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1 Introduction
In this vignette, we demonstrate how to conduct matching with multilevel data.
Multi-level data is increasingly common, especially in the social and biomedical
sciences. Multi-level data arises when observed units are organized within lev-
els of a hierarchy, and the analyst is able to observe those organizational levels
and, sometimes, covariates assessed at those multiple levels. The canonical ex-
ample of a multilevel dataset comes from education, where students are nested
within classrooms, which are nested within schools, nested within school dis-
tricts, etc. As you will see below, the running example in this vignette utilizes
education-related data where we are able to observe students nested in schools.
Nevertheless, we expect that interest in multi-level matching will extend beyond
the specific context or application to education.

In crafting this vignette, we assume that the reader seeks to match treated
and control units to allow for the estimation of causal effects. While this docu-
ment is meant primarily to serve as an introduction to an R package, we organize
it in such a way that it also discusses and serves as a guide to the many conceptual
issues, challenges, and analytic decisions that invariably arise when conducting a
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causal analysis with this type of data.

The application that frames the discussion is an investigation into the causal
effect of Catholic schools. These data are well-known and have been used by
many to investigate the question of whether Catholic schools produce better
academic outcomes for students. Early evidence suggested that Catholic schools
were more effective than public schools in terms of higher test scores despite
spending considerably less money per pupil (Coleman et al., 1982; Hoffer et al.,
1985; Coleman and Hoffer, 1987). Later research challenged these findings and
argued that Catholic school effectiveness was little different from public school
effectiveness and that observed achievement differences between these two types
of schools stemmed more from their serving different populations of students
(Alexander and Pallas, 1983, 1985; Goldberger and Cain, 1982; Noell, 1982;
Willms, 1985). Studies that focus on various aspects of Catholic school effec-
tiveness have been ongoing for the last twenty years (Bryk et al., 1993; Neal,
1997; Grogger and Neal, 2000; Altonji et al., 2005; Reardon et al., 2009). The
question of Catholic school effectiveness has also spurred considerable method-
ological debate and innovation regarding how to make such comparisons most
appropriately (Raudenbush and Bryk, 2002; Morgan, 2001; Morgan and Harding,
2006; Morgan and Todd, 2008).

For framing our analytic goals, it is helpful to begin by considering the context
of a group randomized trial. When observed units (e.g., students) are organized
into clusters that are randomized to a treatment or control condition, we typically
refer to this as a group or cluster randomized trial (CRT). In a CRT, because
randomization occurs at the cluster level, we are assured that the treatment
and control clusters are equivalent in expectation. In a CRT, at the point of
randomization, we are able to assess balance in expectation in terms of school-
level baseline covariates and further assume balance on all unobserved setting
characteristics as well. In the context of multilevel matching, we typically are
conducting a cluster observational study which we can think of as mimicking a
CRT. Specifically, we seek to create pairs of comparable treated and control clus-
ters, since observed differences in outcomes might otherwise reflect pretreatment
differences in the characteristics of the clusters and the individuals within them.

For the analysis that follows, we conceptualize Catholic schools as a group-
level treatment that is applied to a set of students. In the data which we will
examine, students in Catholic schools are observationally higher performing than

2



students in public schools. This may be an indication that Catholic schools are
more effective. On the other hand, Catholic schools may primarily serve students
of higher socioeconomic status. For students in this setting, both their own
socioeconomic status and the opportunity to be surrounded by better-off peers
than those to which they would be exposed in a public school setting may be
driving the observed test score differences, at least partially. As such, we might
view a study of Catholic schools as a clustered observational study, where we
want to match Catholic schools to public school counterparts that serve an ob-
servationally comparable set of students. In relating back to CRTs, the analogy
is that we would randomly assign fully formed schools to engage in Catholic-style
or public-style schooling. Conducting such an experiment with a specific focus on
Catholic schooling, of course, would be infeasible, but there are other examples
of school-level RCTs focused on whole-school reform models, such as Success
for All (e.g., ?).

