
MiRNAss user guide

Genome-wide pre-miRNA discovery from few labeled examples

Cristian A. Yones (cyones@sinc.unl.edu.ar)1, Georgina Stegmayer1, and Diego H.
Milone1

1Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL,
CONICET, Santa Fe, Argentina.

October 28, 2024

Abstract

MiRNAss is a machine learning method speci�cally designed for pre-miRNA prediction.
It takes advantage of unlabeled sequences to improve the prediction rates even when there
are just a few positive examples, and when the negative examples are unreliable or are not
good representatives of its class. Furthermore, the method can automatically search for
negative examples if the user is unable to provide them. MiRNAss can �nd a good boundary
to divide the pre-miRNAs from other groups of sequences; it automatically optimizes the
threshold that de�nes the classes boundaries, and thus, it is robust to high class imbalance.
Each step of the method is scalable and can handle large volumes of data. The last version
of the package can be found at CRAN. Also, the development version of the package can
be found at: https://github.com/cyones/miRNAss. Related projects can be found in
http://fich.unl.edu.ar/sinc/

1 Input data

MiRNAss receive as input numerical features extracted from hairpin sequences. This
means that a genome needs to be pre-proccesed to be able to make predictions with
miRNAss. There are two steps: split the genome-wide data in shorter sequences and
extract features from this sequences. The �rst step can be accomplished with HExtrac-
tor (https://sourceforge.net/projects/sourcesinc/files/hextractor/), which is a
tool speci�cally designed for this task. For the feature extraction we have developed a
comprehensive tool of feature extraction calledmiRNAfe http://fich.unl.edu.ar/sinc/
blog/web-demo/mirnafe-full/ that is able of calculate almost all the features used in the
state-of-the-art prediction methods. For further details see Yones et. al., 2015 1.

1Yones, C. A., Stegmayer, G., Kamenetzky, L., & Milone, D. H. (2015). miRNAfe: A comprehensive tool
for feature extraction in microRNA prediction. Biosystems, 138, 1-5.

1

cyones@sinc.unl.edu.ar
https://github.com/cyones/miRNAss
http://fich.unl.edu.ar/sinc/
https://sourceforge.net/projects/sourcesinc/files/hextractor/
http://fich.unl.edu.ar/sinc/blog/web-demo/mirnafe-full/
http://fich.unl.edu.ar/sinc/blog/web-demo/mirnafe-full/

2 How to use miRNAss

After install the package, load miRNAss with the following command:

> library('miRNAss')

The following command is the simplest way to execute miRNAss:

> miRNAss(features, labels)

Where:

� features: is a data frame with the features extracted from hairpyn sequences, one
sequence per row and one numeric feature per column.

� labels: is a numeric vector where the i-th element has a value of 1 if it is a well-known
pre-miRNA, a -1 if it is not a pre-miRNA, and zero if it is an unknown sequence that
has to be classi�ed (predicted) by the method.

The data provided with the package can be used to test miRNAss. This small dataset is
composed of a small set of features extracted from 1000 hairpins randomly extracted from
C. elegans hairpins. To use miRNAss with this dataset, �rst construct the label vector
with the CLASS column

> y = as.numeric(celegans$CLASS)*2 - 1

Remove some labels to make a test

> y[sample(which(y > 0),200)] = 0

> y[sample(which(y < 0),700)] = 0

Take all the features but remove the label column

> x = subset(celegans, select = -CLASS)

Call miRNAss with default parameters

> p = miRNAss(x,y)

To get the indexes of the sequences that were predicted as possible pre-miRNA

> is.miRNA = which(p > 0)

If the true labels are known, some performance measures can be calculated

> SE = mean(p[celegans$CLASS & y == 0] > 0)

> SP = mean(p[!celegans$CLASS & y == 0] < 0)

> cat('Sensitivity: ', SE, '\nSpecificity: ', SP, '\n')

Sensitivity: 0.895

Specificity: 0.8128571

For more help about all the parameters execute:

> help(miRNAss)

2

3 Extra datasets and test scripts

A set of experiments and comparisons with other methods can be done. The scripts and
the data of these experiments are contained in the �le miRNAss-experiments.zip that can
be found in:

https://sourceforge.net/projects/sourcesinc/files/mirnass/

To run these tests, after unzip the �le, set this directory as the working directory and
simply run each script with the function 'source':

> setwd('miRNAss-experiments')

> source('2-delta_mirBase.R')

This will generate one csv �le for each test in the 'results' folder. It is important to
point that most of these experiments are computationally expensive and could take quite
a while (about 40 minutes for the experiment 2 in an intel i7 PC). You can plot the results
executing:

> source('plotResults.R')

The �gures will be saved in the folder 'results'.

4 Software used

� R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Time zone: Etc/UTC

� TZcode source: system (glibc)

� Running under: Ubuntu 24.04.1 LTS

� Matrix products: default

� BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

� LAPACK:
/usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ;
LAPACK version3.12.0

� Base packages: base, datasets, grDevices, graphics, methods, stats, utils

� Other packages: miRNAss 1.5

� Loaded via a namespace (and not attached): CORElearn 1.57.3, Matrix 1.7-1,
RSpectra 0.16-2, Rcpp 1.0.13, buildtools 1.0.0, cluster 2.1.6, compiler 4.4.1,
grid 4.4.1, knitr 1.48, lattice 0.22-6, maketools 1.3.1, nnet 7.3-19, plotrix 3.8-4,
rpart 4.1.23, rpart.plot 3.1.2, sys 3.4.3, tools 4.4.1, xfun 0.48

3

https://sourceforge.net/projects/sourcesinc/files/mirnass/

	Input data
	How to use miRNAss
	Extra datasets and test scripts
	Software used

