/Y0 − 1) exp(−at)
,

where Yt is the population size at time t and Y0, K, a are respectively the initial size, the carrying
capacity and the rate of maximum population growth. The aim in our case study is to evaluate
the influence of these three parameters on the population sizes until time T = 100. For this,
simulated population sizes are recorded at times 5, 10, · · · , 100. The parameter uncertainty ranges
of interest are assumed to be (100, 1000) for K, (1, 40) for Y0, (0.05, 0.2) for a.

Model implementation The R function verhulst is created to run the model for given values
of K, a, Y0 and for a vector t of output times. The output of verhulst is the vector of population
sizes at the times in t.

verhulst <- function(K, Y0, a, t){
output <- K / (1 + (K/Y0-1)*exp(-a*t))

return(output) }

Since the methods implemented in multisensi require to run the dynamic population model repeat-
edly, another function called verhulst2 is created. It takes a dataframe of input combinations as
its first argument and the time steps of interest as its second argument..

T <- seq(from=5, to=100, by=5)

verhulst2 <- function(X, t=T){
out <- matrix(nrow=nrow(X), ncol=length(t), NA)

for(i in 1:nrow(X)){
out[i,] <- verhulst(X$K[i], X$Y0[i], X$a[i], t) }

out <- as.data.frame(out) ; names(out) <- paste("t",t,sep="")

return(out) }

A sample of population dynamics The output of the Verhulst model is plotted in Fig. 1, for
a few combinations of values of the parameters.
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n <- 10 ; set.seed(1234)

X <- data.frame(K=runif(n, min=100,max=1000), Y0=runif(n, min=1, max=40),

a=runif(n, min=0.05,max=0.2))

Y <- verhulst2(X)

par(cex.axis=0.7, cex.lab=0.8)

plot(T, Y[1,], type="l", xlab= "Time", ylab="Population size", ylim=c(0,1000))

for(i in 2:n){ lines(T, Y[i,], type="l", col=i) }
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Figure 1: Population size versus time according to the Verhulst model for 10 combinations of
values of K, Y0 and a.

3 Sequential univariate sensitivity analyses

3.1 Calculation of sensitivity indices

Now we want to perform sensitivity analyses on the population sizes with respect to the three
uncertain parameters: K, Y0, and a. This can be done in different ways by using the main
function of the package, which is called multisensi like the package itself.

A first and obvious option is to perform separate sensitivity analyses at t = 5, 10, ..., 100.
To do this, multisensi must be used with the argument reduction=NULL :

library(multisensi)

## Registered S3 method overwritten by ’sensitivity’:

## method from

## print.src dplyr

verhulst.seq <- multisensi(model=verhulst2, reduction=NULL, center=FALSE,

design.args = list( K=c(100,400,1000), Y0=c(1,20,40), a=c(0.05,0.1,0.2)))

## [*] Design
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## [*] Response simulation

## [*] Analysis + Sensitivity Indices

By keeping the default values of multisensi for the design and analysis arguments, a full factorial
design is created according to the factors’ levels provided in the design.args argument. The results
are then analysed by the R function aov, with an anova formula including main effects and two-
factor interactions.

The result verhulst.seq is an object of class dynsi, which has specific print, summary, and plot
methods. The print and summary functions give the sensitivity indices :

print(verhulst.seq, digits=2)