As a second example for consideration, ? use multilevel matching to examine
the impact of a new reading program implemented by a selected set of schools in
North Carolina. In this example, schools were not randomly assigned to exposure
to the new program. Rather, this design more closely mimicks a CRT, as groups,
here entire schools, are treated. In the Catholic school example, the analogy to a
CRT is less clear, since we might view the decision to attend Catholic school as
a family level decision to select into a treatment type. The reason this matters is
that in an observational study, where randomization has not occured, we seek to
model the assignment mechanism: the mechanism by which units were selected
for treatment. When the assignment mechanism is clearly understood such that
we can model it accurately, we will have a stronger design. In the Catholic school
example, the assignment mechanism is less well understood since it may not only
operate at the school level.

We put aside these differences, again for the purpose of working with an
easy-to-understand pedagogical example for which data are publically available.
Therefore, while attending Catholic or public school, in truth, is a family-level
decision to select a certain type of existing school or the other, in the discussion
that follows, we treat Catholic school as the group-level treatment of interest.

First we introduce the data. We use data that are a public release of the
1982 “High School and Beyond" survey. This public release includes records for
7185 high school students from 160 schools. Of these schools, 70 are Catholic

3



schools and are thus considered treated in this application, while the rest are
public high schools and thus serve as a reservoir of controls from which we will
identify matched comparisons. In the data, we observe some measures at the
student level and other measures at the school level. The data is a subset of the
data used in a pioneering article on the use of multilevel regression with education
data by Lee and Bryk (1989). This same data set is used in Raudenbush and Bryk
(2002). While this dataset contains a limited number of covariates, it is ideal for
our pedagogical example, as it contains covariate measures at both the student
and school levels. Regarding terminology, when we refer to group, we mean the
school, and we when we refer to a unit we mean a student within a specific school.

In the data, three student-level measures are available. The first measure
is an indicator for whether the student is female or not; the second measure is
an indicator for whether a student belongs to a minority racial group, the final
measure is a scale for socio-economic status (SES). Three of the school-level
measures are simply school-level averages of these student-level measures. That
is, we can measure the percentage of students in the school that are female, the
percentage that are minority, and the average SES in the school. Three other
school-level measures are also available. One measure is the total enrollment of
the school. Another is the percentage of students in the school that are on an
academic track. The measure is an assessment of the disciplinary climate of the
school. This is a composite measure created from a factor score on measures
of the number of attacks on teachers, the number of fights, and the number
of other disciplinary incidents. We use a measure of student academic perfor-
mance as our outcome of interest. Specifically, our outcome is an IRT score
on a standardized test of mathematics achievement in the second year of high
school. This public version of the data contains no geographic information on
the schools’ locations. Next, we turn to matters of software and conduct some
exploratory analyses before matching.

2 Data Preliminaries
To being, load the matchMulti package and the data on Catholic schools which
is included in the package.
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library(matchMulti)

data(catholic_schools)

catholic_schools$sectorf <- factor(catholic_schools$sector,
label=c("Public", "Catholic"))

#Number of Treated Schools
length(table(catholic_schools$school[

catholic_schools$sector==1]))

#Number of Controls Schools
length(table(catholic_schools$school[

catholic_schools$sector==0]))

First, we create a new indicator for treatment which is a factor, with labels
for treatment (“Catholic”) and control (“Public”) schools. This new treatment
indicator will be useful for some of the plotting functions we will use in R. Second,
we examine how many treated and control schools there are. We see there are
70 Catholic schools and 90 public schools in the data.

Before proceeding with any matching, we emphasize that a crucial first step
is to investigate just how dissimilar the treatment and control units are. This
provides a baseline against which to compare the effectiveness of the matching
strategies we will use to identify observationally similar schools and students
within those schools. That is, our goal is to identify a subset of the public schools
that are identical to the Catholic schools in terms of the characteristics we are
able to observe. It is not unusual to find some schools that are so dissimilar that
it is not possible to find an appropriate match. These observations should simply
be excluded from the matching process. Graphical displays are often useful at this
stage to explore this possibility. We use functions from the ggplot2 library to
make box plots. For the sake of brevity, we illustrate with a discussion of only two
variables in our dataset, but we recommend examining all covariate distributions
in your own work. First, we look at the distribution for school enrollment by
treatment category. In doing so, it is immediately clear that Catholic schools are
generally smaller on average than public schools.
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# Create Discrete Measures from Continuous Covariates
library(ggplot2)

