
A short introduction to acoustic template matching with

monitoR

Sasha D. Hafner
Aarhus University, Aarhus, Denmark (sasha.hafner@eng.au.dk)

and

Jonathan Katz
Vermont Cooperative Fish and Wildlife Research Unit, University of Vermont, USA (jonkatz4@gmail.com)

October 31, 2024

Disclaimer

“Although this software program has been used by the U.S. Geological Survey (USGS), no warranty,
expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and functioning
of the program and related program material nor shall the fact of distribution constitute any such
warranty, and no responsibility is assumed by the USGS in connection therewith.”

1 Getting started

The motivation behind the development of the monitoR package was automated detection and identi-
fication of animal vocalizations. Here, we describe how to use monitoR functions to detect and identify
songs from two bird species from a survey recording. We’ll start by loading the package.

library(monitoR)

The monitoR package includes a 23 second recording of songbirds as a Wave object (defined in the
tuneR package) named survey.

data(survey)

survey

#

Wave Object

Number of Samples: 564000

Duration (seconds): 23.5

Samplingrate (Hertz): 24000

Channels (Mono/Stereo): Mono

PCM (integer format): TRUE

Bit (8/16/24/32/64): 16

1

A spectrogram of the recordings can be generated using the viewSpec function1.

viewSpec(survey)

Warning in as.character.POSIXt(as.POSIXct(t.bin.ticks + start.time, origin = "1960-01-01",

: as.character(td, ..) no longer obeys a ’format’ argument; use format(td, ..) ?

survey

Time

Fr
eq

ue
nc

y
(k

H
z)

2

4

6

8

10

12

1960−01−01 00:00:02 1960−01−01 00:00:10 1960−01−01 00:00:18

We could also play the recording using the play function from the tuneR package2.

setWavPlayer("play")

play(survey)

You might be see two different types of songs here. The songs around 2, 10, and maybe 22 seconds
are from a black-throated green warbler Setophaga virens, and there are ovenbird Seiurus aurocapilla
songs around 6, 9, 15, and 23 seconds. In the following, we show how monitoR can be used to detect
and identify these songs.

The monitoR package also includes short recordings of songs from the same two species in survey:
btnw, which contains a single song from a black-throated green warbler, and oven which contains a
single song from an ovenbird. As with survey, these objects are Wave objects.

data(btnw)

data(oven)

btnw

1By default, this function just transforms the data and generates a spectrogram. Try setting the interactive

argument to TRUE for more viewing options that are useful for longer recordings.
2This requires that a command-line wav player is installed. Here, we are using SoX.

2

#

Wave Object

Number of Samples: 72001

Duration (seconds): 3

Samplingrate (Hertz): 24000

Channels (Mono/Stereo): Mono

PCM (integer format): TRUE

Bit (8/16/24/32/64): 16

oven

#

Wave Object

Number of Samples: 120001

Duration (seconds): 5

Samplingrate (Hertz): 24000

Channels (Mono/Stereo): Mono

PCM (integer format): TRUE

Bit (8/16/24/32/64): 16

viewSpec(btnw)

Warning in as.character.POSIXt(as.POSIXct(t.bin.ticks + start.time, origin = "1960-01-01",

: as.character(td, ..) no longer obeys a ’format’ argument; use format(td, ..) ?

btnw

Time

F
re

qu
en

cy
 (

kH
z)

2

4

6

8

10

12

1960−01−01 00:00:00.5 1960−01−01 00:00:02.5

3

viewSpec(oven)

Warning in as.character.POSIXt(as.POSIXct(t.bin.ticks + start.time, origin = "1960-01-01",

: as.character(td, ..) no longer obeys a ’format’ argument; use format(td, ..) ?

oven

Time

F
re

qu
en

cy
 (

kH
z)

2

4

6

8

10

12

1960−01−01 00:00:00.5 1960−01−01 00:00:03.5

As Wave objects, all of these recordings can be used directly in the template matching functions3.
Users will typically work with wav files, however, as opposed to mp3 files, or Wave objects. To be
consistent with this typical approach, we will save the two clips and the survey as wav files4. We’ll
include a made-up date in the name for the survey file, since that is one way to determine “absolute”
times for detections5.

btnw.fp <- file.path(tempdir(), "btnw.wav")

oven.fp <- file.path(tempdir(), "oven.wav")

survey.fp <- file.path(tempdir(), "survey2010-12-31_120000_EST.wav")

writeWave(btnw, btnw.fp)

writeWave(oven, oven.fp)

writeWave(survey, survey.fp)

3But you must set the write.wav argument to TRUE to do this.
4Here, we will use a temporary directory, but for your own recordings a more permanent location is better.
5The other option is to use the modification date of the survey file, which clearly would be wrong here, since we just

created it.

