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It is assumed that the reader is familiar with the theory and applications
described in the generalsiminf vignette.

1 Simple Examples

Example: Simple Linear Model. Consider a simple univariate linear model
regressing the distance to stop on speed for 50 cars:

R> lm.cars <- lm(dist ~ speed, data = cars)

R> summary(lm.cars)

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max

-29.07 -9.53 -2.27 9.21 43.20

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.579 6.758 -2.60 0.012 *

speed 3.932 0.416 9.46 1.5e-12 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 15.4 on 48 degrees of freedom

Multiple R-squared: 0.651, Adjusted R-squared: 0.644

F-statistic: 89.6 on 1 and 48 DF, p-value: 1.49e-12

The estimates of the regression coe�cients β and their covariance matrix can
be extracted from the �tted model via:

R> betahat <- coef(lm.cars)

R> Vbetahat <- vcov(lm.cars)

At �rst, we are interested in the hypothesis β1 = 0 and β2 = 0. This is equiva-
lent to the linear hypothesis Kβ = 0 where K = diag(2), i.e.,
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R> K <- diag(2)

R> Sigma <- diag(1 / sqrt(diag(K %*% Vbetahat %*% t(K))))

R> z <- Sigma %*% K %*% betahat

R> Cor <- Sigma %*% (K %*% Vbetahat %*% t(K)) %*% t(Sigma)

Note that z = (−2.6011, 9.464) is equal to the t statistics. The multiplicity-
adjusted p values can now be computed by means of the multivariate t distri-
bution utilizing the pmvt function available in package mvtnorm:

R> library("mvtnorm")

R> df.cars <- nrow(cars) - length(betahat)

R> sapply(abs(z), function(x) 1 - pmvt(-rep(x, 2), rep(x, 2), corr = Cor, df = df.cars))

[1] 1.661e-02 2.457e-12

Note that the p value of the global test is the minimum p value of the partial
tests.

The computations above can be performed much more conveniently using the
functionality implemented in package multcomp. The function glht just takes
a �tted model and a matrix de�ning the linear functions, and thus hypotheses,
to be tested:

R> library("multcomp")

R> cars.ht <- glht(lm.cars, linfct = K)

R> summary(cars.ht)

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = dist ~ speed, data = cars)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

(Intercept) == 0 -17.579 6.758 -2.60 0.017 *

speed == 0 3.932 0.416 9.46 <1e-10 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Adjusted p values reported -- single-step method)

Simultaneous con�dence intervals corresponding to this multiple testing proce-
dure are available via

R> confint(cars.ht)

Simultaneous Confidence Intervals

Fit: lm(formula = dist ~ speed, data = cars)

Quantile = 2.131
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95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

(Intercept) == 0 -17.579 -31.981 -3.177

speed == 0 3.932 3.047 4.818

The application of the framework isn't limited to linear models, nonlinear
least-squares estimates can be tested as well. Consider constructing simultane-
ous con�dence intervals for the model parameters (example from the manual
page of nls):

R> DNase1 <- subset(DNase, Run == 1)

R> fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)

R> K <- diag(3)

R> rownames(K) <- names(coef(fm1DNase1))

R> confint(glht(fm1DNase1, linfct = K))

Simultaneous Confidence Intervals

Fit: nls(formula = density ~ SSlogis(log(conc), Asym, xmid, scal),

data = DNase1, algorithm = "default", control = list(maxiter = 50,

tol = 1e-05, minFactor = 0.0009765625, printEval = FALSE,

warnOnly = FALSE, scaleOffset = 0, nDcentral = FALSE),

trace = FALSE)

Quantile = 2.136

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

Asym == 0 2.345 2.178 2.512

xmid == 0 1.483 1.309 1.657

scal == 0 1.041 0.973 1.110

which is not totally di�erent from univariate con�dence intervals

R> confint(fm1DNase1)

2.5% 97.5%

Asym 2.1935 2.539

xmid 1.3215 1.679

scal 0.9743 1.115

because the parameter estimates are highly correlated
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Figure 1: cars data: Regression line with con�dence bands (dashed) and inter-
vals (dotted).

R> cov2cor(vcov(fm1DNase1))

Asym xmid scal

Asym 1.0000 0.9868 0.9008

xmid 0.9868 1.0000 0.9063

scal 0.9008 0.9063 1.0000

Example: Con�dence Bands for Regression Line. Suppose we want
to plot the linear model �t to the cars data including an assessment of the
variability of the model �t. This can be based on simultaneous con�dence
intervals for the regression line x⊤

i β̂:

R> K <- model.matrix(lm.cars)[!duplicated(cars$speed),]

R> ci.cars <- confint(glht(lm.cars, linfct = K), abseps = 0.1)

Figure 1 depicts the regression �t together with the con�dence band for the re-
gression line and the pointwise con�dence intervals as computed by predict(lm.cars).

2 Multiple Comparison Procedures

Multiple comparisons of means, i.e., regression coe�cients for groups in AN(C)OVA
models, are a special case of the general framework sketched in the previous sec-
tion. The main di�culty is that the comparisons one is usually interested in,
for example all-pairwise di�erences, can't be directly speci�ed based on model
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parameters of an AN(C)OVA regression model. We start with a simple one-way
ANOVA example and generalize to ANCOVA models in the following.