# A Boxplot for the size of the school
ggplot(catholic_schools, aes(x=sectorf, y=size,

fill=sectorf)) +
geom_boxplot() + guides(fill="none") +
xlab("") + ylab("School Enrollment")

Next, we examine the box plot for the percentage of students in each school
that are female. From the boxplots, it is clear that the Catholic schools and public
schools differ in terms of the distribution of school make up with regard to sex.
An assumption necessary for identification of matching estimators is that there is
overlap in the covariate distributions (Rosenbaum and Rubin, 1983). A violation
to this assumption is often referred to as a lack of common support. Here, we
observe such a violation clearly. Specifically, from the boxplots, we see that none
of the public schools are single sex, and no public school has a student body
that is either more than 70% female or less than approximately 35% female. Of
the 70 Catholic schools, however, 38 schools are either all female or all male and
another school is nearly 98% female. Including these single-sex Catholic schools
in the analysis confounds the possible Catholic school effect with the single-sex
school effect. Thus we argue that these Catholic schools should not be included
in the matching, as comparable public school matches simply do not exist. That
is, there are no acceptable public school counterfactuals. Therefore, we discard
the 38 Catholic schools that are single sex or nearly single sex. This sequence
of data exploration and preliminary analytic decisions to discard selected cases
underscores an advantage of matching that it easily can reveal such differences
across the treated and control groups. In contrast, using a regression model for
analysis makes it easy to overlook violations of this assumption, since a regression
model automatically extrapolates over the lack of common support.

ggplot(catholic_schools, aes(x=sectorf, y=female_mean,
fill=sectorf)) +

geom_boxplot() + guides(fill="none") +
xlab("") + ylab("Percentage of Female Students")

Next, we summarize the distribution for the variable and then use commands
from the dplyr library to trim out Catholic schools that are not co-educational.
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library(dplyr)
summary(catholic_schools$female_mean)
summary(catholic_schools$female_mean[

catholic_schools$sector==1])
summary(catholic_schools$female_mean[

catholic_schools$sector==0])
catholic_schools <- catholic_schools %>%

filter(female_mean>.30, female_mean<.75)
summary(catholic_schools$female_mean)

Having removed the subset of single-sex Catholic schools, we can next look at
balance statistics. First, we create some label objects that contain the names of
the variables we will be using in the analysis. This will allow us to use these covari-
ate names repeatedly throughout the analysis. We then use the balanceTable
function from matchMulti to compute several different balance statistics includ-
ing means, standardized differences, and tests for statistical signficance.

student.cov <- c('minority','female','ses')
school.cov <- c('minority_mean', 'female_mean', 'size',

'acad', 'discrm', 'ses_mean')
all.cov <- c('minority','female','ses','minority_mean',

'female_mean', 'size', 'acad',
'discrm', 'ses_mean')

#look at balance on students before matching
balanceTable(catholic_schools[c(all.cov,'sector')],

treatment = 'sector')

In assessing balance between our treatment and control schools, for each
variable the balance measure on which we focus is the standardized difference,
which is the difference in means for the subset of matched schools, divided by
the standard deviation as calculated before matching for the unmatched sample.
With continuous covariates, as we also have, one also should look for differences
in moments other than the first (e.g., looking beyond means to the variance).
Examination of empirical cumulative distribution functions can be helpful to un-
derstand whether higher moments also are balanced. In this particular example,
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as we will see, even achieving balance based on the means is difficult. A general
rule of thumb is that matched standardized differences should be less than 0.20
and preferably 0.10 (Rosenbaum, 2010). Here, several of the standardized differ-
ences are much larger than 0.10 even after our initial trimming of the single-sex
Catholic schools. For example, the standardized difference for the proportion of
students on the academic track is 1.92, which indicates that the difference in
means is almost two standard deviations. Thus, the academic preparation for
the average Catholic school student is quite different from that of the average
public school student.