4

2 Spectrogram cross correlation

The monitoR package provides functions for two kinds of template detection–spectrogram cross corre-
lation and binary point matching. We’ll start with the correlation approach, which is slightly simpler.
The easiest way to create a correlation template is to call up makeCorTemplate with only the clip

argument specified. This function carries out a Fourier transform, and, by default, saves amplitude
(volume) data for each cell within the resulting frequency-by-time matrix.

wct1 <- makeCorTemplate(btnw.fp)

Time (s)

F
re

qu
en

cy
 (

kH
z)

0.5 1 1.5 2 2.5

2

4

6

8

10

12

20 40 60 80 100 120 140

50

100

150

200

250

#

Automatic point selection.

#

Done.

The makeCorTemplate function displays a spectrogram of the recording6, and shows the cells included
in the template (all the cells here) in transparent purple7. Let’s look at a summary of the template
we just created8.

wct1

#

6This plot is more important when templates are produced interactively, as described below.
7This color can be selected with the argument sel.col.
8Just entering the template list name will call up the appropriate show method, which just displays a simple summary.

5

Object of class "corTemplateList"

containing 1 templates

original.recording sample.rate lower.frequency

A /tmp/RtmpUZest1/btnw.wav 24000 0.047

upper.frequency lower.amp upper.amp duration n.points

A 12 -97.52 0 2.965 35840

score.cutoff

A 0.4

The w1 object is a template list, of class corTemplateList. Here the idea of a list doesn’t make a lot
of sense, since we only have one template, but in monitoR, templates only exist as part of template
lists. Below, we’ll create template lists with multiple templates.

The name associated with our single template in the list is A, which is the default, and is not very
descriptive. The name of a template can be set when it is created, using the name argument910.

wct1 <- makeCorTemplate(btnw.fp, name = "w1")

#

Automatic point selection.

#

Done.

wct1

#

Object of class "corTemplateList"

containing 1 templates

original.recording sample.rate lower.frequency

w1 /tmp/RtmpUZest1/btnw.wav 24000 0.047

upper.frequency lower.amp upper.amp duration n.points

w1 12 -97.52 0 2.965 35840

score.cutoff

w1 0.4

This template is functional, but it does not take advantage of all the options available in makeCorTemplate.
Setting time and frequency limits is one of simplest, and may be necessary when making a template
from a long recording. We’ll make a new template that uses the t.lim and frq.lim arguments to
focus on a particular section within the song.

9The templateNames function can be used to change template names in an existing template list. For more detailed
information, the templateComment function can be used to check and add comments to templates.

10In the interest of keeping this file from being too big, the figures produced by the calls in most of the following
examples will not be shown. For a complete version of this vignette, visit the monitoR website.

6

http://www.uvm.edu/rsenr/vtcfwru/R/?Page=monitoR/monitoR.htm

wct2 <- makeCorTemplate(btnw.fp, t.lim = c(1.5, 2.1), frq.lim = c(4.2, 5.6), name = "w2")

Time (s)

F
re

qu
en

cy
 (

kH
z)

1.6 1.7 1.8 1.9 2 2.1

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5 10 15 20 25

90

95

100

105

110

115

#

Automatic point selection.

#

Done.

wct2

#

Object of class "corTemplateList"

containing 1 templates

original.recording sample.rate lower.frequency

w2 /tmp/RtmpUZest1/btnw.wav 24000 4.219

upper.frequency lower.amp upper.amp duration n.points

w2 5.578 -93.52 0 0.576 840

score.cutoff

w2 0.4

Let’s make two templates with the ovenbird recording as well.

oct1 <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), name = "o1")

#

Automatic point selection.

