
Multi-state modelling with R: the msm package

Version 1.8.2

08 November, 2024

Christopher Jackson
MRC Biostatistics Unit

Cambridge, U.K.
chris.jackson@mrc-bsu.cam.ac.uk

Abstract

The multi-state Markov model is a useful way of describing a process in which an individual
moves through a series of states in continuous time. The msm package for R allows a general
multi-state model to be fitted to longitudinal data. Data often consist of observations of the process
at arbitrary times, so that the exact times when the state changes are unobserved. For example,
the progression of chronic diseases is often described by stages of severity, and the state of the
patient may only be known at doctor or hospital visits. Features of msm include the ability to
model transition rates and hidden Markov output models in terms of covariates, and the ability to
model data with a variety of observation schemes, including censored states.

Hidden Markov models, in which the true path through states is only observed through some
error-prone marker, can also be fitted. The observation is generated, conditionally on the underly-
ing states, via some distribution. An example is a screening misclassification model in which states
are observed with error. More generally, hidden Markov models can have a continuous response,
with some arbitrary distribution, conditionally on the underlying state.

This manual introduces the theory behind multi-state Markov and hidden Markov models, and
gives a tutorial in the typical use of the msm package, illustrated by some typical applications to
modelling chronic diseases.

Much of the material in this manual is published, in a more concise form, in Journal of Statis-
tical Software (2011) 38(8):1-29, http://www.jstatsoft.org/v38/i08/

1 Multi-state models

1.1 Introduction
Figure 1 illustrates a multi-state model in continuous time. Its four states are labelled 1, 2, 3, 4. At a
time t the individual is in state S(t). The arrows show which transitions are possible between states.
The next state to which the individual moves, and the time of the change, are governed by a set of
transition intensities qrs(t, z(t)) for each pair of states r and s. The intensities may also depend on
the time of the process t, or more generally a set of individual-specific or time-varying explanatory

1

variables z(t). The intensity represents the instantaneous risk of moving from state r to state s:

qrs(t, z(t)) = lim
δt→0

P (S(t+ δt) = s|S(t) = r)/δt (1)

The intensities form a matrix Q whose rows sum to zero, so that the diagonal entries are defined by
qrr = −

∑
s̸=r qrs.

To fit a multi-state model to data, we estimate this transition intensity matrix. We concentrate on
Markov models here. The Markov assumption is that future evolution only depends on the current
state. That is, qrs(t, z(t),Ft) is independent of Ft, the observation history Ft of the process up to
the time preceding t. See, for example, Cox and Miller[1] for a thorough introduction to the theory
of continuous-time Markov chains.

In a time-homogeneous continuous-time Markov model, a single period of occupancy (or sojourn
time) in state r has an exponential distribution, with rate given by −qrr, (or mean −1/qrr). The
remaining elements of the rth row of Q are proportional to the probabilities governing the next state
after r to which the individual makes a transition. The probability that the individual’s next move
from state r is to state s is −qrs/qrr.

1.2 Disease progression models
The development of the msm package was motivated by applications to disease modelling. Many
chronic diseases have a natural interpretation in terms of staged progression. Multi-state Markov
models in continuous time are often used to model the course of diseases. A commonly-used model
is illustrated in Figure 2. This represents a series of successively more severe disease stages, and an
‘absorbing’ state, often death. The patient may advance into or recover from adjacent disease stages,
or die at any disease stage. Observations of the state Si(t) are made on a number of individuals i at
arbitrary times t, which may vary between individuals. The stages of disease may be modelled as a
homogeneous continuous-time Markov process, with a transition matrix Q, pictured below Figure 2.

A commonly-used model is the illness-death model, with three states representing health, illness
and death (Figure 3). Transitions are permitted from health to illness, illness to death and health to
death. Recovery from illness to health is sometimes also considered.

A wide range of medical situations have been modelled using multi-state methods, for exam-
ple, screening for abdominal aortic aneurysms (Jackson et al.[2]), problems following lung trans-
plantation (Jackson and Sharples[3]), problems following heart transplantation (Sharples[4], Klotz
and Sharples[5]), hepatic cancer (Kay[6]), HIV infection and AIDS (Longini et al.[7], Satten and
Longini[8], Guihenneuc-Jouyaux et al.[9], Gentleman et al.[10]), diabetic complications (Marshall
and Jones[11], Andersen[12]), breast cancer screening (Duffy and Chen[13], Chen et al.[14]), cer-
vical cancer screening (Kirby and Spiegelhalter[15]) and liver cirrhosis (Andersen et al.[16]). Many
of these references also describe the mathematical theory, which will be reviewed in the following
sections.

1.3 Arbitrary observation times
Longitudinal data from monitoring disease progression are often incomplete in some way. Usually
patients are seen at intermittent follow-up visits, at which monitoring information is collected, but
information from the periods between visits is not available. Often the exact time of disease onset is
unknown. Thus, the changes of state in a multi-state model usually occur at unknown times. Also a

2

3 4

21

Q =

q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

Figure 1: General multi-state model.

STAGE n−2 STAGE n−1

 DISEASE DISEASE DISEASE DISEASE...

ABSORBING

STATE n

STAGE 1 STAGE 2

Q =

q11 q12 0 0 . . . q1n
q21 q22 q23 0 . . . q2n

0 q32 q33 q34
. . . q3n

0 0 q43 q44
. . . q4n

...
...

.
...

0 0 0 0 . . . 0

Figure 2: General model for disease progression.

3

subject may only be followed up for a portion of their disease history. A fixed observation schedule
may be specified in advance, but in practice times of visits may vary due to patient and hospital
pressures. The states of disease progression models often include death. Death times are commonly
recorded to within a day. Also observations may be censored. For example, at the end of a study, an
individual may be known only to be alive, and in an unknown state.

A typical sampling situation is illustrated in Figure 4. The individual is observed at four occasions
through 10 months. The final occasion is the death date which is recorded to within a day. The only
other information available is the occupation of states 2, 2, and 1 at respective times 1.5, 3.5 and 5.
The times of movement between states and the state occupancy in between the observation times are
unknown. Although the patient was in state 3 between 7 and 9 months this was not observed at all.

Informative sampling times To fit a model to longitudinal data with arbitrary sampling times we
must consider the reasons why observations were made at the given times. This is analogous to the
problem of missing data, where the fact that a particular observation is missing may implicitly give
information about the value of that observation. Possible observation schemes include:

• fixed. Each patient is observed at fixed intervals specified in advance.

• random. The sampling times vary randomly, independently of the current state of the disease.

• doctor’s care. More severely ill patients are monitored more closely. The next sampling time
is chosen on the basis of the current disease state.

• patient self-selection. A patient may decide to visit the doctor on occasions when they are in a
poor condition.

Grüger et al.[17] discussed conditions under which sampling times are informative. If a multi-state
model is fitted, ignoring the information available in the sampling times, then inference may be
biased. Mathematically, because the sampling times are often themselves random, they should be
modelled along with the observation process Xt. However the ideal situation is where the joint
likelihood for the times and the process is proportional to the likelihood obtained if the sampling
times were fixed in advance. Then the parameters of the process can be estimated independently of
the parameters of the sampling scheme.

In particular, they showed that fixed, random and doctor’s care observation policies are not infor-
mative, whereas patient self-selection is informative. Note that msm does not deal with informative
sampling times. See, e.g. [18] for some methods in this case, which require specialised programming.

1.4 Likelihood for the multi-state model
Kalbfleisch and Lawless[19] and later Kay [6] described a general method for evaluating the likeli-
hood for a general multi-state model in continuous time, applicable to any form of transition matrix.
The only available information is the observed state at a set of times, as in Figure 4. The sampling
times are assumed to be non-informative.

Transition probability matrix The likelihood is calculated from the transition probability matrix
P (t). For a time-homogeneous process, the (r, s) entry of P (t), prs(t), is the probability of being
in state s at a time t + u in the future, given the state at time u is r. It does not say anything about

4

DISEASE

FREE
DISEASE

DEATH

Figure 3: Illness-death model.

Time

Stage 1

Stage 2

Stage 3

Death

0.0 1.5 3.5 5.0 9.0

Figure 4: Evolution of a multi-state model. The process is observed on four occasions.

5

the time of transition from r to s, indeed the process may have entered other states between times u
and t + u. P (t) can be calculated by taking the matrix exponential of the scaled transition intensity
matrix (see, for example, Cox and Miller [1]).

P (t) = Exp(tQ) (2)

The matrix exponential Exp is different from a scalar exponential. The exponential of a matrix
is defined by the same "power series" Exp(X) = 1 + X2/2! + X3/3! + ... as the scalar exponen-
tial, except that each term Xk in the series is defined by matrix products, not element-wise scalar
multiplication. It is notoriously difficult to calculate reliably, as discussed by Moler and van Loan
[20]. For simpler models, it is feasible to calculate an analytic expression for each element of P (t)
in terms of Q. This is generally faster and avoids the potential numerical instability of calculating
the matrix exponential. Symbolic algebra sofware, such as Mathematica, can be helpful for obtaining
these expressions. For example, the three-state illness-death model with no recovery has a transition
intensity matrix of

Q =

 −(q12 + q13) q12 q13
0 −q23 q23
0 0 0

The corresponding time t transition probabilities are

p11(t) = e−(q12+q13)t

p12(t) =

{ q12
q12+q13−q23

(e−q23t − e−(q12+q13)t) (q12 + q13 ̸= q23)

q12te
(−(q12+q13)t (q12 + q13 = q23)

p13(t) =

{
1− e−(q12+q13)t − q12

q12+q13−q23
(e−q23t − e−(q12+q13)t) (q12 + q13 ̸= q23)

(−1 + e(q12+q13)t − q12t)e
−(q12+q13)t (q12 + q13 = q23)

p21(t) = 0

p22(t) = e−q23t

p23(t) = 1− e−q23t

p31(t) = 0

p32(t) = 0

p33(t) = 1

The msm package calculates P (t) analytically for selected 2, 3, 4 and 5-state models, illustrated in
Figures 5–8. For other models, which can have any transition structure on any number of states
in principle, P (t) is determined from the matrix exponential. This is calculated using eigensystem
decomposition (if eigenvalues are distinct) or a method based on Padé approximants with scaling
and squaring [20] (if there are repeated eigenvalues). Notice that the states are not labelled in these
figures. Each graph can correspond to several different Q matrices, depending on how the states are

labelled. For example, Figure 5 a) illustrates the model defined by either Q =

(
−q12 q12
0 0

)
or

Q =

(
0 0
q21 −q21

)
.

6

a) b)

Figure 5: Two-state models fitted using analytic P (t) matrices in msm. Implemented for all permu-
tations of state labels 1, 2.

a) b)

c) d)

e) f)

Figure 6: Three-state models fitted using analytic P (t) matrices in msm. Implemented for all permu-
tations of state labels 1, 2, 3.

7

a)

b)

Figure 7: Four-state models fitted using analytic P (t) matrices in msm. Implemented for all permu-
tations of state labels 1, 2, 3, 4.

a)

b)

c)

Figure 8: Five-state models fitted using analytic P (t) matrices in msm. Implemented for all permu-
tations of state labels 1, 2, 3, 4, 5.

8

Likelihood for intermittently-observed processes Suppose i indexes M individuals. The data for
individual i consist of a series of times (ti1, . . . , tini) and corresponding states (S(ti1), . . . , S(tini)).
Consider a general multi state model, with a pair of successive observed disease states S(tj), S(tj+1)
at times tj , tj+1. The contribution to the likelihood from this pair of states is

Li,j = pS(tj)S(tj+1)(tj+1 − tj) (3)

This is the entry of the transition matrix P (t) at the S(tj)th row and S(tj+1)th column, evaluated at
t = tj+1 − tj .

The full likelihood L(Q) is the product of all such terms Li,j over all individuals and all transi-
tions. It depends on the unknown transition matrix Q, which was used to determine P (t).

Exactly-observed death times In observational studies of chronic diseases, it is common that the
time of death is known, but the state on the previous instant before death is unknown. If S(tj+1) = D
is such a death state, then the contribution to the likelihood is summed over the unknown state m on
the instant before death:

Li,j =
∑
m̸=D

pS(tj),m(tj+1 − tj)qm,D (4)

The sum is taken over all possible states m which can be visited between S(tj) and D.

Exactly observed transition times If the times (ti1, . . . , tini) had been the exact transition times
between the states, with no transitions between the observation times, then the contributions would
be of the form

Li,j = exp(qS(tj)S(tj)(tj+1 − tj))qS(tj)S(tj+1) (5)

since the state is assumed to be S(tj) throughout the interval between tj and tj+1 with a known
transition to state S(tj+1) at tj+1. msm is restricted to Markov models, but much richer models are
possible for this type of data. For example, Putter et al.[21] discussed the mstate software for semi-
parametric multi-state models with non-parametric baseline hazards and Cox regression. The Markov
assumption is restrictive but necessary in general to compute a likelihood for intermittently-observed
processes.

Censored states A censored quantity is one whose exact value is unknown, but known to be in a
certain interval. For example, in survival analysis, a death time is right-censored if the study ends
and the patient is still alive, since the death time is known to be greater than the end time. In multi-
state models for intermittently-observed processes, the times of changes of state are usually interval
censored, known to be within bounded intervals. This leads to a likelihood based on equation 3.

In some circumstances, states may be censored as well as event times. For example, at the end
of some chronic disease studies, patients are known to be alive but in an unknown state. For such
a censored observation S(tj+1) (j + 1 = n) known only to be a state in the set C, the equivalent
contribution to the likelihood is

Li,j =
∑
m∈C

pS(tj),m(tj+1 − tj) (6)

9

Note that this special likelihood is not needed if the state is known at the end of the study. In this
case, likelihood 3 applies. Although the survival time is censored, the state at the end of the study is
not censored.

More generally, suppose every observation from a particular individual is censored. Observations
1, 2, . . . ni are known only to be in the sets C1, C2, . . . , Cni

respectively. The likelihood for this
individual is a sum of the likelihoods of all possible paths through the unobserved states.

Li =
∑

sni
∈Cni

. . .
∑

s2∈C2

∑
s1∈C1

ps1s2(t2 − t1)ps2s3(t3 − t2) . . . psni−1sni
(tni

− tni−1) (7)

Suppose the states comprising the set Cj are c
(j)
1 , . . . , c

(j)
mj . This likelihood can also be written as a

matrix product, say,
Li = 1TP 1,2P 2,3 . . . Pni−1,ni1 (8)

where P j−1,j is a mj−1 ×mj matrix with (r, s) entry p
c
(j−1)
r c

(j)
s
(tj − tj−1), and 1 is the vector of

ones.
The msm package allows multi-state models to be fitted to data from processes with arbitrary

observation times (panel data), exactly-observed transition times, exact death times and censored
states, or a mixture of these schemes.