3 Matching

3.1 Prematching Preliminaries
We now turn to our discussion of matching strategies in the multilevel context.
One way to implement a multilevel match, is first to match schools and then
once schools are matched, to match students. Such a match requires no spe-
cial software and is easy to do. For this match, one could simply aggregate all
student-level covariates to attempt to account for differences in students within
schools. The difficulty, as Keele and Zubizarreta (2015) show, however, is that
such a match is not optimal, in that it can leave imbalances in the data. Why
is that the case? Consider the process of simply first matching at the school
level to create pairs of schools. This first-stage match ignores differences in
student-level covariate distributions. This might not seem possible if one has
aggregated over all student-level covariates and used them and the school-level
covariates. However, such aggregate covariates may not fully capture differences
in the student-level covariates.

When matching with multilevel data, to achieve an optimal match, the ana-
lyst should first look at all possible student pairings before matching on schools.
That is, the ideal multilevel match, first, compares differences in the individual
student-level covariates between each treated school and every control school.
We then use this student-level information in the school-level match to match
the schools and fully capture student-level information in the school-level match.
Then once schools are matched using this covariate information, we can (if de-
sired) match students within school pairs. The matchMulti package implements
a multilevel matching algorithm explained in depth in ?. It is optimal in the sense
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that it will produce the smallest within-matched-pair difference given the match-
ing algorithm parameters.

While multilevel matching always forms pairs at the group (here school)
level, depending on the data context it may be prefereble not to form pairs
at the individual (here student) level. If one knows that treatment assignment
happened essentially at the cluster level, then one should seek to mimic a CRT,
and it is most important to match on the group-level covariates thought most
important for selection into treatment. If an initial school-level-only match does
not remove imbalances in the student-level covariates, one should then redo the
match pairing students as well to remove these imbalances if possible.

3.2 Design Choices at the Individual Level
We first demonstrate how to perform the simplest of multilevel matches. We use
the matchMulti function passing the data frame to the function and identifying
which variable indicates treatment and which indicates group membership. No-
tice that we leave the argument match.students set to false. With these settings,
the algorithm performs the matching process in the following way. First, it calcu-
lates a distance matrix for each treated school and every possible control school
based on the student-level covariates. Each of these student-level matches is
then scored based on the balance it achieves on student-level covariates (worse
scores are given to matches with insufficient balance) and on the size of the
sample it produces (worse scores are given to matches with small sample sizes).
The scoring system is inverted, so that the best matches receive low scores and
the poorest ones receive high scores. The scores are then stored in a matrix.
Next, schools are matched optimally using the score matrix as a distance matrix.

However, once schools are matched based on these student-level variables,
students are not then matched. This allows the match to exactly mimic the
structure of a clustered randomized trial where clusters should be balanced but
individual units may not be. Below, we discuss how the matching algorithm
can be modified to additionally match individual students across the matched
treatment and control group. However, this additional step of matching at the
student level may not always be preferred. This is because in any school match
where there are more treated students than control students, if we pair students,
we will have to remove treated students from the matched sample . Dropping
treated units in this way alters the estimand, such that we are no longer estimat-
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ing the treatment effect among the treated, but we are instead estimating the
treatment effect among a subset of the treated.

Next, note that currently one can only do 1:1 matching. If schools are paired
using student-level covariates, they will be paired 1:1. If one also decides to pair
students within schools, those matches will also be 1:1 pairs. Therefore, both
forms of matching will produce the same matched school pairs, but under the
second approach students will also be paired across matched schools. The second
type of match is necessary is imbalances remain in student level covariates after
matching schools.

match.simple <- matchMulti(catholic_schools,
treatment = 'sector',
school.id = 'school',
match.students = FALSE,
student.vars = student.cov,
verbose=TRUE)

# Check Balance
bal.tab <- balanceMulti(match.simple,

student.cov = student.cov,
school.cov = school.cov)

out <- cbind(bal.tab$schools[,3], bal.tab$schools[,6])
colnames(out) <- c("S.Diff Before", "S.Diff After")
round(out, 3)