7

#

Done.

For the next template, we’ll use the dens argument to reduce the size of the template–that is, the
number of points included.

oct2 <- makeCorTemplate(oven.fp, t.lim = c(1, 4), frq.lim = c(1, 11), dens = 0.1, name = "o2")

#

Automatic point selection.

#

Done.

Here, our template will include approximately one-tenth of all the spectrogram points.

Template lists with just a single template, can be used for detection. However, monitoR is designed
to use template lists that contain multiple templates. Templates can be combined together in a single
list with combineCorTemplates.

ctemps <- combineCorTemplates(wct1, wct2, oct1, oct2)

ctemps

#

Object of class "corTemplateList"

containing 4 templates

original.recording sample.rate lower.frequency

w1 /tmp/RtmpUZest1/btnw.wav 24000 0.047

w2 /tmp/RtmpUZest1/btnw.wav 24000 4.219

o1 /tmp/RtmpUZest1/oven.wav 24000 1.031

o2 /tmp/RtmpUZest1/oven.wav 24000 1.031

upper.frequency lower.amp upper.amp duration n.points

w1 12.000 -97.52 0.00 2.965 35840

w2 5.578 -93.52 0.00 0.576 840

o1 10.969 -85.94 0.00 2.965 29820

o2 10.969 -71.29 -2.64 2.965 2970

score.cutoff

w1 0.4

w2 0.4

o1 0.4

o2 0.4

The output from combineCorTemplates is a template list, just like the output from makeCorTemplate.
This function can be used to combine templates present in any number of correlation template lists
(and each of the lists can contain any number of templates).

We can view all the templates in ctemps with the plot function.

plot(ctemps)

We can now use our templates to look for black-throated green warbler and ovenbird songs within
the survey recording. This is a three-step process: we first calculate correlation score between the

8

templates and each time bin in the survey, then identify “peaks” in the scores, and finally determine
which, if any, score peaks exceed the score cutoff. Correlation scores are calculated with corMatch.

cscores <- corMatch(survey.fp, ctemps)

#

Starting w1 . . .

Fourier transform on survey . . .

Continuing. . .

#

Done.

#

Starting w2 . . .

Done.

#

Starting o1 . . .

Done.

#

Starting o2 . . .

Done.

This particular example should run in a few seconds, but corMatch can take much longer for long
surveys 11 . We can get a summary of the scores object by entering its name, but it requires additional
processing in order to be used for detecting songs.

cscores

#

A "templateScores" object

#

Based on the survey file: /tmp/RtmpUZest1/survey2010-12-31_120000_EST.wav

#

And 4 templates

Score information

min.score max.score n.scores

w1 0.13 0.46 961

w2 -0.22 0.73 1073

o1 -0.07 0.63 961

o2 -0.10 0.66 961

The corMatch function returns templateScores objects, which contain the correlation scores for each
template, but also the complete original templates, along with other information, like the name of
the survey file used. To make detections, we need to look within the correlation scores returned by
corMatch for peaks, and then identify those peaks with values above the score cutoff as detections.
These two steps are carried out with findPeaks.

cdetects <- findPeaks(cscores)

#

11Set the parallel argument to TRUE to speed this step up if you are have a multi-core processor and are not using
Windows.

9

Done with w1

Done with w2

Done with o1

Done with o2

Done

The findPeaks function returns detectionList objects, which contain all the information originally
present in templateScores objects, plus detection results. To see a summary of the detections, just
enter the name of the object.

cdetects

#

A "detectionList" object

#

Based on survey file: /tmp/RtmpUZest1/survey2010-12-31_120000_EST.wav

#

and 4 templates

#

Detection information

n.peaks n.detections min.peak.score max.peak.score

w1 6 1 0.297370075 0.4615955

w2 38 3 0.009121254 0.7291718

o1 5 3 0.154263730 0.6322787

o2 5 3 0.210719516 0.6566550

min.detection.score max.detection.score

w1 0.4615955 0.4615955

w2 0.4057619 0.7291718

o1 0.4562568 0.6322787

o2 0.4813885 0.6566550

From the n.peaks column, we can see there are from five to 38 peaks per template, and from the
n.detections column, we can see that the templates resulted in from one to three detections. The
detections can be extracted with the getDetections function.