Consider a one-way ANOVA model, i.e., the only covariate x is a factor at j
levels. In the absence of an intercept term only, the elements of the parameter
vector β ∈ Rj correspond to the mean of the response in each of the j groups:

R> ex <- data.frame(y = rnorm(12), x = gl(3, 4, labels = LETTERS[1:3]))

R> aov.ex <- aov(y ~ x - 1, data = ex)

R> coef(aov.ex)

xA xB xC

0.1627 0.1835 0.2976

Thus, the hypotheses β2 − β1 = 0 and β3 − β1 = 0 can be written in form of a
linear function Kβ with

R> K <- rbind(c(-1, 1, 0),

+ c(-1, 0, 1))

R> rownames(K) <- c("B - A", "C - A")

R> colnames(K) <- names(coef(aov.ex))

R> K

xA xB xC

B - A -1 1 0

C - A -1 0 1

Using the general linear hypothesis function glht, this so-called `many-to-one
comparison procedure' [Dunnett, 1955] can be performed via

R> summary(glht(aov.ex, linfct = K))

Simultaneous Tests for General Linear Hypotheses

Fit: aov(formula = y ~ x - 1, data = ex)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 0.0208 0.8010 0.03 1.00

C - A == 0 0.1349 0.8010 0.17 0.98

(Adjusted p values reported -- single-step method)

Alternatively, a symbolic description of the general linear hypothesis of interest
can be supplied to glht:

R> summary(glht(aov.ex, linfct = c("xB - xA = 0", "xC - xA = 0")))

Simultaneous Tests for General Linear Hypotheses

Fit: aov(formula = y ~ x - 1, data = ex)
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Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

xB - xA == 0 0.0208 0.8010 0.03 1.00

xC - xA == 0 0.1349 0.8010 0.17 0.98

(Adjusted p values reported -- single-step method)

However, in the presence of an intercept term, the full parameter vector
θ = c(µ, β1, . . . , βj) can't be estimated due to singularities in the corresponding
design matrix. Therefore, a vector of contrasts γ⋆ of the original parameter
vector γ is �tted. More technically, a contrast matrix C is included into this
model such that β = Cγ⋆ any we only obtain estimates for γ⋆, but not for γ:

R> aov.ex2 <- aov(y ~ x, data = ex)

R> coef(aov.ex2)

(Intercept) xB xC

0.16273 0.02081 0.13488

The default contrasts in R are so-called treatment contrasts, nothing but dif-
ferences in means for one baseline group (compare the Dunnett contrasts and
the estimated regression coe�cients):

R> contr.treatment(table(ex$x))

4 4

4 0 0

4 1 0

4 0 1

R> K %*% contr.treatment(table(ex$x)) %*% coef(aov.ex2)[-1]

[,1]

B - A 0.02081

C - A 0.13488

so that KCβ̂⋆ = Kβ̂.
When the mcp function is used to specify linear hypotheses, the glht function

takes care of contrasts. Within mcp, the matrix of linear hypotheses K can be
written in terms of γ, not γ⋆. Note that the matrix of linear hypotheses only
applies to those elements of γ̂⋆ attached to factor x but not to the intercept
term:

R> summary(glht(aov.ex2, linfct = mcp(x = K)))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts
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Fit: aov(formula = y ~ x, data = ex)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 0.0208 0.8010 0.03 1.00

C - A == 0 0.1349 0.8010 0.17 0.98

(Adjusted p values reported -- single-step method)

or, a little bit more convenient in this simple case:

R> summary(glht(aov.ex2, linfct = mcp(x = c("B - A = 0", "C - A = 0"))))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = y ~ x, data = ex)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 0.0208 0.8010 0.03 1.00

C - A == 0 0.1349 0.8010 0.17 0.98

(Adjusted p values reported -- single-step method)

More generally, inference on linear functions of parameters which can be
interpreted as `means' are known as multiple comparison procedures (MCP). For
some of the more prominent special cases, the corresponding linear functions can
be computed by convenience functions part of multcomp. For example, Tukey
all-pair comparisons for the factor x can be set up using

R> glht(aov.ex2, linfct = mcp(x = "Tukey"))

General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

Estimate

B - A == 0 0.0208

C - A == 0 0.1349

C - B == 0 0.1141

The initial parameterization of the model is automatically taken into account:

R> glht(aov.ex, linfct = mcp(x = "Tukey"))
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General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

Estimate

B - A == 0 0.0208

C - A == 0 0.1349

C - B == 0 0.1141

3 Two-way ANOVA

For two-way ANOVA models, one might be interested in comparing the levels
of the two factors simultaneously. For the model

R> mod <- lm(breaks ~ wool + tension, data = warpbreaks)

one can extract the appropriate contrast matrices for both factors via

R> K1 <- glht(mod, mcp(wool = "Tukey"))$linfct

R> K2 <- glht(mod, mcp(tension = "Tukey"))$linfct

and we can simultaneously compare the levels of each factor using

R> summary(glht(mod, linfct = rbind(K1, K2)))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = breaks ~ wool + tension, data = warpbreaks)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

B - A == 0 -5.78 3.16 -1.83 0.2304

M - L == 0 -10.00 3.87 -2.58 0.0458 *

H - L == 0 -14.72 3.87 -3.80 0.0015 **

H - M == 0 -4.72 3.87 -1.22 0.5703

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Adjusted p values reported -- single-step method)

where the �rst comparison is with respect to wool and the remaining three to
tension.