##

## Main sensitivity indices

## t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55

## K 0.014 0.053 0.096 0.13 0.18 0.23 0.30 0.351 0.393 0.433 0.476

## a 0.092 0.210 0.257 0.27 0.28 0.29 0.30 0.287 0.258 0.230 0.206

## Y0 0.818 0.519 0.335 0.24 0.20 0.16 0.12 0.087 0.073 0.068 0.064

## t60 t65 t70 t75 t80 t85 t90 t95 t100 GSI

## K 0.52 0.573 0.622 0.664 0.698 0.725 0.748 0.768 0.787 0.562

## a 0.18 0.165 0.146 0.128 0.111 0.096 0.082 0.069 0.058 0.165

## Y0 0.06 0.053 0.046 0.039 0.034 0.030 0.027 0.025 0.023 0.063

##

## Total sensitivity indices

## t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55 t60

## K 0.035 0.14 0.25 0.34 0.41 0.48 0.55 0.59 0.61 0.64 0.67 0.70

## a 0.148 0.35 0.45 0.49 0.49 0.50 0.51 0.51 0.48 0.44 0.40 0.36

## Y0 0.878 0.66 0.50 0.40 0.33 0.25 0.18 0.15 0.14 0.14 0.13 0.13

## t65 t70 t75 t80 t85 t90 t95 t100 GSI

## K 0.73 0.77 0.790 0.808 0.822 0.832 0.842 0.853 0.71

## a 0.32 0.29 0.259 0.232 0.209 0.187 0.167 0.148 0.32

## Y0 0.11 0.10 0.091 0.086 0.083 0.082 0.081 0.079 0.13

3.2 Graphical representation

Rather than reading tables of sensitivity indices, the user may prefer to plot them. Fig. 2 shows
the graphics obtained by the following code, where the two plot commands differ only by the
normalized argument :
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# color palettes: rainbow, heat.colors, terrain.colors, topo.colors, cm.colors

plot(verhulst.seq, normalized=TRUE, color=terrain.colors, gsi.plot=FALSE)

title(xlab="Time in half-decades.")

plot(verhulst.seq, normalized=FALSE, color=terrain.colors, gsi.plot=FALSE)

title(xlab="Time in half-decades.")
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Figure 2: Dynamics of the sensitivity indices of the Verhulst model from t = 5 to 100, with indices
normalized either to 1 (left panel) or to the variance at each time t (right panel). In the left panel,
the upper subplot shows the extreme (tirets), inter-quartile (grey) and median (bold line) output
values at all time steps. The lower subplot represents the sensitivity indices at all time steps for
the main effects and the first-order interactions.

In the lower subplot of Fig. 2 (left panel), the sensitivity indices at time t are given by
the lengths of the different colors along the vertical bar at time t. Thus one can see clearly
that the population size at time t = 25 is sensitive to the main effects of a, Y0, K in quite
similar proportions, with interactions accounting for roughly one-fourth of the variability. At time
t = 100, the population size is sensitive mainly to K, which is logical since the population sizes are
close to their carrying capacity K. The upper subplot illustrates how output quantiles vary along
the time steps. This is useful to avoid over-interpretation of the sensitivity indices at times when
the variability between simulations is low. For example, the population size is very sensitive to Y0

in the first time steps, but then the variability between simulations is still very low as shown in
the upper subplot. This can also be seen by setting the argument normalized=FALSE as in Fig. 2
(right panel). In that case, the sensitivity indices at time t are constrained to sum to the output
variance at time t rather than to reflect proportions summing to one at all times t.

3.3 Calculating simulations apart

If needed, the design or the model output can be calculated apart from the multisensi function.
This allows to use a design generated outside multisensi or to apply multisensi to simulated
data based on a code implemented outside R. Thus, the commands below are equivalent to those
in Section 3.1 :

X <- expand.grid(K=c(100,400,1000), Y0=c(1,20,40), a=c(0.05,0.1,0.2))

Y <- verhulst2(X) ## this part can be performed outside R if necessary

verhulst.seq <- multisensi(design=X, model=Y, reduction=NULL, center=FALSE)

## [*] Analysis + Sensitivity Indices
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4 Multivariate sensitivity analysis based on PCA

The sequential sensitivity analyses of Section 3 give interesting information on the evolution of
parameters’ influence over time. However other methods based on multivariate techniques can
give a more synthetic view of the parameters’ impact on the population dynamics. Their common
principle is to proceed to the analysis in two steps:

1. dimension reduction: a multivariate technique is applied to decompose the simulated
dynamics on a reduced basis of d canonical dynamics, which will be called the basic trajec-
tories. The multivariate techniques available in multisensi are principal components analysis
(PCA), B-splines, orthogonal B-splines or projection on a polynomial basis;

2. sensitivity analysis: for each basic trajectory, sensitivity analysis is applied to the associ-
ated coefficients of the decomposition.

Mathematically, the population dynamics are decomposed into

Yi,t =

d∑
j=1

αijZj,t + ηi,t, (1)

where Yi,t is the output of simulation i at time t,
(
Zj,t

)
t=1,··· ,T is the jth basic trajectory (which

depends on the multivariate technique), αij is the coefficient of simulation i associated with the
jth basic trajectory, d is the reduction dimension and ηi,t is the approximation error on simulation
i at time t due to dimension reduction. Sensitivity analyses are applied to the αij coefficients,
for each basic dimension j = 1, · · · , d. In addition, it is possible to calculate the generalised
sensitivity indices (GSI), which are weighted means of the sensitivity indices over the d dimensions,
and the global criterion (GC), which quantifies the proportion of variability accounted for by
the approximation resulting from both the dimension reduction and the restriction to low-order
factorial effects in the sensitivity analysis (see Lamboni et al. [5] and [11]).