If we check balance on this match, we see that we have not improved balance
much. That is not surprising given that the largest imbalances are in school-level
covariates. We peform one additional match before using school-level covariates.
We now allow the algorithm to match students. This now creates matched pairs
of schools, with each student in a Catholic school matched to a student in a
public school. As you might anticipate, this match is more computationally
intensive. It takes approximate two and a quarter minutes to complete, while
the first match took about 15 seconds. It also includes fewer students. The first
match included 3202 students, while the second match includes 2696 students,
unmatched students having been trimmed from the sample.
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match.out <- matchMulti(catholic_schools,
treatment = 'sector',
school.id = 'school',
match.students = TRUE,
student.vars = student.cov)

# Check Balance
bal.tab.stu <- balanceMulti(match.out,

student.cov = student.cov,
school.cov = school.cov)

3.3 Matching Groups and Units within Groups Incorporat-
ing Group-Level Covariates via Fine Balance

Given the lack of balance that remains, we expect that balance will be improved
by incorporating into our matching process school-level covariates as well. We
incorporate school-level covariates via a process referred to as fine balance. What
is fine balance? Fine balance constrains an optimal match to exactly balance the
marginal distributions of a nominal (or categorical) variable, perhaps one with
many levels, placing no restrictions on who is matched to whom. The nominal
variable might have many categories, like zip code, or it might be an interaction
between several nominal variables. To construct a finely balanced match, the
distance matrix is patterned so that the number of control units entering the
match from each category of the nominal variable is capped. This ensures that
no category receives more controls than treated, and so the marginal distributions
of the nominal variable are identical between the treatment and control groups.
As such fine balance ,on its own, doesn’t actually pair units, it simply ensures the
treated control groups have the same marginal distribution on a finely balanced
discrete covariate. See Rosenbaum et al. (2007) and Yang et al. (2012) for more
details on fine balance.

The algorithm in matchMulti used to match schools is built on fine bal-
ance and a method called refined covariate balance from Pimentel et al. (2015).
Why do we use this method? Balance constraints provide stronger guarantees of
balance for important school covariates than distance-based matching methods
do, especially in the smaller-sample settings that frequently arise when pairing
schools. Refined covariate balance is especially useful when not all variables can
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be balanced exactly since it allows us to prioritize balance on some covariates
over others. Furthermore, refined covariate balance has a relatively fast imple-
mentation which makes it practically useful even for multilevel matches that are
large and complex.

In theory, fine balance might seem like a useful method, until one realizes
that most of the covariates for group-level units like schools are not nominal
covariates. For example, in the catholic school data, which serves as our running
example, there is not a single nominal covariate measured at the school level.
This is often the true since group-level covariates are often aggregates of student
level covariates. If so, it would seem that fine balance will be of little use when
trying to match Catholic and public schools. Does this fact render fine balance
impossible? Luckily not.

To use fine balance with continuous group-level covariates, we first prepare
the group-level continuous covariates by partitioning them into discrete categories
defined by thresholds on the continuum of each variable. Then, we are able to
apply fine balance to these categorical analogs to our continuous variables. While
this process may be criticized for throwing away information in the continuous
covariates, an advantage worth noting is that this process serves to balance the
higher moments of continuous covariates especially when it is possible to parti-
tion a continuous variable into a large number of categories. Importantly, when
we add multiple school-level categorical variables, the fine balance constraint is
actually based on a set of interactions among these variables, such that each
subsequent variable sub- divides the categories of the previous one.

In practice, you will create and name the categorical variables to be utilized,
and the program will construct a sequence of variables by interacting these cat-
egorical (for example, interacting student sex and free-lunch status yields four
categories, male with free lunch, female with free lunch, male without free lunch,
and female without free lunch). Note that the algorithm balances each variable
in turn, without paying attention to the variables coming after it. This means
that if you alter the second variable in your constraint and rerun the match, the
balance on the first variable will not be changed. It also implies that the order in
which variables for balancing are indicated matters and should be listed in order
of preference or priority. In point of fact, the algorithm will create interactions
between all the categorical forms of the school-level covariates entered into the
match. As we will discuss below, the analyst can allow the matching algorithm
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to either fine balance all the categorical interactions or instead prioritize some
interactions to better balance on specific covariates.