getDetections(cdetects)

template date.time time score

1 w1 2010-12-31 11:59:38 1.834667 0.4615955

2 w2 2010-12-31 11:59:38 2.133333 0.7291718

3 w2 2010-12-31 11:59:47 10.709333 0.4057619

4 w2 2010-12-31 11:59:58 21.717333 0.4691309

5 o1 2010-12-31 11:59:42 6.186667 0.6322787

6 o1 2010-12-31 11:59:45 9.472000 0.5078371

7 o1 2010-12-31 11:59:58 21.973333 0.4562568

8 o2 2010-12-31 11:59:42 6.186667 0.6566550

9 o2 2010-12-31 11:59:45 9.472000 0.5511877

10 o2 2010-12-31 11:59:58 21.952000 0.4813885

Whether or not a peak qualifies as a detection depends a parameter called the score cutoff, which can
be set separately for each template. If we look at our template list again, we can see the score cutoffs
given in the last column of the summary.

10

ctemps

#

Object of class "corTemplateList"

containing 4 templates

original.recording sample.rate lower.frequency

w1 /tmp/RtmpUZest1/btnw.wav 24000 0.047

w2 /tmp/RtmpUZest1/btnw.wav 24000 4.219

o1 /tmp/RtmpUZest1/oven.wav 24000 1.031

o2 /tmp/RtmpUZest1/oven.wav 24000 1.031

upper.frequency lower.amp upper.amp duration n.points

w1 12.000 -97.52 0.00 2.965 35840

w2 5.578 -93.52 0.00 0.576 840

o1 10.969 -85.94 0.00 2.965 29820

o2 10.969 -71.29 -2.64 2.965 2970

score.cutoff

w1 0.4

w2 0.4

o1 0.4

o2 0.4

They are currently set to the default value, but there is no reason to think that this value should
work for all or even any templates. Instead, score cutoffs need to be determined based on template
performance, typically with a subset of the survey or surveys that will ultimately be searched for
matching sounds. Here we just have one, very short, survey, so we’ll use the entire survey to determine
what the score cutoff should be set to for each template. We can see a graphical summary of the
results with the generic plot function.

plot(cdetects)

0 to 23.5 seconds

11

0

2

4

6

8

10

12
Fr

eq
ue

nc
y

(k
H

z)

0 5 10 15 20

0.0

0.2

0.4

0.6

S
co

re

Time (s or min:sec)

00:00 00:05 00:10 00:15 00:20

w1
w2
o1
o2

Starting with the warbler templates, it is easy to see that template w2 is much better than template
w1–its scores are high for the three apparent songs, and relatively low elsewhere, including during
ovenbird songs. Changing the score cutoff cannot much improve template w1. For template w2, the
default value works well enough for this survey. But to incorporate a safety factor, we might want to
lower it, perhaps to 0.30.

Looking at the ovenbird results, both templates perform similarly, but if we want to detect songs like
the faint one around 15 sec, the score cutoff needs to be reduced, perhaps to 0.20.

We could recreate this template list by repeating the steps above, but set the score.cutoff argument
for w2 to 0.30 and 0.20 for o1 and o2. Fortunately, using templateCutoff is a more efficient option.
It can be used as an extractor or replacement function.

templateCutoff(ctemps)

w1 w2 o1 o2

0.4 0.4 0.4 0.4

To change the cutoff for templates w2, o1, and o2 in the the template list cdetects, we can use:

templateCutoff(ctemps)[2:4] <- c(0.3, 0.2, 0.2)

Or, this call does the same thing (and is perhaps less prone to mistakes):

templateCutoff(ctemps) <- c(w2 = 0.3, o1 = 0.2, o2 = 0.2)

ctemps

#

12

Object of class "corTemplateList"

containing 4 templates

original.recording sample.rate lower.frequency

w1 /tmp/RtmpUZest1/btnw.wav 24000 0.047

w2 /tmp/RtmpUZest1/btnw.wav 24000 4.219

o1 /tmp/RtmpUZest1/oven.wav 24000 1.031

o2 /tmp/RtmpUZest1/oven.wav 24000 1.031

upper.frequency lower.amp upper.amp duration n.points

w1 12.000 -97.52 0.00 2.965 35840

w2 5.578 -93.52 0.00 0.576 840

o1 10.969 -85.94 0.00 2.965 29820

o2 10.969 -71.29 -2.64 2.965 2970

score.cutoff

w1 0.4

w2 0.3

o1 0.2

o2 0.2

Or, we could even use the special name default to specify a default value.