In this Section, we illustrate this approach by focusing on principal components analysis
(PCA). For any given reduced dimension d, the PCA decomposition maximises the variability
between dynamics taken into account by the summation in equation (1). Let V denote the
variance-covariance matrix of the T vectors of simulated output variables

(
Yi,t

)
i=1,··· ,N , where N

is the size of the design; then the PCA basic trajectories
(
Zj,t

)
t=1,··· ,T are the eigenvectors of V

in decreasing order of their associated eigenvalues.

4.1 Calculation

Multivariate sensitivity analyses can be performed by using the same multisensi function as before.
The choice of the multivariate technique is now specified by the argument reduction=basis.ACP :

## Note that this old syntax of multisensi still works:

## verhulst.gsi <- gsi(formula=2, Y, X)

verhulst.pca <- multisensi(design=X, model=Y, reduction=basis.ACP, scale=FALSE)

## [*] Dimension Reduction

## [*] Analysis + Sensitivity Indices

## [*] Goodness of fit computing

By keeping the default argument dimension = 0.95, the dimension d is selected automatically as
the smallest value such that 95% of the total variability (or inertia) between dynamics is taken into
account. Another option would be to specify dimension = 3, for example. Two other arguments
are associated with dimension reduction, center and scale. When the output is a time series with
the same variable calculated from time t = 1 to t = T , as in our Verhulst model case study, it
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can be more pertinent to keep the raw ranges of variation of Y over time. This is why we use the
argument scale=FALSE. Note that we choose to use again the factorial design X and the simulated
output Y calculated in Section 3.3. By default, the sensitivity analyses are performed by anova
with a formula including main effects and two-factor interactions, as in Section 3.

The result verhulst.pca is an object of class gsi, which has print, summary and plot methods
associated, in addition to the more specific functions graph.pc and graph.bar. The summary gives
information on the inertia proportions explained by the first principal components, together with
the tables of sensitivity indices.

summary(verhulst.pca, digits=2)

##

## Components cumulated inertia percentages and Global Criterion

## PC1 PC2 GC

## 90 98 96

##

## Main sensitivity indices

## PC1 PC2 GSI

## K 0.610 0.15 0.573

## a 0.159 0.27 0.168

## Y0 0.059 0.10 0.063

##

## Total sensitivity indices

## PC1 PC2 GSI

## K 0.76 0.33 0.73

## a 0.29 0.59 0.32

## Y0 0.11 0.30 0.12

##

## gsi outputs

## Design Response Principal Components

## "X" "Y" "H"

## Loadings PCs variances Indices

## "L" "lambda" "SI"

## First order indices Total indices Interaction indices

## "mSI" "tSI" "iSI"

## Correlation Inertia Rsquare

## "cor" "inertia" "Rsquare"

## Informations

## "call.info"

Here the inertia proportions show that the first two principal components explain 98%
of the total variability between the calculated population dynamics. So by default, the multisensi
function performs the sensitivity analyses for these first two components only. The first component
is influenced mainly by K (SI=0.61), while the second component is influenced mainly by a,
although less strongly. The influence of Y0 is exerted mainly through interactions with K and a.
The last column in the tables of sensitivity indices gives the generalised sensitivity indices (GSI),
which are the averages of the PC1 and PC2 indices weighted by the PC percentages of inertia.

4.2 Graphical representation

When a reduction technique is applied, several types of graphical representation can be useful to
interpret the results. This is why the plot method allows for several options to be used depending
on the value given to the graph argument.

The graph=1 option gives multipanel graphics as shown in Fig. 3. There is one column per
dimension j and two rows. The aim of the upper row is to show what the components in dimension
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j look like with respect to the output variables, so they present quantile curves
(
αQjZj,t

)
t=1,··· ,T ,

where αQj denotes the quantile Q of the αij values for i = 1, · · · , N (see details in the legend of
Fig. 3). The lower row contains the bar plot of sensitivity indices for each dimension j of interest.

plot(verhulst.pca, graph=1)
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Figure 3: Plots for the PCA multivariate sensitivity analysis of the Verhulst model. Upper sub-
plots: functional boxplots of the principal components, with time on the x-axis and population
size contribution on the y-axis (red curves: extreme values, blue: 1/10 and 9/10 percentiles, grey
area: inter-quartile, black: median). Lower subplots: sensitivity indices (light grey: first order
indices, dark grey: total indices).