When specifying and ordering the fine balance constraints, it is useful also to
think about the idea of “flexibility” in the match. There are usually many differ-
ent ways to form a match that exactly balances a single binary variable, so if your
first fine balance covariate is a binary variable, a great deal of “flexibility” remains
to balance subsequent variables. As variables with finer and finer categories are
added in additional levels, the match will become much more restricted. If it
were possible to continue adding variables ad infinitum, eventually all flexibility
would be used up and the match would no longer change as additional variables
were included. Therefore variables with many small categories are very difficult
to balance and will use up a lot of flexibility, and it is usually best to choose your
first balance level or two to be relatively coarse and add the finer subdivisions
at a later level. It is also important to remember that balancing an interaction
is different from balancing each individual variable in the interaction. If it is
possible to balance the interaction exactly, all the component variables will be
balanced too; however, if the interaction is only partially balanced many of the
individual variables may be out of balance too.

As such, the first step in the school-level match is to create categorical
versions of the school-level covariates. This is easily done using the cut function
in R. Here, we create four variables that are based on the continuous measures
discretized into six equally spaced intervals.

# Create Discrete Measures from Continuous Covariates
catholic_schools$acad_cut <- cut(catholic_schools$acad, 6)
catholic_schools$size_cut <- cut(catholic_schools$size, 6)
catholic_schools$discrm_cut <- cut(catholic_schools$discrm, 6)
catholic_schools$ses_cut <- cut(catholic_schools$ses_mean, 6)

Next, we run the matching algorithm again, but now we specify the four
categorical versions of the school-level covariates using the school.fb argument
in the matchMulti function. To reiterate, school-level covariates can only enter
into the match in categorical form via this argument. Nevertheless, an important
distinction is that later, when we assess balance, we will do so on the continuous
rather than discrete versions of the covariates. This is sensible, given that we
are ultimately interested in balance on the continuous covariates, and balancing
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the marginal distributions of their categorical analogs will tend to balance the
covariate overall. Also note, that the algorithm is attempting to balance not
just these four discrete variables but also the interaction of these four variables,
since if the interaction is balanced all the components of that interaction will
be balanced. However, even when school-level covariates are included, we still
incorporte student level information as before. That is, schools are matched
optimally using the student level score matrix as a distance matrix and school-
level covariates are balanced by imposing refined covariate balance constraints
on school-level covariates.

# Match with Fine Balance
match.fb <- matchMulti(catholic_schools,

treatment = 'sector',
school.id = 'school',
match.students = TRUE,
verbose=TRUE,
student.vars = student.cov,
school.fb = list(c('size_cut',

'acad_cut',
'discrm_cut',
'ses_cut')))

# Balance Check
bal.tab.fb <- balanceMulti(match.fb,

student.cov = student.cov,
school.cov)

In the Catholic school data, matching on the school-level covariates does
improve balance, but only slightly. However, the standardized differences for the
acad and discrm variables remain quite large. We might want to let the algo-
rithm try and improve balance on those variables more than on other variables.
That is, we can prioritize balance on these two variables. There are, however,
no free lunches. That is, it is important to recognize that prioritizing balance
on one covariate can sometimes make balance worse on another covariate. That
means, prioritization will tend to work best when some covariates are already
strongly balanced, thus giving us some room to potentially worsen balance on
these well-behaved covariates. To implement a match of this type, we alter the
arguments for the matchMulti function in the following way:
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match.fb2 <- rematchSchools(match.fb,
catholic_schools,
school.fb = list(c('acad_cut',

'discrm_cut'),
c('size_cut',

'acad_cut',
'discrm_cut',
'ses_cut')))

bal.tab3 <- balanceMulti(match.fb2,
student.cov = student.cov,
school.cov)

Now the algorithm will prioritize balance on the acad and discrm covariates.
Note that these two variables still enter into the expression containing the full set
of discretized school-level covariates that follows. After running the algorithm
as specified here, we again check balance and find that prioritization unfortu-
nately has done little to help balance. What can we do in improve balance?
One possibility would be to write a more complex prioritization ordering using
a larger combination of discrete covariates. Another possibility to consider is
that we might not be improving balance much because we are attempting to
fine balance using several variables with a relatively large number of categories
that may be subsetting the data into too many subsets. For better flexibility,
we could instead create binary versions of the school-level variables to enter into
the algorithm first, and then follow these discrete variables with a variable with a
different categorical specification, perhaps subdividing the continuous variables
into three categories.