1.5 Covariates
The relation of constant or time-varying characteristics of individuals to their transition rates is often
of interest in a multi-state model. Explanatory variables for a particular transition intensity can be
investigated by modelling the intensity as a function of these variables. Marshall and Jones [11]
described a form of a proportional hazards model, where the transition intensity matrix elements qrs
which are of interest can be replaced by

qrs(z(t)) = q(0)rs exp(βT
rsz(t))

The new Q is then used to determine the likelihood. If the covariates z(t) are time dependent, the
contributions to the likelihood of the form prs(t− u) are replaced by

prs(t− u, z(u))

although this requires that the value of the covariate is known at every observation time u. Sometimes
covariates are observed at different times to the main response, for example recurrent disease events
or other biological markers. In some of these cases it could be assumed that the covariate is a step
function which remains constant between its observation times. If the main response (the state of the
Markov process) is not observed at the times when the covariate changes, it could be considered as a
"censored" state (as in Section 1.4).

The msm package allows individual-specific or time dependent covariates to be fitted to transition
intensities. In order to calculate transition probabilities P (t) on which the likelihood depends, time-
dependent covariates are assumed to be piecewise-constant. Models whose intensities change with
time are called time-inhomogeneous. An important special case handled by msm is the model in
which intensities change at a series of times common to each individual.

Marshall and Jones [11] described likelihood ratio and Wald tests for covariate selection and
testing hypotheses, for example whether the effect of a covariate is the same for all forward transitions

10

in a disease progression model, or whether the effect on backward transitions is equal to minus the
effect on forward transitions.

1.6 Hidden Markov models
In a hidden Markov model (HMM) the states of the Markov chain are not observed. The observed
data are governed by some probability distribution (the emission distribution) conditionally on the
unobserved state. The evolution of the underlying Markov chain is governed by a transition intensity
matrix Q as before. (Figure 9). Hidden Markov models are mixture models, where observations
are generated from a certain number of unknown distributions. However the distribution changes
through time according to states of a hidden Markov chain. This class of model is commonly used
in areas such as speech and signal processing [22] and the analysis of biological sequence data [23].
In engineering and biological sequencing applications, the Markov process usually evolves over an
equally-spaced, discrete ‘time’ space. Therefore most of the theory of HMM estimation was devel-
oped for discrete-time models.

HMMs have less frequently been used in medicine, where continuous time processes are often
more suitable. A disease process evolves in continuous time, and patients are often monitored at
irregular and differing intervals. These models are suitable for estimating population quantities for
chronic diseases which have a natural staged interpretation, but which can only be diagnosed by an
error-prone marker. The msm package can fit continuous-time hidden Markov models with a variety
of emission distributions.

Time

ti1 ti2 ti,n−1 ti,n

Underlying

Observed

Si1 Si2 Si,n−1 Si,n

Oi1 Oi2 Oi,n−1 Oi,n

. . .
Q

E

Figure 9: A hidden Markov model in continuous time. Observed states are generated conditionally
on an underlying Markov process.

11

1.6.1 Misclassification models

An example of a hidden Markov model is a multi-state model with misclassification. Here the ob-
served data are states, assumed to be misclassifications of the true, underlying states.

For example, consider a disease progression model with at least a disease-free and a disease state.
When screening for the presence of the disease, the screening process can sometimes be subject to
error. Then the Markov disease process Si(t) for individual i is not observed directly, but through
realisations Oi(t). The quality of a diagnostic test is often measured by the probabilities that the true
and observed states are equal, Pr(Oi(t) = r|Si(t) = r). Where r represents a ‘positive’ disease
state, this is the sensitivity, or the probability that a true positive is detected by the test. Where r
represents a ‘negative’ or disease-free state, this represents the specificity, or the probability that,
given the condition of interest is absent, the test produces a negative result.

As an extension to the simple multi-state model described in section 1, the msm package can fit a
general multi-state model with misclassification. For patient i, observation time tij , observed states
Oij are generated conditionally on true states Sij according to a misclassification matrix E. This is a
n× n matrix, whose (r, s) entry is

ers = Pr(O(tij) = s|S(tij) = r), (9)

which we first assume to be independent of time t. Analogously to the entries of Q, some of the
ers may be fixed to reflect knowledge of the diagnosis process. For example, the probability of
misclassification may be negligibly small for non-adjacent states of disease. Thus the progression
through underlying states is governed by the transition intensity matrix Q, while the observation
process of the underlying states is governed by the misclassification matrix E.

To investigate explanatory variables w(t) for the probability ers of misclassification as state s
given underlying state r, a multinomial logistic regression model can be used:

log
ers(t)

ers0(t)
= γT

rsw(t). (10)

where s0 is some baseline state, usually chosen as the underlying state, or the state with the highest
probability (for numerical stability).

1.6.2 General hidden Markov model

Consider now a general hidden Markov model in continuous time. The true state of the model Sij

evolves as an unobserved Markov process. Observed data yij are generated conditionally true states
Sij = 1, 2, . . . , n according to a set of distributions f1(y|θ1, γ1), f2(y|θ2, γ2), . . ., fn(y|θn, γn),
respectively. θr is a vector of parameters for the state r distribution. One or more of these parameters
may depend on explanatory variables through a link-transformed linear model with coefficients γr.

1.6.3 Likelihood for general hidden Markov models

A type of EM algorithm known as the Baum-Welch or forward-backward algorithm [24, 25], is com-
monly used for hidden Markov model estimation in discrete-time applications. See, for example,
Durbin et al.[23], Albert [26]. A generalisation of this algorithm to continuous time was described
by Bureau et al.[27].

12

The msm package uses a direct method of calculating likelihoods for continuous-time models
based on matrix products. This type of method has been described by Macdonald and Zucchini [28,
pp. 77–79], Lindsey [29, p.73] and Guttorp [30]. Satten and Longini [8] used this method to calculate
likelihoods for a hidden Markov model in continuous time with observations of a continuous marker
generated conditionally on underlying discrete states.

Patient i’s contribution to the likelihood is

Li = Pr(yi1, . . . , yini) (11)

=
∑

Pr(yi1, . . . , yini
|Si1, . . . , Sini

)Pr(Si1, . . . , Sini
)

where the sum is taken over all possible paths of underlying states Si1, . . . , Sini . Assume that the
observed states are conditionally independent given the values of the underlying states. Also assume
the Markov property, Pr(Sij |Si,j−1, . . . , Si1) = Pr(Sij |Si,j−1). Then the contribution Li can be
written as a product of matrices, as follows. To derive this matrix product, decompose the overall
sum in equation 11 into sums over each underlying state. The sum is accumulated over the unknown
first state, the unknown second state, and so on until the unknown final state:

Li =
∑
Si1

Pr(yi1|Si1)Pr(Si1)
∑
Si2

Pr(yi2|Si2)Pr(Si2|Si1)
∑
Si3

Pr(yi3|Si3)Pr(Si3|Si2)

. . .
∑
Sini

Pr(yini
|Sini

)Pr(Sini
|Sini−1

) (12)

where Pr(yij |Sij) is the emission probability density. For misclassification models, this is the mis-
classification probability eSijOij . For general hidden Markov models, this is the probability density
fSij

(yij |θSij
, γSij

). Pr(Si,j+1|Sij) is the (Sij , Si,j+1) entry of the Markov chain transition matrix
P (t) evaluated at t = ti,j+1 − tij . Let f be the vector with r element the product of the initial state
occupation probability Pr(Si1 = r) and Pr(yi1|r), and let 1 be a column vector consisting of ones.
For j = 2, . . . , ni let Tij be the R×R matrix (where R is the number of states) with (r, s) entry

Pr(yij |s)prs(tij − ti,j−1)

Then subject i’s likelihood contribution is

Li = fTi2Ti3, . . . Tini1 (13)

If S(tj) = D is an absorbing state such as death, measured without error, whose entry time
is known exactly, then the contribution to the likelihood is summed over the unknown state at the
previous instant before death. The (r, s) entry of Tij is then

prs(tj − tj−1)qs,D

Section 2.14 describes how to fit multi-state models with misclassification using the msm package,
and Section 2.18 describes how to apply general hidden Markov models.

1.6.4 Example of a general hidden Markov model

Jackson and Sharples [3] described a model for FEV1 (forced expiratory volume in 1 second) in re-
cipients of lung transplants. These patients were at risk of BOS (bronchiolitis obliterans syndrome), a

13

progressive, chronic deterioration in lung function. In this example, BOS was modelled as a discrete,
staged process, a model of the form illustrated in Figure 2, with 4 states. State 1 represents absence
of BOS. State 1 BOS is roughly defined as a sustained drop below 80% below baseline FEV1, while
state 2 BOS is a sustained drop below 65% baseline. FEV1 is measured as a percentage of a baseline
value for each individual, determined in the first six months after transplant, and assumed to be 100%
baseline at six months.

As FEV1 is subject to high short-term variability due to acute events and natural fluctuations,
the exact BOS state at each observation time is difficult to determine. Therefore, a hidden Markov
model for FEV1, conditionally on underlying BOS states, was used to model the natural history of
the disease. Discrete states are appropriate as onset is often sudden.

Model 1 Jackson [31] considered models for these data where FEV1 were Normally distributed,
with an unknown mean and variance conditionally each state (14). This model seeks the most likely
location for the within-state FEV1 means.

yij |{Sij = k} ∼ N(µk + βxij , σ
2
k) (14)

Model 2 Jackson and Sharples [3] used a more complex two-level model for FEV1 measurements.
Level 1 (15) represents the short-term fluctuation error of the marker around its underlying continuous
value yhidij . Level 2 (16) represents the distribution of yhidij conditionally on each underlying state, as
follows.

yij |yhidij ∼ N(yhidij + βxij , σ
2
ϵ) (15)

yhidij |Sij ∼

State Three state model Four state model

Sij = 0 N(µ0, σ
2
0)I[80,∞) N(µ0, σ

2
0)I[80,∞)

Sij = 1 N(µ1, σ
2
1)I(0,80) Uniform(65, 80)

Sij = 2 (death) N(µ2, σ
2
2)I(0,65)

Sij = 3 (death)

(16)

Integrating over yhidij gives an explicit distribution for yij conditionally on each underlying state
(given in Section 2.18, Table 1). Similar distributions were originally applied by Satten and Longini
[8] to modelling the progression through discrete, unobserved HIV disease states using continuous
CD4 cell counts. The msm package includes density, quantile, cumulative density and random number
generation functions for these distributions.

In both models 1 and 2, the term βxij models the short-term fluctuation of the marker in terms of
acute events. xij is an indicator for the occurrence of an acute rejection or infection episode within
14 days of the observation of FEV1.

Section 2.18 describes how these and more general hidden Markov models can be fitted with the
msm package.

14

2 Fitting multi-state models with msm
msm is a package of functions for multi-state modelling using the R statistical software. The msm
function itself implements maximum-likelihood estimation for general multi-state Markov or hid-
den Markov models in continuous time. We illustrate its use with a set of data from monitoring
heart transplant patients. Throughout this section “>” indicates the R command prompt, slanted
typewriter text indicates R commands, and typewriter text R output.

2.1 Installing msm
The easiest way to install the msm package on a computer connected to the Internet is to run the R
command:

install.packages("msm")

This downloads msm from the CRAN archive of contributed R packages (cran.r-project.org
or one of its mirrors) and installs it to the default R system library. To install to a different location,
for example if you are a normal user with no administrative privileges, create a directory in which R
packages are to be stored, say, /your/library/dir, and run

install.packages("msm", lib='/your/library/dir')

After msm has been installed, its functions can be made visible in an R session by

> library(msm)

or, if it has been installed into a non-default library,

library(msm, lib.loc='/your/library/dir')

2.2 Getting the data in
The data are specified as a series of observations, grouped by patient. At minimum there should be a
data frame with variables indicating

• the time of the observation,

• the observed state of the process.

If the data do not also contain

• the subject identification number,

then all the observations are assumed to be from the same subject. The subject ID does not need to
be numeric, but data must be grouped by subject, and observations must be ordered by time within
subjects. If the model includes variables with missing values, then the corresponding observations
are omitted by msm with a warning. If you have missing data, as in any statistical model, it is
recommended to ensure these do not result in biases.

An example data set, taken from monitoring a set of heart transplant recipients, is provided with
msm. (Note: since msm version 1.3, the command data(cav) is no longer needed to load the data

15

— it is now “lazy-loaded” when required). Sharples et al.[32] studied the progression of coronary
allograft vasculopathy (CAV), a post-transplant deterioration of the arterial walls, using these data.
Risk factors and the accuracy of the screening test were investigated using multi-state Markov and
hidden Markov models.

The first three patient histories are shown below. There are 622 patients in all. PTNUM is the
subject identifier. Approximately each year after transplant, each patient has an angiogram, at which
CAV can be diagnosed. The result of the test is in the variable state, with possible values 1,
2, 3 representing CAV-free, mild CAV and moderate or severe CAV respectively. A value of 4 is
recorded at the date of death. years gives the time of the test in years since the heart transplant.
Other variables include age (age at screen), dage (donor age), sex (0=male, 1=female), pdiag
(primary diagnosis, or reason for transplant - IHD represents ischaemic heart disease, IDC repre-
sents idiopathic dilated cardiomyopathy), cumrej (cumulative number of rejection episodes), and
firstobs, an indicator which is 1 when the observation corresponds to the patient’s transplant (the
first observation), and 0 when the observation corresponds to a later angiogram.

> cav[1:21,]

PTNUM age years dage sex pdiag cumrej state
1 100002 52.49589 0.000000 21 0 IHD 0 1
2 100002 53.49863 1.002740 21 0 IHD 2 1
3 100002 54.49863 2.002740 21 0 IHD 2 2
4 100002 55.58904 3.093151 21 0 IHD 2 2
5 100002 56.49589 4.000000 21 0 IHD 3 2
6 100002 57.49315 4.997260 21 0 IHD 3 3
7 100002 58.35068 5.854795 21 0 IHD 3 4
8 100003 29.50685 0.000000 17 0 IHD 0 1
9 100003 30.69589 1.189041 17 0 IHD 1 1
10 100003 31.51507 2.008219 17 0 IHD 1 3
11 100003 32.49863 2.991781 17 0 IHD 2 4
12 100004 35.89589 0.000000 16 0 IDC 0 1
13 100004 36.89863 1.002740 16 0 IDC 2 1
14 100004 37.90685 2.010959 16 0 IDC 2 1
15 100004 38.90685 3.010959 16 0 IDC 2 1
16 100004 39.90411 4.008219 16 0 IDC 2 1
17 100004 40.88767 4.991781 16 0 IDC 2 1
18 100004 41.91781 6.021918 16 0 IDC 2 2
19 100004 42.91507 7.019178 16 0 IDC 2 3
20 100004 43.91233 8.016438 16 0 IDC 2 3
21 100004 44.79726 8.901370 16 0 IDC 2 4

firstobs statemax
1 1 1
2 0 1
3 0 2
4 0 2
5 0 2
6 0 3

16

7 0 4
8 1 1
9 0 1
10 0 3
11 0 4
12 1 1
13 0 1
14 0 1
15 0 1
16 0 1
17 0 1
18 0 2
19 0 3
20 0 3
21 0 4

A useful way to summarise multi-state data is as a frequency table of pairs of consecutive states.
This counts over all individuals, for each state r and s, the number of times an individual had an
observation of state r followed by an observation of state s. The function statetable.msm can
be used to produce such a table, as follows,

> statetable.msm(state, PTNUM, data=cav)

to
from 1 2 3 4

1 1367 204 44 148
2 46 134 54 48
3 4 13 107 55

Thus there were 148 CAV-free deaths, 48 deaths from state 2, and 55 deaths from state 3. On only
four occasions was there an observation of severe CAV followed by an observation of no CAV.