templateCutoff(ctemps) <- c(w2 = 0.3, default = 0.2)

ctemps

#

Object of class "corTemplateList"

containing 4 templates

original.recording sample.rate lower.frequency

w1 /tmp/RtmpUZest1/btnw.wav 24000 0.047

w2 /tmp/RtmpUZest1/btnw.wav 24000 4.219

o1 /tmp/RtmpUZest1/oven.wav 24000 1.031

o2 /tmp/RtmpUZest1/oven.wav 24000 1.031

upper.frequency lower.amp upper.amp duration n.points

w1 12.000 -97.52 0.00 2.965 35840

w2 5.578 -93.52 0.00 0.576 840

o1 10.969 -85.94 0.00 2.965 29820

o2 10.969 -71.29 -2.64 2.965 2970

score.cutoff

w1 0.2

w2 0.3

o1 0.2

o2 0.2

And now we could call corMatch and findPeaks again. This approach would work fine, but takes
more time and effort than is needed, because it isn’t necessary to recalculate the scores, since they are
independent of the cutoffs. Instead, we can just change the score cutoffs in our existing detectionList
object cdetects, with the same function templateCutoff. The detections are automatically updated
when score cutoffs are changed in a detectionList object.

templateCutoff(cdetects) <- c(w2 = 0.3, default = 0.2)

13

So it isn’t even necessary to change ctemps12. Now let’s take a look at cdetects.

cdetects

#

A "detectionList" object

#

Based on survey file: /tmp/RtmpUZest1/survey2010-12-31_120000_EST.wav

#

and 4 templates

#

Detection information

n.peaks n.detections min.peak.score max.peak.score

w1 6 6 0.297370075 0.4615955

w2 38 3 0.009121254 0.7291718

o1 5 4 0.154263730 0.6322787

o2 5 5 0.210719516 0.6566550

min.detection.score max.detection.score

w1 0.2973701 0.4615955

w2 0.4057619 0.7291718

o1 0.2261725 0.6322787

o2 0.2107195 0.6566550

Notice how the number of detections has changed for o1 and o213.

plot(cdetects)

0 to 23.5 seconds

Since the template w1 is nearly useless, and template o1 and o2 nearly identical, we might want to
drop w1 and either o1 or o2 from our results. This can be done using indexing14.

cdetects <- cdetects[c("w2", "o2")]

cdetects

#

A "detectionList" object

#

Based on survey file: /tmp/RtmpUZest1/survey2010-12-31_120000_EST.wav

#

and 2 templates

#

Detection information

n.peaks n.detections min.peak.score max.peak.score

w2 38 3 0.009121254 0.7291718

o2 5 5 0.210719516 0.6566550

min.detection.score max.detection.score

12Of course, you may want to reuse or save the template list with optimized cutoffs. The getTemplates function can
be helpful here–it can be used to extract the templates from a detectionList object.

13The plot produced by the call below is omitted, but it would now show a different number of detections.
14Here, the omitted plot would only show results for w2 and o2.

14

w2 0.4057619 0.7291718

o2 0.2107195 0.6566550

plot(cdetects)

0 to 23.5 seconds

In this short example, it is easy to verify results in the results using the above plot. For longer surveys,
for which these methods make more sense, the showPeaks function is more efficient. It can be used
to view all detections or even all peaks, one by one, and by setting the verify argument to TRUE, it
can be used to save results of the verification process.

This simple example doesn’t show all the available options for creating templates. In particular, with
the select argument set to "rectangle", or "cell", it is possible to select areas or even individual
cells to be included in a template.