While most analysts will not need to understand the technical details of the
matching algorithm to use it, it is helpful to know that the algorithm (1) accepts
a numeric tolerance argument, implemented as the tol argument, which specifies
the smallest differences it will pay attention to in the distance matrices and uses
large numeric penalties to do the balancing. The penalties grow very fast as
more balance levels are added, so if you are using many balance levels you may
hit an error that says "Integer overflow in penalties!" meaning that the algorithm
is trying to use numbers that are too large for the computer to handle. One
way to address this error is to match with fewer levels, but you can use a larger
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tolerance in the tol argument (i.e., tell the algorithm to be less precise in its
distance handling) so that the range of numbers the algorithm needs to keep
track of is not so large. When the “tol” argument is increased from its default
value, the algorithm will be able to handle larger numbers of balance levels. If
the tol argument needs to be increased, it can be repeatedly scaled up by a
factor of 10 until the match is feasible (e.g., as a first step increase from the
default of 0.001 to 0.01). For particularly difficuly matching problems, we can
use optimal subsetting, which we do now.

3.4 Refined Matching: Optimal Subsetting
As is often the case, fine balancing may not be enough to actually balance the
schools. Is there anything else one can do to achieve better balance? There is
one more strategy we can try that almost always works, but comes with some
caveats. Balance problems like we have seen here most often result from the
fact that there are treated units that are simply too dissimilar from the controls.
That is for some treated units, there isn’t a good counterfactual among the con-
trols. What can we do? We can remove the treated units for which there are no
good matches from the data. In fact, we did this already when we removed the
Catholic schools that weren’t co-educational.

While we can trim in an ad hoc fashion, it is typically better to employ what
is know as optimal subset matching (Rosenbaum, 2012a). Under optimal subset
matching, we specify a certain pair distance; the algorithm seeks to form pairs
with distances below this threshold, and prefers to drop treated units from the
match then to form pairs above it. In the school-level match, high distances refer
to poorly-balanced student covariates, so optimal subset matching seeks to pair
schools with at least a minimal level of student balance. User input is required
to specify the strictness of the threshold at which units are excluded. Let’s see
how this works with the Catholic school data.

# Trim Schools
# How many treated schools are left after
# dropping single-gender schools?
length(table(catholic_schools$school[

catholic_schools$sector==1]))

match.fb4 <- rematchSchools(match.fb,
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catholic_schools,
school.fb = list(c('acad_cut',

'discrm_cut'),
c('size_cut',

'acad_cut',
'discrm_cut',

'ses_cut')),
keep.target = 10,
tol = 0.1)

bal.tab4 <- balanceMulti(match.fb4,
student.cov = student.cov,

school.cov = c(school.cov))

We now add the keep.target argument to the matchMulti function. This
tells the algorithm approximately how many treated schools should be included
in the matched sample. Here, we set that target to ten schools. Given that we
started with 32 schools, ten would seem to be a very small number to include.
However, we found that balance is quite poor for a larger set of treated schools.
Normally, the analyst will iterate to identify the largest number of treated schools
for which balance is acceptable.

The balance as measured by the standardized difference is now much im-
proved. While not all the standardized differences are below 0.10, they are now
generally much lower. As before, we targeted balance on the acad and discrm
covariates so balance is much improved there but less so for school size or percent
female. In general, one should use subject matter knowledge to decide which co-
variates to prioritize for being more highly balanced. In some applications, all
covariates will be balanced. In others, the analyst might be forced to prioritize
balance among some covariates. In this application, better balance is not possi-
ble without dropping even more schools.

In sum, we have dramatically improved balance as measured by the standard-
ized difference, but this improvement in balance came at the cost of substantially
trimming the data, leading to a potential loss of both statistical power as well as
generalizability. We have now achieved a level of balance such that we can esti-
mate a treatment effect which is defined for the population of Catholic schools
that are generally like public schools. However, this set of schools includes only
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10 out of the total 70 Catholic schools in the data. As such, these schools may
be far from representative of the overall population of Catholic schools. While
it may seem disappointing to have winnowed the sample to such an extent, in
truth this alone provides useful and important information. Even if the Catholic
school causal effect were well defined, there are few Catholic schools that are
observationally much like public schools. This fact should make us very cautious
about making any strong causal statements about the Catholic school effect.
However, we have also learned that Catholic and public schools are generally
difficult to compare.