2.3 Specifying a model
We now specify the multi-state model to be fitted to the data. A model is governed by a transition
intensity matrix Q. For the heart transplant example, there are four possible states through which
the patient can move, corresponding to CAV-free, mild/moderate CAV, severe CAV and death. We
assume that the patient can advance or recover from consecutive states while alive, and die from any
state. Thus the model is illustrated by Figure 2 with four states, and we have

Q =

−(q12 + q14) q12 0 q14
q21 −(q21 + q23 + q24) q23 q24
0 q32 −(q32 + q34) q34
0 0 0 0

It is important to remember that this defines which instantaneous transitions can occur in the

Markov process, and that the data are snapshots of the process (see section 1.3). Although there were

17

44 occasions on which a patient was observed in state 1 followed by state 3, we can still have q13 = 0.
The underlying model specifies that the patient must have passed through state 2 in between, rather
than jumping straight from 1 to 3. If your data represent the exact and complete transition times of
the process, then you must specify exacttimes=TRUE or obstype=2 in the call to msm.

To tell msm what the allowed transitions of our model are, we define a matrix of the same size as
Q, containing zeroes in the positions where the entries of Q are zero. All other positions contain an
initial value for the corresponding transition intensity. The diagonal entries supplied in this matrix do
not matter, as the diagonal entries of Q are defined as minus the sum of all the other entries in the row.
This matrix will eventually be used as the qmatrix argument to the msm function. For example,

> Q <- rbind (c(0, 0.25, 0, 0.25),
+ c(0.166, 0, 0.166, 0.166),
+ c(0, 0.25, 0, 0.25),
+ c(0, 0, 0, 0))

Fitting the model is a process of finding values of the seven unknown transition intensities: q12,
q14, q21, q23, q24, q32, q34, which maximise the likelihood.

2.4 Specifying initial values
The likelihood is maximised by numerical methods, which need a set of initial values to start the
search for the maximum. For reassurance that the true maximum likelihood estimates have been
found, models should be run repeatedly starting from different initial values. However a sensible
choice of initial values can be important for unstable models with flat or multi-modal likelihoods.
For example, the transition rates for a model with misclassification could be initialised at the corre-
sponding estimates for an approximating model without misclassification. Initial values for a model
without misclassification could be set by supposing that transitions between states take place only at
the observation times. If we observe nrs transitions from state r to state s, and a total of nr transitions
from state r, then qrs/qrr can be estimated by nrs/nr. Then, given a total of Tr years spent in state
r, the mean sojourn time 1/qrr can be estimated as Tr/nr. Thus, nrs/Tr is a crude estimate of qrs.

Such default initial values can be used by supplying gen.inits=TRUE in the call to msm below,
along with a qmatrix whose non-zero entries represent the allowed transitions of the model. Alter-
natively the function crudeinits.msm could be used to get this matrix of initial values explicitly
as follows. These methods are only available for non-hidden Markov models.

> Q.crude <- crudeinits.msm(state ~ years, PTNUM, data=cav,
+ qmatrix=Q)

However, if there are are many changes of state in between the observation times, then this crude
approach may fail to give sensible initial values. For the heart transplant example we could also
guess that the mean period in each state before moving to the next is about 2 years, and there is
an equal probability of progression, recovery or death. This gives qrr = −0.5 for r = 1, 2, 3, and
q12 = q14 = 0.25, q21 = q23 = q24 = 0.166, q32 = q34 = 0.25, and the initial value matrix Q shown
above, which we now use to fit the model.

18

2.5 Running msm
To fit the model, call the msm function with the appropriate arguments. For our running example, we
have defined a data set cav, a matrix Q indicating the allowed transitions, and initial values. We are
ready to run msm.

Model 1: simple bidirectional model

> cav.msm <- msm(state ~ years, subject=PTNUM, data = cav,
+ qmatrix = Q, deathexact = 4)

In this example the day of death is assumed to be recorded exactly, as is usual in studies of
chronic diseases. At the previous instant before death the state of the patient is unknown. Thus we
specify deathexact = 4, to indicate to msm that the entry times into state 4 are observed in this
manner. If the model had five states, and states 4 and 5 were two competing causes of death with
times recorded exactly in this way, then we would specify deathexact = c(4,5).

By default, the data are assumed to represent snapshots of the process at arbitrary times. However,
observations can also represent exact times of transition, “exact death times”, or a mixture of these.
See the obstype argument to msm.

While the msm function runs, it searches for the maximum of the likelihood of the unknown
parameters. Internally, it uses the R function optim to minimise the minus log-likelihood. When
the data set, the model, or both, are large, then this may take a long time. It can then be useful to see
the progress of the optimisation algorithm. To do this, we can specify a control argument to msm,
which is passed internally to the optim function. For example control = list(trace=1,
REPORT=1). See the help page for optim,

> help(optim)

for more options to control the optimisation. 1

When completed, the msm function returns a value. This value is a list of the important results of
the model fitting, including the parameter estimates and their covariances. To keep these results for
post-processing, we store them in an R object, here called cav.msm. When running several similar
msm models, it is recommended to store the respective results in informatively-named objects.

2.6 Showing results
To show the maximum likelihood estimates and 95% confidence intervals, type the name of the
fitted model object at the R command prompt. 2 The confidence level can be changed using the cl
argument to msm.

> cav.msm
1Note that since version 1.3.2, method=”BFGS”, is the default optimisation algorithm in msm, since it can use analytic

derivatives, which are available for most models.
2This is equivalent to typing print.msm(cav.msm). The function print.msm formats the important information in

the model object for printing on the screen.

19

Call:
msm(formula = state ~ years, subject = PTNUM, data = cav, qmatrix = Q, deathexact = 4)

Maximum likelihood estimates

Transition intensities
Baseline

State 1 - State 1 -0.17037 (-0.19027,-0.15255)
State 1 - State 2 0.12787 (0.11135, 0.14684)
State 1 - State 4 0.04250 (0.03412, 0.05294)
State 2 - State 1 0.22512 (0.16755, 0.30247)
State 2 - State 2 -0.60794 (-0.70880,-0.52143)
State 2 - State 3 0.34261 (0.27317, 0.42970)
State 2 - State 4 0.04021 (0.01129, 0.14324)
State 3 - State 2 0.13062 (0.07952, 0.21457)
State 3 - State 3 -0.43710 (-0.55292,-0.34554)
State 3 - State 4 0.30648 (0.23822, 0.39429)

-2 * log-likelihood: 3968.798

From the estimated intensities, we see patients are three times as likely to develop symptoms than
die without symptoms (transitions from state 1). After disease onset (state 2), progression to severe
symptoms (state 3) is 50% more likely than recovery. Once in the severe state, death is more likely
than recovery, and a mean of 1 / -0.44 = 2.3 years is spent in state 3 before death or recovery.

Section 2.9 describes various functions that can be used to obtain summary information from the
fitted model.

2.7 Covariates on the transition rates
We now model the effect of explanatory variables on the rates of transition, using a proportional
intensities model. Now we have an intensity matrix Q(z) which depends on a covariate vector z.
For each entry of Q(z), the transition intensity for patient i at observation time j is qrs(zij) =

q
(0)
rs exp(βT

rszij). The covariates z are specified through the covariates argument to msm. If zij
is time-dependent, we assume it is constant in between the observation times of the Markov process.
msm calculates the probability for a state transition from times ti,j−1 to tij using the covariate value
at time ti,j−1.

We consider a model with just one covariate, female sex. Out of the 622 transplant recipients,
535 are male and 87 are female. By default, all linear covariate effects βrs are initialised to zero.
To specify different initial values, use a covinits argument, as described in help(msm). Initial
values given in the qmatrix represent the intensities with covariate values set to their means in the
data. In the following model, all transition intensities are modelled in terms of sex.

Model 2: sex as a covariate

> cavsex.msm <- msm(state ~ years, subject=PTNUM, data = cav,
+ qmatrix = Q, deathexact = 4, covariates = ~ sex)

20

Printing the msm object now displays the estimated covariate effects and their confidence intervals
(note since version 1.3.2 these are hazard ratios exp(βrs), not log hazard ratios βrs as in previous
versions).

> cavsex.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = cav, qmatrix = Q, covariates = ~sex, deathexact = 4)

Maximum likelihood estimates
Baselines are with covariates set to their means

Transition intensities with hazard ratios for each covariate
Baseline

State 1 - State 1 -0.16938 (-1.894e-01,-1.515e-01)
State 1 - State 2 0.12745 (1.108e-01, 1.466e-01)
State 1 - State 4 0.04193 (3.354e-02, 5.241e-02)
State 2 - State 1 0.22645 (1.686e-01, 3.042e-01)
State 2 - State 2 -0.58403 (-1.053e+00,-3.238e-01)
State 2 - State 3 0.33693 (2.697e-01, 4.209e-01)
State 2 - State 4 0.02065 (2.196e-09, 1.941e+05)
State 3 - State 2 0.13050 (7.830e-02, 2.175e-01)
State 3 - State 3 -0.44178 (-5.582e-01,-3.497e-01)
State 3 - State 4 0.31128 (2.425e-01, 3.996e-01)

sex
State 1 - State 1
State 1 - State 2 0.5632779 (3.333e-01,9.518e-01)
State 1 - State 4 1.1289701 (6.262e-01,2.035e+00)
State 2 - State 1 1.2905854 (4.916e-01,3.388e+00)
State 2 - State 2
State 2 - State 3 1.0765518 (5.194e-01,2.231e+00)
State 2 - State 4 0.0003805 (7.241e-65,1.999e+57)
State 3 - State 2 1.0965531 (1.345e-01,8.937e+00)
State 3 - State 3
State 3 - State 4 2.4135380 (1.176e+00,4.952e+00)

-2 * log-likelihood: 3954.777

The sizes of the confidence intervals for some of the hazard ratios suggests there is no information
in the data about the corresponding covariate effects, leading to a likelihood that is a flat function
of these parameters, and this model should be simplified. The first column shown in the output is
the estimated transition intensity matrix qrs(z) = q

(0)
rs exp(βT

rsz) with the covariate z set to its mean
value in the data. This represents an average intensity matrix for the population of 535 male and
87 female patients. To extract separate intensity matrices for male and female patients (z = 0 and 1
respectively), use the function qmatrix.msm, as shown below. This and similar summary functions
will be described in more detail in section 2.9.

21

> qmatrix.msm(cavsex.msm, covariates=list(sex=0)) # Male

State 1
State 1 -0.17747 (-0.19940,-0.15795)
State 2 0.21992 (0.16100, 0.30040)
State 3 0
State 4 0

State 2
State 1 0.13612 (0.11789, 0.15718)
State 2 -0.60494 (-0.70972,-0.51563)
State 3 0.12913 (0.07728, 0.21578)
State 4 0

State 3
State 1 0
State 2 0.33409 (0.26412, 0.42261)
State 3 -0.41050 (-0.52552,-0.32065)
State 4 0

State 4
State 1 0.04135 (0.03245, 0.05268)
State 2 0.05092 (0.01808, 0.14343)
State 3 0.28137 (0.21509, 0.36808)
State 4 0

> qmatrix.msm(cavsex.msm, covariates=list(sex=1)) # Female

State 1
State 1 -1.234e-01 (-1.750e-01,-8.693e-02)
State 2 2.838e-01 (1.139e-01, 7.075e-01)
State 3 0
State 4 0

State 2
State 1 7.667e-02 (4.630e-02, 1.270e-01)
State 2 -6.435e-01 (-1.115e+00,-3.714e-01)
State 3 1.416e-01 (1.852e-02, 1.083e+00)
State 4 0

State 3
State 1 0
State 2 3.597e-01 (1.804e-01, 7.170e-01)
State 3 -8.207e-01 (-1.587e+00,-4.244e-01)
State 4 0

State 4
State 1 4.668e-02 (2.727e-02, 7.989e-02)
State 2 1.938e-05 (3.702e-66, 1.014e+56)
State 3 6.791e-01 (3.487e-01, 1.323e+00)
State 4 0

Since msm version 1.2.3, different transition rates may be easily modelled on different covariates
by specifying a named list of formulae as the covariates argument. Each element of the list has

22

a name identifying the transition. In the model below, the transition rate from state 1 to state 2 and
the rate from state 1 to state 4 are each modelled on sex as a covariate, but no other intensities have
covariates on them.

Model 2a: transition-specific covariates

> cavsex.msm <- msm(state ~ years, subject=PTNUM, data = cav,
+ qmatrix = Q, deathexact = 4,
+ covariates = list("1-2" = ~ sex, "1-4" = ~sex))

We may also want to constrain the effect of a covariate to be equal for certain transition rates, to
reduce the number of parameters in the model, or to investigate hypotheses on the covariate effects. A
constraint argument can be used to indicate which of the transition rates have common covariate
effects.

Model 3: constrained covariate effects

> cav3.msm <- msm(state ~ years, subject=PTNUM, data = cav,
+ qmatrix = Q, deathexact = 4,
+ covariates = ~ sex,
+ constraint = list(sex=c(1,2,3,1,2,3,2)))

This constrains the effect of sex to be equal for the progression rates q12, q23, equal for the
death rates q14, q24, q34, and equal for the recovery rates q21, q32. The intensity parameters are as-
sumed to be ordered by reading across the rows of the transition matrix, starting at the first row:
(q12, q14, q21, q23, q24, q32, q34), giving constraint indicators (1,2,3,1,2,3,2). Any vector of
increasing numbers can be used for the indicators. Negative entries can be used to indicate that some
effects are equal to minus others: (1,2,3,-1,2,3,2) sets the fourth effect to be minus the first.

In a similar manner, we can constrain some of the baseline transition intensities to be equal to one
another, using the qconstraint argument. For example, to constrain the rates q12 and q23 to be
equal, and q24 and q34 to be equal, specify qconstraint = c(1,2,3,1,4,5,4).