For the Verhulst case study, the left upper plot in Fig. 3 shows that the first principal
component, which explains more than 90% of the inertia, captures essentially an average effect
over time. The left lower plot confirms that this effect is mainly influenced by the maximum
population size K, with smaller contributions of a, Y0 and interactions.

The right upper plot in Fig. 3 shows that the second principal component, which explains
about 8% of the inertia, captures the contrast in the dynamics between the early and late periods.
The right lower plot shows that this effect is influenced first by a, but also by K and Y0 and by
strong two-factor interactions.
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The graph=2 option gives the bar plot of generalised sensitivity indices (see Fig. 4). In the
case study, these indices represent the contributions of the factors to the whole variability between
the dynamics of population size.

plot(verhulst.pca, graph=2)
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Figure 4: Bar plot of the PCA generalised sensitivity indices of the Verhulst model.

For each output variable, the multivariate sensitivity analysis accounts only for part of
the variability between simulations. The first reason is due to dimension reduction. The second
reason is because the sensitivity analysis is usually restricted to the factorial effects of first order
or possibly first and second order. In multisensi, these proportions of variability that are accounted
for can be quantified by R2 coefficients of determination, provided the sensitivity analysis is based
on anova. The graph=3 option allows to plot these R2 coefficients of determination, as shown
in Fig. 5 for the case study. The R2 values are low for the first output variables, because they
have low variance and so have little weight in the determination of the basic trajectories. The
R2 values would have been more uniform if we had chosen to normalise the output variables by
setting scale=TRUE.
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plot(verhulst.pca, graph=3)
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Figure 5: Coefficients of determination of the output variables for the PCA multivariate sensitivity
analysis of the Verhulst model on raw output data.

5 Alternative reduction techniques

In practice, it can be useful to apply sensitivity analysis with multivariate techniques other than
PCA. The package multisensi provides projection methods either on a reduced polynomial basis
or on data-based spline bases.

5.1 Polynomial reduction of the multivariate output

In the case of a polynomial decomposition, the (Yi,t)t=1,··· ,T dynamics are approximated by poly-
nomials of a given degree d− 1. Thus the (Zj,t)t=1,··· ,T basic trajectories of equation (1) are the
monomials of t of degree up to d− 1.

In multisensi, this decomposition is obtained by setting the argument reduction = basis.poly.
It is necessary to give additional information through the basis.args argument. We do it here for
the Verhulst model by specifying that the polynomial must be of degree six or lower and by giving
the vector of output time coordinates t = (5, · · · , 100)T .

verhulst.poly <- multisensi(design = X, model = Y, reduction = basis.poly,

dimension = 0.99, center = FALSE, scale = FALSE, cumul = FALSE,

basis.args = list(degree=6, x.coord=T), analysis = analysis.anoasg,

analysis.args = list(formula=2, keep.outputs=FALSE))

## [*] Dimension Reduction

## [*] Analysis + Sensitivity Indices

## [*] Goodness of fit computing

summary(verhulst.poly, digits=2)
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##