To summarize, for template matching using spectrogram cross-correlation one would typically use the
following functions in the order given:

1. makeCorTemplate to make the template(s)

2. combineCorTemplates to combine templates together in a single template list

3. corMatch to calculate scores

4. findPeaks to find peaks and identify detections

5. plot to see the scores and detections

6. getDetections to get the (numeric) detection results

7. templateCutoff to change template cutoffs in the detection list object (iteratively with plot

and getDetections)

3 Binary point matching

We can use binary point matching to carry out a procedure similar to the one described above in
Section 2. Because the type of data needed to calculate scores differ, binary templates differ from
correlation templates, and the corresponding functions used for creating templates also differ in some
ways. The makeBinTemplate function converts the time-domain data into a binary format by default–
i.e., cells are identified as either “high” or “low” (we’ll refer to these as “on” and “off”) depending
on whether they are greater than or less than the user-set amp.cutoff, respectively. The value of
amp.cutoff is set interactively by default 15. With the default option, the spectrogram is updated
each time the value of amp.cutoff changes. Here, we’ll set the cutoff directly in the function call,
based on earlier trials.

wbt1 <- makeBinTemplate(btnw.fp, amp.cutoff = -40, name = "w1")

15This can be changed with the amp.cutoff argument.

15

Time (s)

F
re

qu
en

cy
 (

kH
z)

Amplitude cutoff: −40

0.5 1 1.5 2 2.5

2

4

6

8

10

12

20 40 60 80 100 120 140

50

100

150

200

250

#

Automatic point selection.

#

Done.

Time and frequency limits can be set as with makeCorTemplate. We’ll also include a buffer around
the “on” cells–cells in the buffer are excluded from the template16.

wbt2 <- makeBinTemplate(btnw.fp, amp.cutoff = -30, t.lim = c(1.5, 2.1),

frq.lim = c(4.2, 5.6), buffer = 2, name = "w2")

#

Automatic point selection.

#

Done.

The amp.cutoff and buffer values used above are based on trial-and-error not shown here.

Let’s also make two ovenbird templates, with and without a buffer.

obt1 <- makeBinTemplate(oven.fp, amp.cutoff = -20, t.lim = c(1, 4),

frq.lim = c(1, 11), name = "o1")

#

16Although the resulting plot isn’t shown here, again, to keep this file size down.

16

Automatic point selection.

#

Done.

obt2 <- makeBinTemplate(oven.fp, amp.cutoff = -17, t.lim = c(1, 4),

frq.lim = c(1, 11), buffer = 2, name = "o2")

#

Automatic point selection.

#

Done.

Binary templates are combined with combineBinTemplates.

btemps <- combineBinTemplates(wbt1, wbt2, obt1, obt2)

btemps

#

Object of class "binTemplateList"

#

containing 4 templates

original.recording sample.rate lower.frequency

w1 /tmp/RtmpUZest1/btnw.wav 24000 0.046875

w2 /tmp/RtmpUZest1/btnw.wav 24000 4.218750

o1 /tmp/RtmpUZest1/oven.wav 24000 1.031250

o2 /tmp/RtmpUZest1/oven.wav 24000 1.031250

upper.frequency duration on.points off.points score.cutoff

w1 12.000000 2.97 1845 33995 12

w2 5.578125 0.58 223 310 12

o1 10.968750 2.97 2676 27144 12

o2 10.968750 2.97 1607 23833 12

Notice how binary templates have “on” points and “off” points, while correlation templates only have
one type of point. Scores are calculated using binMatch, which is analogous to corMatch. As with
corMatch, the output from this function is a templateScores object.

bscores <- binMatch(survey.fp, btemps)

#

Starting w1 . . .

#

Fourier transform on survey . . .

Continuing. . .

#

Done.

#

Starting w2 . . .

#

Done.

#

17

Starting o1 . . .

#

Done.

#

Starting o2 . . .

#

Done.