2.8 Fixing parameters at their initial values
For exploratory purposes we may want to fit a model assuming that some parameters are fixed, and
estimate the remaining parameters. This may be necessary in cases where there is not enough in-
formation in the data to be able to estimate a proposed model, and we have strong prior information
about a certain transition rate. To do this, use the fixedpars argument to msm. For model 1, the
following statement fixes the parameters numbered 6, 7, that is, q32, q34, to their initial values (0.25
and 0.25, respectively).

Model 4: fixed parameters

> cav4.msm <- msm(state ~ years, subject=PTNUM, data = cav,
+ qmatrix = Q, deathexact = 4,
+ control = list(trace=2, REPORT=1),
+ fixedpars = c(6, 7))

23

A fixedpars statement can also be used for fixing covariate effect parameters to zero, that is
to assume no effect of a covariate on a certain transition rate.

2.9 Extractor functions
We may want to extract some of the information from the msm model fit for post-processing, for ex-
ample for plotting graphs or generating summary tables. A set of functions is provided for extracting
interesting features of the fitted model.

Intensity matrices The function qmatrix.msm extracts the estimated transition intensity matrix
and its confidence intervals for a given set of covariate values, as shown in section 2.7. Con-
fidence intervals are calculated from the covariance matrix of the estimates by assuming the
distribution is symmetric on the log scale. Standard errors for the intensities are also available
from the object returned by qmatrix.msm. These are calculated by the delta method. The
msm package provides a general-purpose function deltamethod for estimating the vari-
ance of a function of a random variable X given the expectation and variance of X . See
help(deltamethod) for further details. Bootstrap confidence intervals are also available
for qmatrix.msm and for most output functions; these are often more accurate, at the cost of
computational time. For more about bootstrapping in msm, see Section 2.11.

Transition probability matrices The function pmatrix.msm extracts the estimated transition prob-
ability matrix P (t) within a given time. For example, for model 1, the 10 year transition prob-
abilities are given by:

> pmatrix.msm(cav.msm, t=10)

State 1 State 2 State 3 State 4
State 1 0.30940656 0.09750021 0.08787255 0.5052207
State 2 0.17165172 0.06552639 0.07794394 0.6848780
State 3 0.05898093 0.02971653 0.04665485 0.8646477
State 4 0.00000000 0.00000000 0.00000000 1.0000000

Thus, a typical person in state 1, disease-free, has a probability of 0.5 of being dead ten years
from now, a probability of 0.3 being still disease-free, and probabilities of 0.1 of being alive
with mild/moderate or severe disease, respectively.

This assumes Q is constant within the desired time interval. For non-homogeneous processes,
where Q varies with time-dependent covariates but can be approximated as piecewise constant,
there is an equivalent function pmatrix.piecewise.msm. Consult its help page for further
details.

If ci=”norm” is specified, then a confidence interval is calculated based on drawing a random
sample (default size 1000) from the assumed multivariate normal distribution of the maximum
likelihood estimates and covariance matrix, and transforming. If ci=”boot” is specified,
then a bootstrap confidence interval for the transition probability matrix is calculated (see Sec-
tion 2.11) . However, both of these are computationally intensive, particularly the bootstrap
method, so no confidence interval is calculated by default.

24

Mean sojourn times The function sojourn.msm extracts the estimated mean sojourn times in
each transient state r, for a given set of covariate values. This is calculated as −1/q̂rr, where
q̂rr is the rth diagonal entry of the estimated transition intensity matrix.

> sojourn.msm(cav.msm)

estimates SE L U
State 1 5.869552 0.3307930 5.255734 6.555057
State 2 1.644897 0.1288274 1.410825 1.917805
State 3 2.287819 0.2743666 1.808595 2.894023

Probability that each state is next The function pnext.msm extracts the matrix of probabilities
−qrs/qrr that the next state after state r is state s, for each r and s. Together with the mean
sojourn times, this gives a more intuitive parameterisation of a continuous-time Markov model
than the raw transition intensities qrs. Note these are different from the transition probabilities
in a given time t returned by pmatrix.msm.

> pnext.msm(cav.msm)

State 1 State 2
State 1 0 0.75054 (0.69753,0.8005)
State 2 0.37030 (0.29221,0.4453) 0
State 3 0 0.29884 (0.19790,0.4280)
State 4 0 0

State 3 State 4
State 1 0 0.24946 (0.19951,0.3025)
State 2 0.56356 (0.44103,0.6493) 0.06614 (0.01862,0.2138)
State 3 0 0.70116 (0.57201,0.8021)
State 4 0 0

Total length of stay Mean sojourn times describe the average period in a single stay in a state. For
processes with successive periods of recovery and relapse, we may want to forecast the total
time spent healthy or diseased, before death. The function totlos.msm estimates the fore-
casted total length of time spent in each transient state s between two future time points t1 and
t2, for a given set of covariate values. This defaults to the expected amount of time spent in
each state between the start of the process (time 0, the present time) and death or a specified
future time. This is obtained as

Ls =

∫ t2

t1

P (t)r,sdt

where r is the state at the start of the process, which defaults to 1. This is calculated using
numerical integration. For model 1, each patient is forecasted to spend 8.8 years disease free,
2.2 years with mild or moderate disease and 1.8 years with severe disease.

Bootstrap and asymptotic confidence intervals are available, as for pmatrix.msm, but are not
calculated by default.

> totlos.msm(cav.msm)

25

State 1 State 2 State 3 State 4
8.815917 2.229817 1.747804 Inf

Expected first passage times The function efpt.msm estimates the expected time until the process
first enters a given state or set of states, also called the “hitting time”. See its help page for
further details.

Expected number of visits The function envisits.msm estimates the expected number of visits
to a state, computed in a similar way to the total length of stay. See its help page for further
details.

Ratio of transition intensities The function qratio.msm estimates a ratio of two entries of the
transition intensity matrix at a given set of covariate values, together with a confidence interval
estimated assuming normality on the log scale and using the delta method. For example, we
may want to estimate the ratio of the progression rate q12 into the first state of disease to the
corresponding recovery rate q21. For example in model 1, recovery is 1.8 times as likely as
progression.

> qratio.msm(cav.msm, ind1=c(2,1), ind2=c(1,2))

estimate se L U
1.760527 0.245741 1.339148 2.314497

Hazard ratios for transition The function hazard.msm gives the estimated hazard ratios corre-
sponding to each covariate effect on the transition intensities. 95% confidence limits are com-
puted by assuming normality of the log-effect.

> hazard.msm(cavsex.msm)

$sex
HR L U

State 1 - State 2 0.5632779042 3.333382e-01 9.518320e-01
State 1 - State 4 1.1289701413 6.261976e-01 2.035418e+00
State 2 - State 1 1.2905853501 4.916004e-01 3.388139e+00
State 2 - State 3 1.0765518296 5.193868e-01 2.231408e+00
State 2 - State 4 0.0003804824 7.241467e-65 1.999137e+57
State 3 - State 2 1.0965531163 1.345395e-01 8.937364e+00
State 3 - State 4 2.4135379727 1.176293e+00 4.952139e+00

Setting covariate values All of these extractor functions take an argument called covariates.
If this argument is omitted, for example,

> qmatrix.msm(cav.msm)

then the intensity matrix is evaluated as Q(x̄) with all covariates set to their mean values x̄ in the
data. For factor / categorical variables, the mean of the 0/1 dummy variable for each factor level is
used, representing an average over all values in the data, rather than a specific factor level.

26

Alternatively, set covariates to 0 to return the result Q(0) with covariates set to zero. This
will usually be preferable for categorical covariates, where we wish to see the result for the baseline
category.

> qmatrix.msm(cavsex.msm, covariates = 0)

Alternatively, the desired covariate values can be specified explicitly as a list,

> qmatrix.msm(cavsex.msm, covariates = list(sex = 1))

Values of categorical covariates must be quoted. For example, consider a covariate smoke, rep-
resenting tobacco smoking status, with three levels, NON, CURRENT, EX, representing a non-
smoker, current smoker or ex-smoker.

qmatrix.msm(example.msm, covariates = list(age = 60, smoke=''CURRENT''))

2.10 Survival plots
In studies of chronic disease, an important use of multi-state models is in predicting the probability
of survival for patients in increasingly severe states of disease, for some time t in the future. This can
be obtained directly from the transition probability matrix P (t).

The plot method for msm objects produces a plot of the expected probability of survival against
time, from each transient state. Survival is defined as not entering the final absorbing state.

> plot(cav.msm, legend.pos=c(8, 1))

27

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

F
itt

ed
 s

ur
vi

va
l p

ro
ba

bi
lit

y

From state 1
From state 2
From state 3

This shows that the 10-year survival probability with severe CAV is approximately 0.1, as opposed
to 0.3 with mild CAV and 0.5 without CAV. With severe CAV the survival probability diminishes very
quickly to around 0.3 in the first five years after transplant. The legend.pos argument adjusts the
position of the legend in case of clashes with the plot lines. A times argument can be supplied to
indicate the time interval to forecast survival for.

A more sophisticated analysis of these data might explore competing causes of death from causes
related or unrelated to the disease under study.

2.11 Bootstrapping
Most of msm’s output functions present confidence intervals based on asymptotic standard errors cal-
culated from the Hessian, or transformations of these using the delta method. The asymptotic stan-
dard errors are expected to be underestimates of the true standard errors (Cramer-Rao lower bound).
For some output functions, such as pmatrix.msm, and functions based on pmatrix.msm such
as totlos.msm and prevalence.msm, the delta method cannot be used at all to obtain stan-
dard errors. In these cases, confidence intervals can be calculated by drawing a random sample from
the assumed multivariate normal distribution of the maximum likelihood estimates and covariance
matrix, and transforming. However, this is still based on potentially inaccurate asymptotic theory.
The msm package provides the function boot.msm to enable bootstrap refitting of msm models, an

28

alternative way to estimate uncertainty.
For non-hidden Markov models, a bootstrap dataset is drawn by resampling pairs of consecutive

states from the full data, i.e. transitions. These are assumed to be independent when calculating the
likelihood (Section 1.4). For hidden Markov models and models with censoring, a bootstrap dataset
is drawn by resampling complete series from independent subjects. The bootstrap datasets have the
same number of transitions, or subjects, respectively, as the original data.

For most output extractor functions provided with msm, the option ci=”boot” is available, as
a wrapper around boot.msm, to enable bootstrap confidence intervals to be calculated. But any
user-defined output statistic can be bootstrapped, as follows. The function boot.msm is called with
the fitted msm model as first argument, and an R function specifying the statistic to be bootstrapped
as the second argument stat. The return value from boot.msm is a list of B replicates (by default,
B=1000) of the desired statistic. For example, to bootstrap the transition intensity matrix of the heart
transplantation model cav.msm:

q.list <- boot.msm(cav.msm, stat=function(x){qmatrix.msm(x)$estimates})

Note that for boot.msm to be able to refit the original model that produced cav.msm, all objects
used in the original model fit (for example, in this case, Q) must be in the working environment.
Otherwise, boot.msm will give an “object not found” error.

The user can then summarise these replicates by calculating empirical standard deviations or
quantile-based intervals. In this example, q.list is a list of 1000 4×4 matrices. The following
code calculates the bootstrap standard error as the empirical standard deviation of the 1000 replicates,
and a similar 95% bootstrap confidence interval.

q.array <- array(unlist(q.list), dim=c(4,4,1000))
apply(q.array, c(1,2), sd)
apply(q.array, c(1,2), function(x)quantile(x, c(0.025, 0.975)))

Note that when bootstrapping, the refits of the model to the resampled datasets may occasionally
fail to converge (as discussed in Section 2.12) even if the original model fit did converge. In these
cases, a warning is given, but boot.msm simply discards the failed dataset and moves on to the next
bootstrap iteration. Unless convergence failure occurs for a large proportion of iterations, this should
not affect the accuracy of the final bootstrap confidence intervals.

2.12 Convergence failure
Inevitably if over-complex models are applied with insufficient data then the parameters of the model
will not be identifiable. This will result in the optimisation algorithm failing to find the maximum
of the log-likelihood, or even failing to evaluate the likelihood. For example, it will commonly be
inadvisable to include several covariates in a model simultaneously.

In some circumstances, the optimisation may report convergence, but fail to calculate any standard
errors. In these cases, the Hessian of the log-likelihood at the reported solution is not positive definite.
Thus the reported solution may be a saddle point rather than the maximum likelihood, or it may be
close to the maximum.

Model simplification Firstly, make sure there are not too many parameters in the model. There may
not be enough information in the data on a certain transition rate. It is recommended to count
all the pairs of transitions between states in successive observation times, making a frequency

29

table of previous state against current state (function statetable.msm), and do this for any
subgroups defining covariates. Although the data are a series of snapshots of a continuous-
time process, and the actual transitions take place in between the observation times, this type
of table may still be helpful. If there are not many observed ‘transitions’ from state 2 to state
4, for example, then the data may be insufficient to estimate q24.

For a staged disease model (Figure 2), the number of disease states should be low enough that
all transition rates can be estimated. Consecutive states of disease severity should be merged
if necessary. If it is realistic, consider applying constraints on the intensities or the covariate
effects so that the parameters are equal for certain transitions, or zero for certain transitions.

Be careful to use a observation scheme and transition matrix appropriate to your data (see
Section 1.3). By default, msm assumes that the data represent snapshots of the process, and the
true state is unknown between observation times. In such circumstances, it is rarely feasible
to estimate an intensity matrix with instantaneous transitions allowed between every pair of
states. This would be easier if the complete course of the process is known (exacttimes
= TRUE) in the call to msm. Understand the difference between instantaneous and interval
transitions - although individuals may be in state 1 at time tr, and state 3 at time tr+1, that
doesn’t mean that instantaneous transitions from 1 to 3 should be permitted.

Initial values Make sure that a sensible set of initial values have been chosen. The optimisation may
only converge within a limited range of ‘informative’ initial values. It is also sensible to run
the model for several different initial values to ensure that the estimation has converged to a
global rather than a local optimum.

Scaling It is often necessary to apply a scaling factor to normalise the likelihood (fnscale), or cer-
tain individual parameters (parscale). This may prevent overflow or underflow problems
within the optimisation. For example, if the value of the -2 × log-likelihood is around 5000,
then the following option leads to an minimisation of the -2 × log-likelihood on an approximate
unit scale: control = list(fnscale = 5000).

It is also advisable to analyse all variables, including covariates and the time unit, on a roughly
normalised scale. For example, working in terms of a time unit of months or years instead of
days, when the data range over thousands of days.

Convergence criteria “False convergence”, in which optim() reports convergence of the opti-
misation but the Hessian is not positive definite, can sometimes be solved by tightening the
criteria (reltol, defaults to 1e-08) for reporting convergence. For example, control =
list(reltol = 1e-16).