## Components cumulated inertia percentages and Global Criterion

## Deg0 Deg1 Deg2 Deg3 GC

## 76 93 98 99 97

##

## Main sensitivity indices

## Deg0 Deg1 Deg2 Deg3 GSI

## K 0.571 0.7327 0.093 0.0047 0.567

## a 0.179 0.0526 0.331 0.2838 0.166

## Y0 0.078 0.0014 0.049 0.0902 0.064

##

## Total sensitivity indices

## Deg0 Deg1 Deg2 Deg3 GSI

## K 0.73 0.79 0.39 0.22 0.72

## a 0.31 0.20 0.71 0.64 0.32

## Y0 0.12 0.10 0.21 0.32 0.13

##

## gsi outputs

## Design Response Principal Components

## "X" "Y" "H"

## Loadings PCs variances Indices

## "L" "lambda" "SI"

## First order indices Total indices Interaction indices

## "mSI" "tSI" "iSI"

## Correlation Inertia Rsquare

## "cor" "inertia" "Rsquare"

## Informations

## "call.info"

The results show that polynomials of degree 3 are sufficient to integrate more than 99% of
the output variability. Graphics are given in Fig. 6.
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plot(verhulst.poly, nb.comp=3,graph=1)
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Figure 6: Plots for the multivariate sensitivity analysis based on polynomial regression. Upper
subplots: functional boxplots of the constant, linear and quadratic components, with time on the
x-axis and population size contribution on the y-axis (red curves: extreme values, blue: 1/10 and
9/10 percentiles, grey area: inter-quartile, black: median). Lower subplots: sensitivity indices
(light grey: first order indices, dark grey: total indices).

5.2 Spline modelling of the population dynamics

Splines represent other popular techniques of multivariate analysis (see [3, 10, 8]). We give an
example just below with B-splines, see also Fig. 7. More information is given in the help of
basis.bsplines.

## bsplines

verhulst.bspl <- multisensi(design=X, model=Y, reduction=basis.bsplines,

dimension=NULL, center=FALSE, scale=FALSE,

basis.args=list(knots=10, mdegree=3), cumul=FALSE,

analysis=analysis.anoasg,

analysis.args=list(formula=2, keep.outputs=FALSE))

## [*] Dimension Reduction

## [*] Analysis + Sensitivity Indices

## [*] Goodness of fit computing
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plot(verhulst.bspl, nb.comp=5,graph=1)
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Figure 7: Plots for the multivariate sensitivity analysis based on bspline regression. Upper sub-
plots: functional boxplots of the b-splines, with time on the x-axis and population size contri-
bution on the y-axis (red curves: extreme values, blue: 1/10 and 9/10 percentiles, grey area:
inter-quartile, black: median). Lower subplots: sensitivity indices (light grey: first order indices,
dark grey: total indices).

6 Alternative methods of sensitivity analysis

Sensitivity analyses based on factorial design plus anova are very useful and convenient. However,
they oblige to restrict the levels of each input factor to a few discretised values from their un-
certainty ranges. Other methods of global sensitivity analysis take better account of continuous
ranges of input values. Many of them can be used with multisensi.

6.1 With Sobol2007 implemented in the package sensitivity

The function multisensi is compatible with the methods of sensitivity analysis implemented in the
sensitivity package. To illustrate this, we first call the sensitivity package:

library(sensitivity)

Then we use the method sobol2007 of the sensitivity package :

m <- 10000

Xb <- data.frame(K=runif(m, min=100,max=1000), Y0=runif(m, min=1, max=40),

a=runif(m, min=0.05,max=0.2))

verhulst.seq.sobol<-

multisensi(design=sobol2007, model=verhulst2,

reduction=NULL, analysis=analysis.sensitivity, center=TRUE,

design.args=list(X1=Xb[1:(m/2),], X2=Xb[(1+m/2):m,], nboot=100),

analysis.args=list(keep.outputs=FALSE))

## [*] Design

## [*] Response simulation

## [*] Analysis + Sensitivity Indices

print(verhulst.seq.sobol,digits=2)
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##