From this point on, objects created by binary point matching are identical to those made with spec-
trogram cross correlation. To find detections, use the same findPeaks function that we used above.

bdetects <- findPeaks(bscores)

#

Done with w1

Done with w2

Done with o1

Done with o2

Done

And, as above, we can use the plot method for detectionList objects to view detections.

plot(bdetects)

0 to 23.5 seconds

Based on these results, it looks like all templates except w1 could be useful with the right score cutoff.
We might want to use a cutoff of about 7 for w2, and perhaps 4 for o1 and o2 if the song around 15
seconds should be detected. First, let’s drop w117.

bdetects <- bdetects[-1]

templateCutoff(bdetects) <- c(w2 = 7, default = 4)

plot(bdetects)

0 to 23.5 seconds

Finally, the detections are:

getDetections(bdetects)

template date.time time score

1 w2 2010-12-31 11:59:38 2.133333 17.583758

2 w2 2010-12-31 11:59:47 10.730667 8.669633

3 w2 2010-12-31 11:59:58 21.717333 10.490479

17The plot that is omitted below would no longer show any results for w1.

18

4 o1 2010-12-31 11:59:42 6.208000 18.757236

5 o1 2010-12-31 11:59:45 9.450667 11.775177

6 o1 2010-12-31 11:59:51 14.698667 4.199115

7 o1 2010-12-31 11:59:58 21.952000 10.884734

8 o2 2010-12-31 11:59:38 1.536000 4.019856

9 o2 2010-12-31 11:59:42 6.208000 22.261260

10 o2 2010-12-31 11:59:45 9.472000 14.209354

11 o2 2010-12-31 11:59:51 14.720000 5.351632

12 o2 2010-12-31 11:59:58 21.952000 13.189866

As with correlation templates, there is much more flexibility in making binary templates than this
example suggests. In particular, options for the select should be explored. The most flexible is
"cell", but it is certainly not the quickest and because individual cells are selected manually, may
not be readily repeatable.

To summarize, for template matching using binary point matching one would typically use the fol-
lowing functions in the order given:

1. makeBinTemplate to make the template(s)

2. combineBinTemplates to combine templates together in a single template list

3. binMatch to calculate scores

4. findPeaks to find peaks and identify detections

5. plot to see the scores and detections

6. getDetections to get the (numeric) detection results

7. templateCutoff to change template cutoffs in the detection list object (iteratively with plot

and getDetections)

4 Other functions

The monitoR package includes several functions not described in this short introduction.

� For manipulating recordings directly, there are the cutWave18, changeSampRate, and mp3Subsamp
functions.

� With the plot methods for template list and detection list objects (used in sections 2 and 3
above), color palettes and other characteristics of the plots can be modified.

� The viewSpec function is capable of much more than the above examples suggest. It can be
used interactively to view different parts of a spectrogram, or even annotate it.

� Comments can be added to templates within a template list using the templateComment func-
tions.

� Binary and correlation templates were designed to be portable, and can be saved to text files
using writeCorTemplates or writeBinTemplates. Existing template files can be read in with
readCorTemplates and writeCorTemplates.

18Originally named cutw, but recently changed.

19

� For verification of detections, there is the showPeaks function, which, shows (or plays) individual
detections (or peaks), and, in the interactive mode, allows the user to add verification data to a
detection list object.

� The functions collapseClips and bindEvents can be used to extract and bind together detec-
tions from a longer recording, and could also be useful for verification.

� The function eventEval provides a way to compare results from template detection to a manu-
ally annotated spectrogram, and the function timeAlign removes redundant detections from a
survey (e.g. those from multiple templates).

� The compareTemplates function can be used to compare the performance of multiple templates
and evaluate similarity between templates.

� An alternative to writing templateLists and detectionLists locally is to store templates,
survey metadata, and detection results in a MySQL database. MonitoR has a variety of MySQL
queries using package RODBC to push and pull data to an acoustics database: uploads are ac-
complished with dbUploadSurvey, dbUploadResult, and dbUploadTemplate. Templates can be
downloaded to templateList objects with dbDownloadTemplate, and results can be downloaded
to detectionList objects with dbDownloadResult. Survey metadata and media card/recorder
metadata are downloaded with dbDownloadSurvey and dbDownloadCardRecorderID. An acous-
tics database schema is available for download at the monitoR website, which can be loaded on
an active database instance using dbSchema or incorporated into an existing MySQL database.

Acknowledgements

Generous funding for this work was provided by the National Park Service, the U.S. Geological Survey,
and the National Phenology Network.

20

http://www.uvm.edu/rsenr/vtcfwru/R/?Page=monitoR/monitoR.htm

	Getting started
	Spectrogram cross correlation
	Binary point matching
	Other functions