Alternatively consider using smaller step sizes for the numerical approximation to the gradient,
used in calculating the Hessian. This is given by the control parameter ndeps. For example,
for a model with 5 parameters, control = list(ndeps = rep(1e-6, 5))

Choice of algorithm By default, since version 1.3.2, msm uses the BFGS method of optim, which
makes use of analytic derivatives. Analytic derivatives are available for all models in msm,
apart from hidden Markov models with unknown initial state probabilities, misclassification
models with equality constraints on misclassification probabilities, and truncated or measurement-
error outcome distributions. This speeds up optimisation. Though alternative algorithms are
available such as method = “CG”. Or use the nlmR function via msm(..., opt.method

30

= "nlm" , ...) Note also the Fisher scoring method available for non-hidden Markov
models for panel data, via msm(..., opt.method = "fisher", ...), is expected
to be faster than the generic methods, but less robust to bad initial values. Or since version
1.3.2, msm can also use method=“bobyqa” from the minqa package, a fast derivative-free
method.

optim "function cannot be evaluated at initial parameters" To diagnose this problem, run msm
again with fixedpars=TRUE set, to calculate the -2 log-likelihood at the initial values. This
will probably be Inf. To show the contributions of individual subjects to the overall log likeli-
hood, call logLik.msm(x, by.subject=TRUE), where x is the fitted model object. If
only a few subjects give an infinite log-likelihood, then you can check whether their state his-
tories are particularly unusual and conflict with the model. For example, they might appear to
make unusually large jumps between states in short periods of time. For models with misclas-
sification, note that the default true initial state distribution initprobs puts all individuals in
true state 1 at their first observation. If someone starts in a much higher state, this may result
in an infinite log-likelihood, and changing initprobs would be sensible.

2.13 Model assessment
Observed and expected prevalence To compare the relative fit of two nested models, it is easy
to compare their likelihoods. However it is not always easy to determine how well a fitted multi-
state model describes an irregularly-observed process. Ideally we would like to compare observed
data with fitted or expected data under the model. If there were times at which all individuals were
observed then the fit of the expected numbers in each state or prevalences can be assessed directly at
those times. Otherwise, some approximations are necessary. We could assume that an individual’s
state at an arbitrary time t was the same as the state at their previous observation time. This might
be fairly accurate if observation times are close together. This approach is taken by the function
prevalence.msm, which constructs a table of observed and expected numbers and percentages of
individuals in each state at a set of times.

A set of expected counts can be produced if the process begins at a common time for all indi-
viduals. Suppose at this time, each individual is in state 0. Then given n(t) individuals are under
observation at time t, the expected number of individuals in state r at time t is n(t)P (t)0,r. If the
covariates on which P (t) depends vary between individuals, then this can be averaged over the co-
variates observed in the data.

For example, we calculate the observed and expected numbers and percentages at two-yearly
intervals up to 20 years after transplant, for the heart transplant model cav.msm. The number of
individuals still alive and under observation decreases from 622 to 251 at year 20. The observed and
expected percentages are plotted against time.

> options(digits=3)
> prevalence.msm(cav.msm, times=seq(0,20,2))

$Observed
State 1 State 2 State 3 State 4 Total

0 622 0 0 0 622
2 507 20 7 54 588
4 330 37 24 90 481

31

6 195 43 28 129 395
8 117 44 21 161 343
10 60 25 21 190 296
12 26 11 12 221 270
14 11 3 6 238 258
16 4 0 3 245 252
18 0 0 2 249 251
20 0 0 0 251 251

$Expected
State 1 State 2 State 3 State 4 Total

0 622.0 0.00 0.00 0.0 622
2 437.0 74.50 23.84 52.7 588
4 279.8 68.57 38.83 93.8 481
6 184.2 51.97 38.06 120.8 395
8 129.8 39.31 32.91 141.0 343
10 91.6 28.86 26.01 149.5 296
12 68.6 22.13 20.81 158.5 270
14 54.0 17.66 17.02 169.3 258
16 43.5 14.35 14.04 180.1 252
18 35.7 11.86 11.71 191.7 251
20 29.5 9.83 9.76 201.9 251

$`Observed percentages`
State 1 State 2 State 3 State 4

0 100.00 0.00 0.000 0.00
2 86.22 3.40 1.190 9.18
4 68.61 7.69 4.990 18.71
6 49.37 10.89 7.089 32.66
8 34.11 12.83 6.122 46.94
10 20.27 8.45 7.095 64.19
12 9.63 4.07 4.444 81.85
14 4.26 1.16 2.326 92.25
16 1.59 0.00 1.190 97.22
18 0.00 0.00 0.797 99.20
20 0.00 0.00 0.000 100.00

$`Expected percentages`
State 1 State 2 State 3 State 4

0 100.0 0.00 0.00 0.00
2 74.3 12.67 4.05 8.96
4 58.2 14.26 8.07 19.51
6 46.6 13.16 9.64 30.58
8 37.8 11.46 9.59 41.10
10 30.9 9.75 8.79 50.52
12 25.4 8.20 7.71 58.69

32

14 20.9 6.84 6.60 65.64
16 17.3 5.69 5.57 71.48
18 14.2 4.73 4.67 76.37
20 11.8 3.92 3.89 80.43

> plot.prevalence.msm(cav.msm, mintime=0, maxtime=20)

0 5 10 15 20

0
20

40
60

80

State 1

Times

P
re

va
le

nc
e

(%
)

0 5 10 15 20

0
20

40
60

80

State 2

Times

P
re

va
le

nc
e

(%
)

0 5 10 15 20

0
20

40
60

80

State 3

Times

P
re

va
le

nc
e

(%
)

0 5 10 15 20

0
20

40
60

80

State 4

Times

P
re

va
le

nc
e

(%
)

Observed
Expected

Comparing the observed and expected percentages in each state, we see that the predicted number
of individuals who die (State 4) is under-estimated by the model from about year 8 onwards. Similarly
the number of individuals sill alive and free of CAV (State 1) is over-estimated by the model from
about year 8 onwards.

Such discrepancies could have many causes. One possibility is that the transition rates vary with
the time since the beginning of the process, the age of the patient, or some other omitted covariate, so
that the Markov model is non-homogeneous. This could be accounted for by modelling the intensity
as a function of age, for example, such as a piecewise-constant function. The pci argument to msm
can be used to automatically construct models with transition intensities which are piecewise-constant
in time.

In this example, the hazard of death may increase with age, so that the model underestimates
the number of deaths when forecasting far into the future. Another cause of poor model fit may

33

sometimes be the failure of the Markov assumption. That is, the transition intensities may depend
on the time spent in the current state (a semi-Markov process) or other characteristics of the process
history. Accounting for the process history is difficult as the process is only observed through a series
of snapshots. Semi-Markov models may in principle be fitted to this type of data using phase-type
distributions. Since version 1.4.1 the phase.states option to msm can be used to define some
phase-type models. See help(msm) for further details.

However, if it is known that individuals who died would not have been followed up after a certain
time, had they survived to that time, then they should not be included in the observed prevalence of
the death state after that time. This can be accounted for by passing a vector of maximum potential
follow-up times, one for each individual in the same order as the original data, in the censtime
argument to prevalence.msm. Ignoring the potential follow-up times is likely to have resulted
in overestimates of the number of deaths at later times for the “observed” prevalences in the CAV
example, though these times are not available in the data supplied with msm.

Pearson-type goodness-of-fit test Suppose that the true transition times are unknown, and data
consist of observations of the process at arbitrary times which differ between individuals (panel data).
Assessing goodness of fit by prevalence counts then involves estimating the observed prevalence at a
series of points by some form of interpolation. This is only advisable if observation times are close
together. An alternative method of assessing goodness-of-fit is to construct tables of observed and
expected numbers of transitions, as described by Aguirre-Hernandez and Farewell [33]. This leads
to a formal test of goodness-of-fit, analogous to the classical Pearson χ2 test for contingency tables.
The tables are constructed as follows. Each pair of successive observations in the data (transition) is
classified by

• the starting state r and finishing state s,

• time between the start of the process and the first of the pair of observations (indexed by h),

• time interval between the observations (indexed by lh, within categories h),

• (if there are fitted covariates) the impact of covariates, as summarised by qrr (indexed by c),

• any other grouping of interest for diagnosing lack of fit (indexed by g).

Groupings of continuous quantities are normally defined by quantiles, so that there are a similar num-
ber of observed transitions in each (one-dimensional) category. The observed and expected numbers
of transitions in each group are then defined by

ohlhrscg =
∑

I(S(ti,j+1) = s, S(tij) = r)

ehlhrscg =
∑

P (S(ti,j+1) = s|S(tij) = r)

where I(A) is the indicator function for an event A and the summation is over the set of transitions
in the category defined by h, lh, c, g, over all individuals i. The Pearson-type test statistic is then

T =
∑

hlhrscg

(ohlhrscg − ehlhrscg)
2

ehlhrscg

34

The classical Pearson test statistic is distributed as χ2
n−p, where n is the number of independent cells

in the table and p is the number of estimated parameters p. But the null distribution of T is not exactly
χ2, since the time intervals are non-identical, therefore the observed transitions are realizations from
a set of independent but non-identical multinomial distributions. Titman [34] showed that the null
distribution of T is asymptotically approximated by a weighted sum of χ2

1 random variables. Aguirre-
Hernandez and Farewell [33] also showed that χ2

n−p is a good approximation if there are no fitted
covariates. For models with covariates, the null mean of T is higher than n − p, but lower than n.
Therefore, upper and lower bounds for the true p-value of the statistic can be obtained from the χ2

n−p

and χ2
n distributions. Aguirre-Hernandez and Farewell [33] also described a bootstrap procedure for

obtaining an accurate p-value.
Titman and Sharples [35] described modifications to the test to correct for the biases introduced

where in addition to the panel-data observation scheme:

• Times of death are known exactly. In this case, transitions ending in death are classified ac-
cording to the next scheduled observation time after the death, which is estimated by multiple
imputation from a Kaplan-Meier estimate of the distribution of time intervals between obser-
vations.

• An individual’s final observation is censored, so that they are only known to be alive at that
point.

• States are misclassified.

The msm package provides the function pearson.msm to perform the Pearson-type test. By
default, three groups are used for each of h, lh and c. Often the number of groups will need to be
reduced in cases where the resulting contingency tables are sparse (thus there are several low expected
counts and the variance of T is inflated).

The test is now performed on the model cav.msm for the heart transplant dataset (a version of
which was also analysed by Titman and Sharples [35]). The default three interval groups are used,
and two groups of the time since the start of the process. The transitions argument groups the
transitions from state 3 to each of states 1, 2 and 3 (the 9th, 10th and 11th transitions) together in the
table, since these transitions are infrequent.

> options(digits=2)
> pearson.msm(cav.msm, timegroups=2,
+ transitions=c(1,2,3,4,5,6,7,8,9,9,9,10))

Imputing sampling times after deaths...
Calculating replicates of test statistics for imputations...
$Observed

Time Interval 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4
1 [0,4.1) 1 220 27 11 19.9 11 32 14 2.1
2 [4.1,19.46] 1 177 29 3 4.7 9 39 13 3.2
3 [0,4.1) 2 291 33 8 25.1 1 1 0 2.5
4 [4.1,19.46] 2 198 25 4 5.6 17 27 16 3.9
5 [0,4.1) 3 288 42 10 34.9 1 4 0 2.5
6 [4.1,19.46] 3 193 48 8 57.8 7 31 11 33.9

3-1,3-2,3-3 3-4

35

1 24 2.1
2 45 5.7
3 0 2.5
4 34 6.1
5 0 2.4
6 21 36.3

$Expected
Time Interval 1-1 1-2 1-3 1-4 2-1 2-2 2-3

1 [0,4.1) 1 232 26 5.5 14.4 9.08 33.7 12.0
2 [4.1,19.46] 1 184 18 2.9 8.6 9.51 37.8 12.7
3 [0,4.1) 2 266 45 14.3 31.7 0.99 1.6 1.1
4 [4.1,19.46] 2 198 21 3.6 10.2 10.09 35.7 13.3
5 [0,4.1) 3 272 48 16.8 37.9 1.68 2.5 1.9
6 [4.1,19.46] 3 205 37 15.0 50.3 16.92 24.0 17.5

2-4 3-1,3-2,3-3 3-4
1 4.28 19 6.8
2 4.21 39 11.7
3 0.75 0 1.0
4 4.73 30 10.3
5 1.34 0 1.1
6 24.47 25 32.7

$`Deviance*sign(O-E)`
Time Interval 1-1 1-2 1-3 1-4 2-1

1 [0,4.1) 1 -0.622 0.017 5.5475 3.07 0.412
2 [4.1,19.46] 1 -0.287 6.601 0.0069 -2.16 -0.032
3 [0,4.1) 2 2.385 -3.247 -2.7846 -1.80 0.113
4 [4.1,19.46] 2 0.011 0.812 0.0510 -2.40 4.744
5 [0,4.1) 3 1.018 -0.874 -2.7588 -0.68 -0.302
6 [4.1,19.46] 3 -0.663 3.282 -3.2500 1.25 -5.817

2-2 2-3 2-4 3-1,3-2,3-3 3-4
1 -0.103 0.350 -1.51 1.23 -3.47
2 0.059 0.013 -0.66 1.02 -3.40
3 -0.286 -1.138 4.50 0.00 1.98
4 -2.149 0.554 -0.69 0.70 -2.03
5 1.106 -1.898 1.65 0.00 1.65
6 2.066 -2.431 3.82 -0.57 0.44

$test
stat df.lower p.lower df.upper p.upper

98 NA NA 42 2e-06

The first two tables in the output show the contingency tables of observed and expected numbers
of transitions. Note that the observed number of transitions in certain categories is not a whole
number, since these are averaged over multiple imputations of the next scheduled observation time

36

following deaths. The column Time is the group defined by time since the start of the process, and
the column Interval is the group defined by intervals between observations. The columns indicate
the allowed transitions, or pairs of states which can be observed in successive observations.

The third table presents the “deviance”, the value of (ohlhrscg−ehlhrscg)
2

ehlhrscg
for each cell, multipled

by the sign of ohlhrscg − ehlhrscg to indicate whether there were more or fewer transitions than ex-
pected in each cell. These can indicate areas of bad fit. For example, systematic changes in deviance
by time or time interval between observations can indicate that a model with time-varying transition
intensities is more suitable. Changes in deviance by covariate impact may indicate heterogeneity be-
tween individuals which is unexplained by the fitted covariates. Changes in deviance with the length
of the interval between observations may also indicate failure of the Markov assumption, and that a
semi-Markov model (in which intensities depend on the time spent in the current state) may fit better.

In this example, the test statistic is 100. p.upper is an upper bound for the p-value of the
statistic based on an asymptotic χ2

42 distribution, therefore the model does not fit well. It is not clear
from the table of deviances which aspects of the fit are most influental to the test statistic. However,
the two-way Markov model itself is not biologically plausible, as discussed in Section 2.14.