For models with interaction term

R> mod <- lm(breaks ~ wool * tension, data = warpbreaks)

one might be interested in comparing the levels of tension within the levels
of wool. There are two ways to do this. First, we compute the means of the
response for all six combinations of the levels of wool and tension:
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R> tmp <- expand.grid(tension = unique(warpbreaks$tension),

+ wool = unique(warpbreaks$wool))

R> X <- model.matrix(~ wool * tension, data = tmp)

R> glht(mod, linfct = X)

General Linear Hypotheses

Linear Hypotheses:

Estimate

1 == 0 44.6

2 == 0 24.0

3 == 0 24.6

4 == 0 28.2

5 == 0 28.8

6 == 0 18.8

which is the same as

R> predict(mod, newdata = tmp)

1 2 3 4 5 6

44.56 24.00 24.56 28.22 28.78 18.78

We now construct a contrast matrix based on Tukey-contrasts for tension in a
block-diagonal way, i.e., for each level of wool:

R> Tukey <- contrMat(table(warpbreaks$tension), "Tukey")

R> K1 <- cbind(Tukey, matrix(0, nrow = nrow(Tukey), ncol = ncol(Tukey)))

R> rownames(K1) <- paste(levels(warpbreaks$wool)[1], rownames(K1), sep = ":")

R> K2 <- cbind(matrix(0, nrow = nrow(Tukey), ncol = ncol(Tukey)), Tukey)

R> rownames(K2) <- paste(levels(warpbreaks$wool)[2], rownames(K2), sep = ":")

R> K <- rbind(K1, K2)

R> colnames(K) <- c(colnames(Tukey), colnames(Tukey))

and perform the tests via

R> summary(glht(mod, linfct = K %*% X))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = breaks ~ wool * tension, data = warpbreaks)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

A:M - L == 0 -20.556 5.157 -3.99 0.0013 **

A:H - L == 0 -20.000 5.157 -3.88 0.0018 **

A:H - M == 0 0.556 5.157 0.11 1.0000

B:M - L == 0 0.556 5.157 0.11 1.0000
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B:H - L == 0 -9.444 5.157 -1.83 0.3080

B:H - M == 0 -10.000 5.157 -1.94 0.2553

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Adjusted p values reported -- single-step method)

where the e�ects are the same as

R> K %*% predict(mod, newdata = tmp)

[,1]

A:M - L -20.5556

A:H - L -20.0000

A:H - M 0.5556

B:M - L 0.5556

B:H - L -9.4444

B:H - M -10.0000

We see that the groups (M, L) and (H, L) are di�erent, however, only for wool
A (in contrast to the additive model above).

Note that the same results can be obtained by �tting the so-called cell-means
model based on a new factor derived as the interaction of wool and tension:

R> warpbreaks$tw <- with(warpbreaks, interaction(tension, wool))

R> cell <- lm(breaks ~ tw - 1, data = warpbreaks)

R> summary(glht(cell, linfct = K))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = breaks ~ tw - 1, data = warpbreaks)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

A:M - L == 0 -20.556 5.157 -3.99 0.0013 **

A:H - L == 0 -20.000 5.157 -3.88 0.0018 **

A:H - M == 0 0.556 5.157 0.11 1.0000

B:M - L == 0 0.556 5.157 0.11 1.0000

B:H - L == 0 -9.444 5.157 -1.83 0.3080

B:H - M == 0 -10.000 5.157 -1.94 0.2553

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Adjusted p values reported -- single-step method)

4 Test Procedures

Several global and multiple test procedures are available from the summary

method of glht objects and can be speci�ed via its test argument:
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� test = univariate() univariate p values based on either the t or nor-
mal distribution are reported. Controls the type I error for each partial
hypothesis only.

� test = Ftest() global F test for H0.

� test = Chisqtest() global χ2 test for H0.

� test = adjusted() multiple test procedures as speci�ed by the type ar-
gument to adjusted: "single-step" denotes adjusted p values as com-
puted from the joint normal or t distribution of the z statistics (default),
"free" implements multiple testing procedures under free combinations,
"Shaffer" implements Bonferroni-adjustments taking logical constraints
into account Sha�er [1986] and "Westfall" takes both logical constraints
and correlations among the z statistics into account Westfall [1997]. In ad-
dition, all adjustment methods implemented in p.adjust can be speci�ed
as well.

5 Quality Assurance

The analyses shown in Westfall et al. [1999] can be reproduced using multcomp

by running the R transcript �le in inst/MCMT.
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