## Main sensitivity indices

## t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55

## K 0.0093 0.031 0.069 0.12 0.19 0.26 0.34 0.429 0.513 0.59 0.67

## a 0.1075 0.280 0.386 0.43 0.43 0.40 0.37 0.322 0.274 0.23 0.18

## Y0 0.8405 0.581 0.393 0.27 0.20 0.14 0.10 0.073 0.054 0.04 0.03

## t60 t65 t70 t75 t80 t85 t90 t95 t100 GSI

## K 0.735 0.790 0.835 0.871 0.8984 0.920 0.9359 0.9480 0.9568 0.704

## a 0.141 0.107 0.079 0.058 0.0412 0.029 0.0201 0.0138 0.0094 0.153

## Y0 0.023 0.017 0.013 0.009 0.0062 0.004 0.0024 0.0013 0.0005 0.042

##

## Total sensitivity indices

## t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55

## K 0.013 0.061 0.14 0.23 0.33 0.42 0.50 0.58 0.650 0.714 0.771

## a 0.152 0.380 0.52 0.58 0.58 0.55 0.51 0.45 0.391 0.329 0.269

## Y0 0.877 0.671 0.50 0.36 0.26 0.19 0.14 0.10 0.082 0.068 0.056

## t60 t65 t70 t75 t80 t85 t90 t95 t100 GSI

## K 0.818 0.86 0.890 0.916 0.936 0.952 0.963 0.972 0.979 0.783

## a 0.214 0.17 0.128 0.096 0.071 0.051 0.037 0.026 0.017 0.222

## Y0 0.047 0.04 0.034 0.028 0.024 0.020 0.016 0.013 0.010 0.068

Results are given above and the sequence of sensitivity indices is displayed in Fig. 8. The
results are very similar to those of Section 3, but here they have obtained by varying the input
factors across their whole uncertainty intervals.

Of course, the Sobol method of sensitivity analysis can also be combined with the multi-
variate techniques (PCA, polynomials, splines), by changing the reduction argument.
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plot(verhulst.seq.sobol, normalized=TRUE, color=terrain.colors, gsi.plot=FALSE)

title(xlab="Time in half-decades")
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Figure 8: Evolution of the Sobol sensitivity indices of the Verhulst model from t = 5 to t = 100.
The upper subplot shows the extreme (tirets), inter-quartile (grey) and median (bold line) output
values at all time steps. The lower subplot represents the sensitivity indices at all time steps for
the main effects and the first-order interactions.

6.2 With fast99 implemented in the package sensitivity

Another possibility is to use the method fast99 :

verhulst.seq.fast <- multisensi(design = fast99, model = verhulst2,

center = FALSE, reduction = NULL, analysis = analysis.sensitivity,

design.args=list( factors=c("K","Y0","a"), n=1000, q = "qunif",

q.arg = list(list(min=100, max=1000), list(min=1, max=40),

list(min = 0.05, max = 0.2))),

analysis.args=list(keep.outputs=FALSE))

## [*] Design

## [*] Response simulation

## [*] Analysis + Sensitivity Indices

print(verhulst.seq.fast,digits=2)

##

## Main sensitivity indices

## t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55

## K 0.0047 0.024 0.06 0.11 0.18 0.26 0.346 0.435 0.522 0.603 0.676
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## a 0.1094 0.286 0.40 0.45 0.45 0.43 0.391 0.341 0.287 0.234 0.186

## Y0 0.8507 0.597 0.40 0.28 0.20 0.14 0.096 0.068 0.049 0.036 0.027

## t60 t65 t70 t75 t80 t85 t90 t95 t100 GSI

## K 0.74 0.797 0.843 0.8809 0.9110 0.9345 0.9523 0.9657 0.9755 0.714

## a 0.14 0.109 0.081 0.0581 0.0410 0.0284 0.0194 0.0130 0.0085 0.159

## Y0 0.02 0.015 0.011 0.0083 0.0061 0.0044 0.0031 0.0022 0.0015 0.041

##

## Total sensitivity indices

## t5 t10 t15 t20 t25 t30 t35 t40 t45 t50 t55

## K 0.011 0.056 0.14 0.23 0.32 0.41 0.50 0.57 0.645 0.710 0.767

## a 0.141 0.364 0.51 0.57 0.58 0.57 0.53 0.48 0.417 0.354 0.292

## Y0 0.884 0.675 0.50 0.36 0.26 0.19 0.14 0.11 0.091 0.078 0.069

## t60 t65 t70 t75 t80 t85 t90 t95 t100 GSI

## K 0.817 0.859 0.893 0.921 0.942 0.959 0.971 0.980 0.987 0.785

## a 0.236 0.187 0.146 0.113 0.086 0.065 0.049 0.036 0.026 0.239

## Y0 0.061 0.054 0.047 0.041 0.035 0.029 0.024 0.019 0.015 0.076

Results are shown above and the sequence of sensitivity indices is displayed in Fig. 9.

plot(verhulst.seq.fast, normalized=TRUE, color=terrain.colors, gsi.plot=FALSE)

title(xlab="Time in half-decades")
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Figure 9: Evolution of the Fast sensitivity indices of the Verhulst model from t = 5 to t = 100.
The upper subplot shows the extreme (tirets), inter-quartile (grey) and median (bold line) output
values at all time steps. The lower subplot represents the sensitivity indices at all time steps for
the main effects and the first-order interactions.
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[3] G. James, D. Witten, T. Hastie & R. Tibshirani (éds.) – An introduction to statistical
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