For non-hidden Markov models for panel data, pearson.msm also presents the accurate an-
alytic p-value of Titman [34]. For all models, pearson.msm provides an option for parametric
bootstrapping to obtain an accurate p-value.

2.14 Fitting misclassification models with msm
In fact, in the heart transplant example from section 2.2, it is not medically realistic for patients
to recover from a diseased state to a healthy state. Progression of coronary artery vasculopathy is
thought to be an irreversible process. The angiography scan for CAV is actually subject to error,
which leads to some false measurements of CAV states and apparent recoveries. Thus we account
for misclassification by fitting a hidden Markov model using msm. Firstly we replace the two-way
multi-state model by a one-way model with transition intensity matrix

Q =

−(q12 + q14) q12 0 q14
0 −(q23 + q24) q23 q24
0 0 −q34 q34
0 0 0 0

We also assume that true state 1 (CAV-free) can be classified as state 1 or 2, state 2 (mild/moderate
CAV) can be classified as state 1, 2 or 3, while state 3 (severe CAV) can be classified as state 2 or 3.
Recall that state 4 represents death. Thus our matrix of misclassification probabilities is

E =

1− e12 e12 0 0
e21 1− e21 − e23 e23 0
0 e32 1− e32 0
0 0 0 0

with underlying states as rows, and observed states as columns.

To model observed states with misclassification, we define a matrix ematrix indicating the
states that can be misclassified. Rows of this matrix correspond to true states, columns to observed
states. It should contains zeroes in the positions where misclassification is not permitted. Non-zero

37

entries are initial values for the corresponding misclassification probabilities. We then call msm as
before, but with this matrix as the ematrix argument. Initial values of 0.1 are assumed for each of
the four misclassification probabilities e12, e21, e23, e32. Zeroes are given where the elements of E
are zero. The diagonal elements supplied in ematrix are ignored, as rows must sum to one. The
matrix qmatrix, specifying permitted transition intensities and their initial values, also changes to
correspond to the new Q representing the progression-only model for the underlying states.

The true state for every patient at the date of transplant is known to be “CAV-free”, not misclas-
sified. To indicate this we use the argument obstrue to msm. This is set to be a variable in the
dataset, firstobs, indicating where the observed state equals the true state. This takes the value of
1 at the patient’s first observation, at the transplant date, and 0 elsewhere.

We use an alternative quasi-Newton optimisation algorithm (method="BFGS") which can of-
ten be faster or more robust than the default Nelder-Mead simplex-based algorithm. An optional
argument initprobs could also have been given here, representing the vector of the probabili-
ties of occupying each true state at the initial observation (equation 13). This can also be a matrix
with number of rows equal to the number of subjects, if these probabilities are subject-dependent
and known. If not given, all individuals are assumed to be in true state 1 at their initial observation.
If est.initprobs=TRUE is specified, then these probabilites are estimated as part of the model
fit, using a vector initprobs as initial values. Covariate effects on these probabilities can also
be estimated using a multinomial logistic regression model, if an initcovariates argument is
specified. See help(msm) for further details.

Model 5: multi-state model with misclassification

> Qm <- rbind(c(0, 0.148, 0, 0.0171),
+ c(0, 0, 0.202, 0.081),
+ c(0, 0, 0, 0.126),
+ c(0, 0, 0, 0))
> ematrix <- rbind(c(0, 0.1, 0, 0),
+ c(0.1, 0, 0.1, 0),
+ c(0, 0.1, 0, 0),
+ c(0, 0, 0, 0))
> cavmisc.msm <- msm(state ~ years, subject = PTNUM, data = cav,
+ qmatrix = Qm, ematrix = ematrix, deathexact = 4,
+ obstrue = firstobs)
> cavmisc.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = cav, qmatrix = Qm, ematrix = ematrix, obstrue = firstobs, deathexact = 4)

Maximum likelihood estimates

Transition intensities
Baseline

State 1 - State 1 -0.13099 (-0.147787,-0.11610)
State 1 - State 2 0.08963 (0.075760, 0.10604)
State 1 - State 4 0.04136 (0.033239, 0.05146)

38

State 2 - State 2 -0.29196 (-0.357597,-0.23837)
State 2 - State 3 0.25864 (0.191525, 0.34928)
State 2 - State 4 0.03331 (0.006919, 0.16041)
State 3 - State 3 -0.30758 (-0.389687,-0.24278)
State 3 - State 4 0.30758 (0.242779, 0.38969)

Misclassification probabilities
Baseline

Obs State 1 | State 1 0.97310 (0.95463,0.98417)
Obs State 2 | State 1 0.02690 (0.01583,0.04537)
Obs State 1 | State 2 0.17491 (0.10066,0.28648)
Obs State 2 | State 2 0.76191 (0.61063,0.86720)
Obs State 3 | State 2 0.06318 (0.03646,0.10730)
Obs State 2 | State 3 0.11510 (0.05732,0.21768)
Obs State 3 | State 3 0.88490 (0.78232,0.94268)

-2 * log-likelihood: 3934

Thus there is an estimated probability of about 0.03 that mild/moderate CAV will be diagnosed
erroneously, but a rather higher probability of 0.17 that underlying mild/moderate CAV will be diag-
nosed as CAV-free. Between the two CAV states, the mild state will be misdiagnosed as severe with
a probability of 0.06, and the severe state will be misdiagnosed as mild with a probability of 0.12.

The model also estimates the progression rates through underlying states. An average of 8 years
is spent disease-free, an average of about 3 years is spent with mild/moderate disease, and periods of
severe disease also last about 3 years on average before death.

2.15 Effects of covariates on misclassification rates
We can investigate how the probabilities of misclassification depend on covariates in a similar way
to the transition intensities, using a misccovariates argument to msm. For example, we now
include female sex as a covariate for the misclassification probabilities. The linear effects on the log
odds of each misclassified state relative to the true state are initialised to zero by default (but this can
be changed with the misccovinits argument).

Model 6: misclassification model with misclassification probabilities modelled on sex

> cavmiscsex.msm <- msm(state ~ years, subject = PTNUM, data = cav,
+ qmatrix = Qm, ematrix = ematrix,
+ deathexact = 4, misccovariates = ~sex,
+ obstrue=firstobs)

> cavmiscsex.msm

Call:
msm(formula = state ~ years, subject = PTNUM, data = cav, qmatrix = Qm, ematrix = ematrix, obstrue = firstobs, misccovariates = ~sex, deathexact = 4)

Maximum likelihood estimates

39

Baselines are with covariates set to their means

Transition intensities
Baseline

State 1 - State 1 -0.13070 (-0.147075,-0.11614)
State 1 - State 2 0.08936 (0.075791, 0.10536)
State 1 - State 4 0.04133 (0.033186, 0.05148)
State 2 - State 2 -0.30047 (-0.366866,-0.24609)
State 2 - State 3 0.26674 (0.198271, 0.35885)
State 2 - State 4 0.03373 (0.006891, 0.16514)
State 3 - State 3 -0.30261 (-0.383636,-0.23870)
State 3 - State 4 0.30261 (0.238699, 0.38364)

Misclassification probabilities with odds ratios for each covariate
Baseline

Obs State 1 | State 1 0.98708 (7.302e-03,1.0000)
Obs State 2 | State 1 0.01292 (1.260e-06,0.9927)
Obs State 1 | State 2 0.17018 (9.625e-02,0.2831)
Obs State 2 | State 2 0.76366 (6.046e-01,0.8723)
Obs State 3 | State 2 0.06616 (3.801e-02,0.1127)
Obs State 2 | State 3 0.13400 (7.063e-02,0.2396)
Obs State 3 | State 3 0.86600 (7.604e-01,0.9294)

sex
Obs State 1 | State 1
Obs State 2 | State 1 0.0002031 (2.064e-39,1.998e+31)
Obs State 1 | State 2 4.6907958 (1.027e+00,2.143e+01)
Obs State 2 | State 2
Obs State 3 | State 2 0.7165202 (8.176e-02,6.279e+00)
Obs State 2 | State 3 6.7620730 (1.198e+00,3.818e+01)
Obs State 3 | State 3

-2 * log-likelihood: 3924

The large confidence interval for the odds ratio for 1/2 misclassification suggests there is no informa-
tion in the data about the difference between genders in the false positive rates for angiography. On
the other hand, women have slightly more false negatives.

2.16 Extractor functions
As well as the functions described in section 2.9 for extracting useful information from fitted models,
there are a number of extractor functions specific to models with misclassification.

Misclassification matrix The function ematrix.msm gives the estimated misclassification prob-
ability matrix at the given covariate values. For illustration, the fitted misclassification proba-
bilities for men and women in model 6 are given by

> ematrix.msm(cavmiscsex.msm, covariates=list(sex=0))

40

State 1
State 1 0.96647 (0.979394,0.99192)
State 2 0.14620 (0.095468,0.28494)
State 3 0
State 4 0

State 2
State 1 0.03353 (0.008077,0.02061)
State 2 0.78329 (0.601923,0.87350)
State 3 0.11055 (0.067261,0.24927)
State 4 0

State 3 State 4
State 1 0 0
State 2 0.07050 (0.037291,0.11471) 0
State 3 0.88945 (0.750735,0.93274) 0
State 4 0 1.00000

> ematrix.msm(cavmiscsex.msm, covariates=list(sex=1))

State 1
State 1 1.000e+00 (7.773e-34,1.0000)
State 2 4.513e-01 (5.507e-04,0.9871)
State 3 0
State 4 0

State 2
State 1 7.047e-06 (1.332e-37,1.0000)
State 2 5.155e-01 (1.600e-01,0.9821)
State 3 4.566e-01 (3.028e-02,0.4340)
State 4 0

State 3 State 4
State 1 0 0
State 2 3.324e-02 (9.898e-03,0.3342) 0
State 3 5.434e-01 (5.660e-01,0.9697) 0
State 4 0 1.000e+00

The confidence intervals for the estimates for women are wider, since there are only 87 women
in this set of 622 patients.

Odds ratios for misclassification The function odds.msm would give the estimated odds ratios
corresponding to each covariate effect on the misclassification probabilities.

odds.msm(cavmiscsex.msm)

Observed and expected prevalences The function prevalence.msm is intended to assess the
goodness of fit of the hidden Markov model for the observed states to the data. Tables of ob-
served prevalences of observed states are calculated as described in section 2.13, by assuming
that observed states are retained between observation times.

41

The expected numbers of individuals in each observed state are calculated similarly. Suppose
the process begins at a common time for all individuals, and at this time, the probability of
occupying true state r is fr. Then given n(t) individuals under observation at time t, the ex-
pected number of individuals in true state r at time t is the rth element of the vector n(t)fP (t).
Thus the expected number of individuals in observed state r is the rth element of the vector
n(t)fP (t)E, where E is the misclassification probability matrix.

The expected prevalences (not shown) for this example are similar to those forecasted by the
model without misclassification, with underestimates of the rates of death from 8 years on-
wards. To improve this model’s long-term prediction ability, it is probably necessary to account
for the natural increase in the hazard of death from any cause as people become older.

Goodness-of-fit test The Pearson-type goodness-of-fit test is performed, as in Section 2.13. The
table of deviances indicates that there are more 1-3 and 1-4 transitions than expected in short
intervals, and fewer in long intervals. This may indicate some time-dependence in the transition
rates. Indeed, Titman [36] found that a model with piecewise-constant transition intensities
gave a greatly improved fit to these data.

> pearson.msm(cavmisc.msm, timegroups=2,
+ transitions=c(1,2,3,4,5,6,7,8,9,9,9,10))

Imputing sampling times after deaths...
Calculating replicates of test statistics for imputations...
$Observed

Time Interval 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4
1 [0,4.1) 1 220 27 11 20.0 11 32 14 2.1
2 [4.1,19.46] 1 177 29 3 4.9 9 39 13 3.2
3 [0,4.1) 2 291 33 8 24.9 1 1 0 2.4
4 [4.1,19.46] 2 198 25 4 5.5 17 27 16 4.2
5 [0,4.1) 3 288 42 10 35.0 1 4 0 2.6
6 [4.1,19.46] 3 193 48 8 57.5 7 31 11 33.6

3-1,3-2,3-3 3-4
1 24 2.0
2 45 5.3
3 0 2.4
4 34 6.2
5 0 2.6
6 21 36.4

$Expected
Time Interval 1-1 1-2 1-3 1-4 2-1 2-2 2-3

1 [0,4.1) 1 232 27 5.7 13.8 13.7 29.4 12.0
2 [4.1,19.46] 1 178 22 4.8 8.5 12.9 32.3 14.5
3 [0,4.1) 2 273 42 12.4 29.9 0.9 1.7 1.1
4 [4.1,19.46] 2 194 24 5.0 10.0 13.2 32.1 14.2
5 [0,4.1) 3 280 45 14.4 35.7 1.6 2.9 1.9
6 [4.1,19.46] 3 197 40 18.0 50.7 10.6 26.8 19.4

42

2-4 3-1,3-2,3-3 3-4
1 3.97 20 6.13
2 4.52 39 11.11
3 0.66 0 0.94
4 4.73 30 10.36
5 1.24 0 1.12
6 25.84 23 34.17

$`Deviance*sign(O-E)`
Time Interval 1-1 1-2 1-3 1-4 2-1

1 [0,4.1) 1 -0.647 0.012 4.90 3.48 -0.552
2 [4.1,19.46] 1 -0.022 1.919 -0.65 -1.86 -1.169
3 [0,4.1) 2 1.237 -1.806 -1.58 -1.27 0.092
4 [4.1,19.46] 2 0.108 0.066 -0.22 -2.33 1.114
5 [0,4.1) 3 0.262 -0.192 -1.33 -0.39 -0.220
6 [4.1,19.46] 3 -0.108 1.398 -5.57 1.04 -1.240

2-2 2-3 2-4 3-1,3-2,3-3 3-4
1 0.25 0.35 -1.20 0.93 -3.01
2 1.42 -0.16 -0.84 0.94 -3.32
3 -0.35 -1.09 4.87 0.00 2.34
4 -0.81 0.24 -0.55 0.69 -1.98
5 0.60 -1.89 1.89 0.00 2.05
6 0.71 -3.66 2.53 -0.29 0.21

$test
stat df.lower p.lower df.upper p.upper

76 NA NA 42 0.001

2.17 Recreating the path through underlying states
In speech recognition and signal processing, decoding is the procedure of determining the underlying
states that are most likely to have given rise to the observations. The most common method of
reconstructing the most likely state path is the Viterbi algorithm. Originally proposed by Viterbi [37],
it is also described by Durbin et al.[23] and Macdonald and Zucchini [28] for discrete-time hidden
Markov chains. For continuous-time models it proceeds as follows. Suppose that a hidden Markov
model has been fitted and a Markov transition matrix P (t) and misclassification matrix E are known.
Let vk(ti) be the probability of the most probable path ending in state k at time ti.

1. Estimate vk(t1) using known or estimated initial-state occupation probabilities (initprobs),
each multiplied by the probability of the observed outcome at the initial time, given that the
true initial state is k.

2. For i = 1 . . . N , calculate vl(ti) = el,Oti
maxk vk(ti−1)Pkl(ti − ti−1). Let Ki(l) be the

maximising value of k.

3. At the final time point tN , the most likely underlying state S∗
N is the value of k which max-

imises vk(tN).

43

4. Retrace back through the time points, setting S∗
i−1 = Ki(S

∗
i).

The computations should be done in log space to prevent underflow. The msm package provides
the function viterbi.msm to implement this method. For example, the following is an extract from
a result of calling viterbi.msm to determine the most likely underlying states for all patients. The
results for patient 100103 are shown, who appeared to ‘recover’ to a less severe state of disease while
in state 3. We assume this is not biologically possible for the true states, so we expect that either the
observation of state 3 at time 4.98 was an erroneous observation of state 2, or their apparent state
2 at time 5.94 was actually state 3. According to the expected path constructed using the Viterbi
algorithm, it is the observation at time 5.94 which is most probably misclassified.

> vit <- viterbi.msm(cavmisc.msm)
> vit[vit$subject==100103,]

subject time observed fitted pstate.1 pstate.2 pstate.3
567 100103 0.0 1 1 1.00000 0.00000 0.00000
568 100103 2.0 1 1 0.87731 0.12269 0.00000
569 100103 4.1 2 2 0.01091 0.89490 0.09418
570 100103 5.0 3 3 0.00000 0.37517 0.62483
571 100103 5.9 2 3 0.00000 0.33416 0.66584
572 100103 7.0 3 3 0.00000 0.02262 0.97738
573 100103 8.0 3 3 0.00000 0.00092 0.99908
574 100103 8.4 4 4 0.00000 0.00000 0.00000

pstate.4
567 0.00000
568 0.00000
569 0.00000
570 0.00000
571 0.00000
572 0.00000
573 0.00000
574 1.00000

2.18 Fitting general hidden Markov models with msm
The msm package provides a framework for fitting continuous-time hidden Markov models with
general, continuous outcomes. As before, we use the msm function itself.

Specifying the hidden Markov model A hidden Markov model consists of two related compo-
nents:

• the model for the evolution of the underlying Markov chain,

• the set of models for the observed data conditionally on each underlying state.

The model for the transitions between underlying states is specified as before, by supplying a
qmatrix. The model for the outcomes is specified using the argument hmodel to msm. This is a
list, with one element for each underlying state, in order. Each element of the list should be an object

44

returned by a hidden Markov model constructor function. The HMM constructor functions provided
with msm are listed in Table 1. There is a separate constructor function for each class of outcome
distribution, such as uniform, normal or gamma.

Consider a three-state hidden Markov model, with a transition intensity matrix of

Q =

 −q12 q12 0
0 −q23 q23
0 0 0

Suppose the outcome distribution for state 1 is Normal(µ1, σ

2
1), the distribution for state 2 is Normal(µ2, σ

2
2),

and state 3 is exactly observed. Observations of state 3 are given a label of -9 in the data. Here our
hmodel argument should be a list of objects returned by hmmNorm and hmmIdent constructor
functions.

We must specify initial values for the parameters as the arguments to the constructor functions.
For example, we take initial values of µ1 = 90, σ1 = 8, µ2 = 70, σ2 = 8. Initial values for q12 and
q23 are 0.25 and 0.2. Finally suppose the observed data are in a variable called y, the measurement
times are in time, and subject identifiers are in ptnum. The call to msm to estimate the parameters
of this hidden Markov model would then be

msm(y ~ time, subject=ptnum, data = example.df,
qmatrix = rbind(c(0, 0.25, 0), c(0, 0, 0.2), c(0, 0, 0)),
hmodel = list (hmmNorm(mean=90, sd=8), hmmNorm(mean=70, sd=8),

hmmIdent(-9)))

Covariates on hidden Markov model parameters Most of the outcome distributions can be pa-
rameterised by covariates, using a link-transformed linear model. For example, an observation yij
may have distribution f1 conditionally on underlying state 1. The link-transformed parameter θ1 is a
linear function of the covariate vector xij at the same observation time.

yij |Sij ∼ f1(y|θ1, γ1)
g(θ1) = α+ βTxij

Specifically, parameters named as the “Location” parameter in Table 1 can be modelled in terms of
covariates, with the given link function.

The hcovariates argument to msm specifies the model for covariates on the hidden Markov
outcome distributions. This is a list of the same length as the number of underlying states, and
the same length as the hmodel list. Each element of the list is a formula, in standard R linear
model notation, defining the covariates on the distribution for the corresponding state. If there are no
covariates for a certain hidden state, then insert a NULL in the corresponding place in the list. For
example, in the three-state normal-outcome example above, suppose that the normal means on states
1 and 2 are parameterised by a single covariate x.

µ1 = α1 + β1xij , µ2 = α2 + β2xij .

The equivalent call to msm would be

45

Function Distribution Parameters Location (link) Density for an observation x
hmmCat Categorical prob,

basecat
p, c0 p (logit) px, x = 1, . . . , n

hmmIdent Identity x x0 Ix=x0
hmmUnif Uniform lower,

upper
l, u 1/(u − l), u ≤ x ≤ l

hmmNorm Normal mean, sd µ, σ µ (identity) ϕ(x, µ, σ) = 1√
2πσ2

exp(−(x − µ)2/(2σ2))

hmmLNorm Log-normal meanlog,
sdlog

µ, σ µ (identity) 1

x
√

2πσ2
exp(−(log x − µ)2/(2σ2))

hmmExp Exponential rate λ λ (log) λe−λx, x > 0

hmmGamma Gamma shape,
rate

n, λ λ (log) λn

Γ(n)
xn−1 exp(−λx), x > 0, n > 0, λ > 0

hmmWeibull Weibull shape,
scale

a, b b (log) a
b (

x
b)

a−1 exp (−(x
b)

a), x > 0

hmmPois Poisson rate λ λ (log) λx exp(−λ)/x!, x = 0, 1, 2, . . .

hmmBinom Binomial size, prob n, p p (logit)
(
n
x

)
px(1 − p)n−x

hmmNBinom Negative binomial disp, prob n, p p (logit) Γ(x + n)/(Γ(n)x!)pn(1 − p)x

hmmBetaBinom Beta-binomial size,
meanp,
sdp

n, µ, σ µ (logit)
(
n
x

)
Beta(x + a, n − x + b)/Beta(a, b)

where a = µ/σ, b = (1 − µ)/σ

hmmBeta Beta shape1,shape2a, b Γ(a + b)/(Γ(a)Γ(b))xa−1(1 − x)b−1

hmmT Student t mean,
scale,
df

µ, σ, k µ (identity) Γ((k+1)/2)
Γ(k/2)

√
1

kπσ2

{
1 + 1

kσ2 (x − µ)2
}−(k+1)/2

hmmTNorm Truncated normal mean, sd,
lower,
upper

µ, σ, l, u µ (identity) ϕ(x, µ, σ)/
(Φ(u, µ, σ) − Φ(l, µ, σ)),
where Φ(x, µ, σ) =

∫ x

−∞
ϕ(u, µ, σ)du

hmmMETNorm Normal with trun-
cation and measure-
ment error

mean, sd,
lower,
upper,
sderr,
meanerr

µ0, σ0, l, u,
σϵ, µϵ

µϵ (identity) (Φ(u, µ2, σ3) − Φ(l, µ2, σ3))/
(Φ(u, µ0, σ0) − Φ(l, µ0, σ0))
×ϕ(x, µ0 + µϵ, σ2),
σ2
2 = σ2

0 + σ2
ϵ ,

σ3 = σ0σϵ/σ2,
µ2 = (x − µϵ)σ

2
0 + µ0σ

2
ϵ

hmmMEUnif Uniform with mea-
surement error

lower,
upper,
sderr,
meanerr

l, u, µϵ, σϵ µϵ (identity) (Φ(x, µϵ + l, σϵ) − Φ(x, µϵ + u, σϵ))/
(u − l)

Table 1: Hidden Markov model distributions in msm.

46

msm(state ~ time, subject=ptnum, data = example.df,
qmatrix = rbind(c(0, 0.25, 0), c(0, 0, 0.2), c(0, 0, 0)),
hmodel = list (hmmNorm(mean=90, sd=8), hmmNorm(mean=70, sd=8),

hmmIdent(-9)),
hcovariates = list (~ x, ~ x, NULL)

).

Constraints on hidden Markov model parameters Sometimes it is realistic that parameters are
shared between some of the state-specific outcome distributions. For example, the Normally-distributed
outcome in the previous example could have a common variance σ2

1 = σ2
2 = σ2 between states 1 and

2, but differing means. It would also be realistic for any covariates on the mean to have a common
effect β1 = β2 = β on the state 1 and 2 outcome distributions.

The argument hconstraint to msm specifies which hidden Markov model parameters are
constrained to be equal. This is a named list. Each element is a vector of constraints on the named
hidden Markov model parameter. The vector has length equal to the number of times that class of
parameter appears in the whole model. As for the other constraint arguments such as qconstraint,
identical values of this vector indicate parameters constrained to be equal.

For example, consider the three-state hidden Markov model described above, with normally-
distributed outcomes for states 1 and 2. To constrain the outcome variance to be equal for states 1 and
2, and to also constrain the effect of x on the outcome mean to be equal for states 1 and 2, specify

hconstraint = list(sd = c(1,1), x=c(1,1))

Parameters of the outcome distributions may also be constrained within specific ranges. If chosen
carefully, this may improve identifiability of hidden Markov states. For example to constrain the
mean for state 1 to be between 80 and 110, and the mean for state 2 to be between 50 and 80, specify

hranges = list(mean=list(lower=c(80,50), upper=c(110,80)))

Maximum likelihood estimation is then performed on the appropriate log or logit-transformed scale
so that these constraints are satisfied. See the msm help page for further details. Note that initial
values should be strictly within the ranges, and not on the range boundary.

FEV1 after lung transplants Now we give an example of fitting a hidden Markov model to a real
dataset. The data on FEV1 measurements from lung transplant recipients, described in 1.6.4, are
provided with the msm package in a dataset called fev. We fit models Models 1 and 2, each with
three states and common Q matrix.

> three.q <- rbind(c(0, exp(-6), exp(-9)), c(0, 0, exp(-6)), c(0, 0, 0))

The simpler Model 1 is specified as follows. Under this model the FEV1 outcome is Normal with
unknown mean and variance, and the mean and variance are different between BOS state 1 and state
2. hcovariates specifies that the mean of the Normal outcome depends linearly on acute events.
Specifically, this covariate is an indicator for the occurrence of an acute event within 14 days of the
observation, denoted acute in the data. As an initial guess, we suppose the mean FEV1 is 100%
baseline in state 1, and 54% baseline in state 2, with corresponding standard deviations 16 and 18, and
FEV1 observations coinciding with acute events are on average 8% baseline lower. hconstraint
specifies that the acute event effect is equal between state 1 and state 2.

Days of death are coded as 999 in the fev outcome variable.

47

> hmodel1 <- list(hmmNorm(mean=100, sd=16), hmmNorm(mean=54, sd=18),
+ hmmIdent(999))
> fev1.msm <- msm(fev ~ days, subject=ptnum, data=fev, qmatrix=three.q,
+ deathexact=3, hmodel=hmodel1,
+ hcovariates=list(~acute, ~acute, NULL),
+ hcovinits = list(-8, -8, NULL),
+ hconstraint = list(acute = c(1,1)))
> fev1.msm

Call:
msm(formula = fev ~ days, subject = ptnum, data = fev, qmatrix = three.q, hmodel = hmodel1, hcovariates = list(~acute, ~acute, NULL), hcovinits = list(-8, -8, NULL), hconstraint = list(acute = c(1, 1)), deathexact = 3)

Maximum likelihood estimates
Baselines are with covariates set to their means

Transition intensities
Baseline

State 1 - State 1 -7.037e-04 (-8.332e-04,-0.0005944)
State 1 - State 2 6.274e-04 (5.200e-04, 0.0007570)
State 1 - State 3 7.633e-05 (3.969e-05, 0.0001468)
State 2 - State 2 -8.008e-04 (-1.012e-03,-0.0006335)
State 2 - State 3 8.008e-04 (6.335e-04, 0.0010124)

Hidden Markov model, 3 states
State 1 - normal distribution
Parameters:

Estimate LCL UCL
mean 97.9 97 98.6
sd 16.2 16 16.6
acute -8.8 -10 -7.6

State 2 - normal distribution
Parameters:

Estimate LCL UCL
mean 51.8 51 52.8
sd 17.7 17 18.3
acute -8.8 -10 -7.6

State 3 - identity distribution
Parameters:

Estimate LCL UCL
which 999 NA NA

-2 * log-likelihood: 51598

> sojourn.msm(fev1.msm)

48

estimates SE L U
State 1 1421 122 1200 1682
State 2 1249 149 988 1579

Printing the msm object fev1.msm shows estimates and confidence intervals for the transition
intensities and the hidden Markov model parameters. The estimated within-state means of FEV1

are around 98% and 52% baseline respectively. From the estimated transition intensities, individuals
spend around 1421 days (3.9 years) before getting BOS, after which they live for an average of 1248
days (3.4 years). FEV1 is lower by an average of 8% baseline within 14 days of acute events.

Model 2, where the outcome distribution is a more complex two-level model, is specified as
follows. We use the distribution defined by equations 15–16. The hmmMETNorm constructor defines
the truncated normal outcome with an additional normal measurement error. The explicit probability
density for this distribution is given in Table 1.

Our initial values are 90 and 54 for the means of the within-state distribution of underlying FEV1,
and 16 and 18 for the standard errors. This time, underlying FEV1 is truncated normal. The truncation
limits lower and upper are not estimated. We take an initial measurement error standard deviation
of sderr=8. The extra shift meanerr in the measurement error model is fixed to zero and not
estimated.

The hconstraint specifies that the measurement error variance σ2
ϵ is equal between responses

in states 1 and 2, as is the effect of short-term acute events on the FEV1 response.
The convergence of maximum likelihood estimation in this example is particularly sensitive to the

optimisation method and options, initial values, the unit of the time variable and whether covariates
are centered, probably because the likelihood surface is irregular near to the true maximum.

hmodel2 <- list(hmmMETNorm(mean=90, sd=16, sderr=8,
lower=80, upper=Inf, meanerr=0),

hmmMETNorm(mean=54, sd=18, sderr=8,
lower=0, upper=80, meanerr=0),

hmmIdent(999))

fev2.msm <- msm(fev ~ days, subject=ptnum, data=fev, qmatrix=three.q,
deathexact=3, hmodel=hmodel2,
hcovariates=list(~acute, ~acute, NULL),
hcovinits = list(-8, -8, NULL),
hconstraint = list(sderr = c(1,1), acute = c(1,1)),
control=list(maxit=10000), center=TRUE)

Under this model the standard deviation of FEV1 measurements caused by measurement error
(more realistically, natural short-term fluctuation) is around 9% baseline. The estimated effect of
acute events on FEV1 and sojourn times in the BOS-free state and in BOS before death are similar to
Model 1.

The following code will create a plot that illustrates a trajectory of declining FEV1 from the first
lung transplant recipient in this dataset. The Viterbi algorithm is used to locate the most likely point
at which this individual moved from BOS state 1 to BOS state 2, according to the fitted Model 2.
This is illustrated by a vertical dotted line. This is the point at which the individual’s lung function
started to remain consistently below 80% baseline FEV1.

49

keep <- fev$ptnum==1 & fev$fev<999
plot(fev$days[keep], fev$fev[keep], type="l",
ylab=expression(paste("% baseline ", FEV[1])), xlab="Days after transplant")
vit <- viterbi.msm(fev2.msm)[keep,]
(max1 <- max(vit$time[vit$fitted==1]))
(min2 <- min(vit$time[vit$fitted==2]))
abline(v = mean(max1,min2), lty=2)
text(max1 - 500, 50, "STATE 1")
text(min2 + 500, 50, "STATE 2")

500 1000 1500 2000 2500 3000 3500

50
60

70
80

90
10

0
11

0

Days after transplant

%
 b

as
el

in
e

F
E

V
1

STATE 1 STATE 2

An alternative way of specifying a misclassification model This general framework for specify-
ing hidden Markov models can also be used to specify multi-state models with misclassification. A
misclassification model is a hidden Markov model with a categorical outcome distribution. So in-
stead of an ematrix argument to msm, we can use a hmodel argument with hmmCat constructor
functions.

hmmCat takes at least one argument prob, a vector of probabilities of observing outcomes of
1, 2, . . . , n respectively, where n is the length of prob. All outcome probabilities with an initial
value of zero are assumed to be fixed at zero. prob is scaled if necessary to sum to one.

50

The model in section 2.14 specifies that an individual occupying underlying state 1 can be ob-
served as states 2 (and 1), underlying state 2 can be observed as states 1, 2 or 3, and state 3 can be
observed as states 2 or 3, and underlying state 4 (death) cannot be misclassified. Initial values of 0.1
are given for the 1-2, 2-1, 2-3 and 3-2 misclassification probabilities.

This is equivalent to the model below, specified using a hmodel argument to msm.
The maximum likelihood estimates should be the same as before (Model 5) if the obstrue=firstobs

is removed from the msm() call. obstrue has a slightly different meaning for models specified
with hmodel. If supplied, the variable indicated by obstrue should contain the true state if this is
known, and NA otherwise, whereas the state variable contains an observation generated from the
HMM outcome model given the (unobserved) true state. For models specified with ematrix, the
state variable contains the (observed) true state itself. Thus the hmodel specification is not strictly
suitable for the CAV data, since the true state is both known and observed at the time of transplant.

Qm <- rbind(c(0, 0.148, 0, 0.0171),
c(0, 0, 0.202, 0.081),
c(0, 0, 0, 0.126),
c(0, 0, 0, 0))

cavmisc.msm <- msm(state ~ years, subject = PTNUM, data = cav,
hmodel = list (hmmCat(c(0.9, 0.1, 0, 0)),

hmmCat(c(0.1, 0.8, 0.1, 0)),
hmmCat(c(0, 0.1, 0.9, 0)),
hmmIdent(4)),

qmatrix = Qm, deathexact = 4)
cavmisc.msm

2.18.1 Hidden Markov models with multivariate outcomes

Since version 1.5.2, msm can fit models where at each time point, there are multiple outcomes gener-
ated conditionally on a single hidden Markov state. The outcomes must be independent conditionally
on the hidden state, but they may be generated from the same or different univariate distributions.

See help(hmmMV) for detailed documentation and a worked example.

2.18.2 Defining a new hidden Markov model distribution

Suppose the hidden Markov model outcome distributions supplied with msm (Table 1) are insuffi-
cient. We want to define our own univariate distribution, called hmmNewDist, taking two param-
eters location and scale. Download the source package, for example msm-0.7.2.tar.gz
for version 0.7.2, from CRAN and edit the files in there, as follows.

1. Add an element to .msm.HMODELPARS in the file R/constants.R, naming the parameters
of the distribution. For example

newdist = c('location', 'scale')

2. Add a corresponding element to the C variable HMODELS in the file src/lik.c. This MUST
be in the same position as in the .msm.HMODELPARS list. For example,

51

hmmfn HMODELS[] = {
...,
hmmNewDist

};.

3. The new distribution is allowed to have one parameter which can be modelled in terms of co-
variates. Add the name of this parameter to the named vector .msm.LOCPARS in R/constants.R.
For example newdist = ’location’. Specify newdist = NA if there is no such pa-
rameter.

4. Supposed we have specified a parameter with a non-standard name, that is, one which doesn’t
already appear in .msm.HMODELPARS. Standard names include, for example, ’mean’, ’sd’,
’shape’ or ’scale’. Then we should add the allowed range of the parameter to .msm.PARRANGES.
In this example, we add meanpars = c(-Inf, Inf) to .msm.PARRANGES. This en-
sures that the optimisation to estimate the parameter takes place on a suitable scale, for exam-
ple, a log scale for a parameter constrained to be positive. If the parameter should be fixed
during maximum likelihood estimation (for example, the denominator of a binomial distribu-
tion) then add its name to .msm.AUXPARS.

5. Add an R constructor function for the distribution to R/hmm-dists.R. For a simple univari-
ate distribution, this is of the form

hmmNewDist <- function(location, scale)
{

hmmDIST(label = "newdist",
link = "identity",
r = function(n) rnewdist(n, location, scale),
match.call())

}

• The ’label’ must be the same as the name you supplied for the new element of
.msm.HMODELPARS

• link is the link function for modelling the location parameter of the distribution as
a linear function of covariates. This should be the quoted name of an R function. A
log link is ’log’ and a logit link is ’qlogis’. If using a new link function other
than ’identity’, ’log’, or ’qlogis’, you should add its name to the vector
.msm.LINKFNS in R/constants.R, and add the name of the corresponding inverse
link to .msm.INVLINK. You should also add the names of these functions to the C array
LINKFNS in src/lik.c, and write the functions if they do not already exist.

• r is an R function, of the above format, returning a vector of n random values from the
distribution. You should write this if it doesn’t already exist.

6. Add the name of the new constructor function to the NAMESPACE in the top-level directory
of the source package.

7. Write a C function to compute the probability density of the distribution, and put this in
src/hmm.c, with a declaration in src/hmm.h. This must be of the form

52

double hmmNewDist(double x, double *pars)

where *pars is a vector of the parameters of the distribution, and the density is evaluated at
x.

8. (Optionally) Write a C function to compute the derivatives of the probability density with re-
spect to the parameters, and put this in src/hmmderiv.c, with a declaration in src/hmm.h.
Then add the model to DHMODELS in lik.c (in the same position as in HMODELS) and
.msm.HMODELS.DERIV in R/constants.R. This will generally double the speed of
maximum likelihood estimation, but analytic derivatives will not be available for all distri-
butions.

9. Update the documentation (man/hmm-dists.Rd) and the distribution table in
inst/doc/msm-manual.Rnw) if you like.

10. Recompile the package (see the “Writing R Extensions” manual)

Your new distribution will be available to use in the hmodel argument to msm, as, for example

hmodel = list(..., hmmNewDist(location = 0, scale = 1), ...)

If your distribution may be of interest to others, ask me (chris.jackson@mrc-bsu.cam.ac.uk)
to include it in a future release.

53

3 msm reference guide
The R help page for msm gives details of all the allowed arguments and options to the msm function.
To view this online in R, type:

> help(msm)

Similarly all the other functions in the package have help pages, which should always be con-
sulted in case of doubt about how to call them. The web-browser based help interface may often be
convenient - type

> help.start()

and navigate to Packages . . . msm, which brings up a list of all the functions in the package with
links to their documentation, and a link to this manual in PDF format.

A Changes in the msm package
For a detailed list of the changes in recent versions of msm, see the NEWS file in the top-level directory
of the installed package.

Development versions of msm are to be found on GitHub https://github.com/chjackson/
msm. These are often more recent than the version released on CRAN, so if you think you have found
a bug, then please check first to see whether it has been fixed on the GitHub version.

B Get in touch
If you use msm in your work, whatever your field of application, please let me know, for my own
interest! Suggestions for improvement are welcome.

54

References
[1] D. R. Cox and H. D. Miller. The Theory of Stochastic Processes. Chapman and Hall, London,

1965.

[2] C. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy, and E. Couto. Multistate Markov
models for disease progression with classification error. Journal of the Royal Statistical Society,
Series D - The Statistician, 52(2):193–209, July 2003.

[3] C. H. Jackson and L. D. Sharples. Hidden Markov models for the onset and progression of
bronchiolitis obliterans syndrome in lung transplant recipients. Statistics in Medicine, 21:113–
128, 2002.

[4] L. D. Sharples. Use of the Gibbs sampler to estimate transition rates between grades of coronary
disease following cardiac transplantation. Statistics in Medicine, 12:1155–1169, 1993.

[5] J. H. Klotz and L. D. Sharples. Estimation for a Markov heart transplant model. The Statistician,
43(3):431–436, 1994.

[6] R. Kay. A Markov model for analysing cancer markers and disease states in survival studies.
Biometrics, 42:855–865, 1986.

[7] I. M. Longini, W. S. Clark, R. H. Byers, J. W. Ward, W. W. Darrow, G. F. Lemp, and H. W.
Hethcote. Statistical analysis of the stages of HIV infection using a Markov model. Statistics in
Medicine, 8:851–843, 1989.

[8] G. A. Satten and I. M. Longini. Markov chains with measurement error: Estimating the ‘true’
course of a marker of the progression of human immunodeficiency virus disease. Applied Statis-
tics - Journal of the Royal Statistical Society Series C, 45(3):275–295, 1996.

[9] C. Guihenneuc-Jouyaux, S. Richardson, and I. M. Longini. Modelling markers of disease pro-
gression by a hidden Markov process: Application to characterising CD4 cell decline. Biomet-
rics, 56:733–741, 2000.

[10] R. C. Gentleman, J. F. Lawless, J. C. Lindsey, and P. Yan. Multi-state Markov models for
analysing incomplete disease history data with illustrations for HIV disease. Statistics in
Medicine, 13(3):805–821, 1994.

[11] G. Marshall and R. H. Jones. Multi-state Markov models and diabetic retinopathy. Statistics in
Medicine, 14, 1995.

[12] P. K. Andersen. Multistate models in survival analysis: a study of nephropathy and mortality in
diabetes. Statistics in Medicine, 7(6):661–670, 1988.

[13] S. W. Duffy and H. H. Chen. Estimation of mean sojourn time in breast cancer screening
using a Markov chain model of entry to and exit from preclinical detectable phase. Statistics in
Medicine, 14:1531–1543, 1995.

[14] H. H. Chen, S. W. Duffy, and L. Tabar. A Markov chain method to estimate the tumour progres-
sion rate from preclinical to clinical phase, sensitivity and positive predictive value for mam-
mography in breast cancer screening. The Statistician, 45(3):307–317, 1996.

55

[15] A. J. Kirby and D. J. Spiegelhalter. Statistical modelling for the precursors of cervical cancer.
In Case Studies in Biometry. Wiley, New York, 1994.

[16] P. K. Andersen, L. S. Hansen, and N. Keiding. Assessing the influence of reversible disease
indicators on survival. Statistics in Medicine, 10:1061–1067, 1991.

[17] J. Grüger, R. Kay, and M. Schumacher. The validity of inferences based on incomplete obser-
vations in disease state models. Biometrics, 47:595–605, 1991.

[18] M. J. Sweeting, V. Farewell, and D. De Angelis. Multi-State Markov Models for Disease Pro-
gression in the Presence of Informative Examination Times: an Application to Hepatitis C.
Statistics in Medicine, 29(11):1161–1174, 2010.

[19] J.D. Kalbfleisch and J.F. Lawless. The analysis of panel data under a Markov assumption.
Journal of the American Statistical Association, 80(392):863–871, 1985.

[20] C. Moler and C. van Loan. Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[21] H. Putter, M. Fiocco, and R. B. Geskus. Tutorial in biostatistics: competing risks and multi-state
models. Statistics in Medicine, 26:2389–2430, 2007.

[22] B. H. Juang and L. R. Rabiner. Hidden Markov models for speech recognition. Technometrics,
33:251–272, 1991.

[23] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[24] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov
chains. Annals of Mathematical Statistics, 37:1554–1563, 1966.

[25] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximisation technique occurring in the sta-
tistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics,
41:164–171, 1970.

[26] P. S. Albert. A mover-stayer model for longitudinal marker data. Biometrics, 55(4):1252–1257,
1999.

[27] A. Bureau, J. P. Hughes, and S. C. Shiboski. An S-Plus implementation of hidden Markov
models in continuous time. Journal of Computational and Graphical Statistics, 9:621–632,
2000.

[28] I. L. Macdonald and W. Zucchini. Hidden Markov and Other Models for Discrete-Valued Time
Series. Chapman and Hall, London, 1997.

[29] J. K. Lindsey. Models for Repeated Measurements. Oxford Statistical Science Series. Oxford
University Press, second edition, 1999.

[30] P. Guttorp. Stochastic Modeling of Scientific Data. Chapman and Hall, London, 1995.

[31] C. H. Jackson. Statistical models for the latent progression of chronic diseases using serial
biomarkers. PhD thesis, University of Cambridge, 2002.

56

[32] L.D. Sharples, C.H. Jackson, J. Parameshwar, J. Wallwork, and S.R. Large. Diagnostic accuracy
of coronary angiography and risk factors for post-heart-transplant cardiac allograft vasculopa-
thy. Transplantation, 76(4):679–682, 2003.

[33] R. Aguirre-Hernandez and V. Farewell. A Pearson-type goodness-of-fit test for stationary and
time-continuous Markov regression models. Statistics in Medicine, 21:1899–1911, 2002.

[34] A.C. Titman. Computation of the asymptotic null distribution of goodness-of-fit tests for multi-
state models. Lifetime Data Analysis, 15(4):519–533, 2009.

[35] A. Titman and L. D. Sharples. A general goodness-of-fit test for Markov and hidden Markov
models. Statistics in Medicine, 27(12):2177–95, 2008.

[36] A. Titman. Model diagnostics in multi-state models of biological systems. PhD thesis, Univer-
sity of Cambridge, 2008.

[37] J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal decoding algo-
rithm. IEEE Transactions on Information Theory, 13:260–269, 1967.

57