4 Outcome Analysis
Once the match is complete, and by complete we mean that the data are bal-
anced, we focus on estimating the treatment effect of interest. We outline two
different methods for estimating treatment effects, multilevel modeling and ran-
domization inference. Importantly, with both methods, our ability to make valid
causal inferences depends on the assumption that, conditional on the matching
process, the probability of treatment is constant within matched pairs. This
assumption goes by various names including selection on observables or condi-
tional ignorability. Conditional ignorability is violated if we failed to match on
any relevant covariates that predict treatment status. This is an important and
untestable assumption, though one that is important to acknowledge. After dis-
cussing the estimation of treatment effects, we will turn to a discussion of how
to test the sensitivity of our results to violations to this assumption.

4.1 Multilevel Modeling
The simplest way to conduct an outcome analysis is simply to apply a regression
model to the matched data. Using multiMatch, this is easy to do. The output
from multiMatch after the matching is completed contains a number of objects.
See the help files for a full list. One of these objects is the matched data itself.
In order to conduct the outcome analysis, you need first to extract the matched
data, and then perform the analysis on this data. The code below shows how to
conduct an outcome analysis of this type.
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#Use an HLM for Outcome Analysis
match.data <- as.data.frame(match.fb4$matched)
head(match.data)
library(nlme)
out <- lme(mathach ~ sector, random = ~ 1 |

pair.id/school, data=match.data)
summary(out)

Here you can see that we simply use $matched to extract the matched data
from the multiMatch output, and we coerce it to be a data frame. Once this
step is complete, we can use a regression model to estimate the treatment effect.
Here we use a multilevel model with a random intercept, to estimate the treat-
ment effect. Note that we have clustering both within matched pairs and within
schools. That is, after matching, we treat schools as nested within matched
pairs of treatment and control sets and students as nested within schools. To
that end, when we estimate the multilevel model, we recommend allowing for
clustering at both levels of nesting. Note that even if our matching procedure
involved matching individual students across treatment and control settings, our
model does not do anything to accommodate these student-level matches.

4.2 Randomization Inference
An alternative method of outcome analysis is based on randomization inference.
Randomization inference is a model of analysis that is nonparametric and does
not impose distributional assumptions like those required for a multilevel model.
Under randomization inference, we must assume conditional on the matching
process that the probability of treatment is constant within matched pairs. This
assumption fails if we failed to match on any relevant covariates that predict
treatment status. This is an important and untestable assumption, though one
we should note that is also necessary for analysis with a multilevel model. In the
next section, we show how to probe this assumption using a sensitivity analysis.

The randomization framework proceeds in a somewhat different fashion. We
first generate a p-value for the test that the treatment effect is zero. The random-
ization inference test of no effect can then be inverted to provide distribution-free
confidence intervals, and the Hodges-Lehmann method produces point estimates,
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see Rosenbaum (2002, ch .2) for details. See Keele et al. (2008) for a gentle
introduction to randomization inference and Rosenbaum (2010) for an introduc-
tion to using randomization inference with observational data. We first provide
some mathematical detail on these methods, and then we demonstrate their use.
Hansen et al. (2014) extended the randomziation inference framework to paired
clustered observational studies. The outcome analysis functions in multiMatch
are based on these methods. One key advantage to this framework is that it will
allow us to easily peform a sensitivity analysis for a key assumption.

In our analysis, we assume that after matching treatment assignment is
as-if randomly assigned to schools. That is, after matching, it is as if the
toss of a fair coin was used to allocate the treatment within matched school
pairs. The set Ω contains the 2S treatment assignments for all 2S clusters:
Z = (Z11, Z12, . . . , ZS2)T . Under our identification strategy, we assume that the
probability of receiving treatment is equal for both schools in each matched pair.
If true, the conditional distribution of Z given that there is exactly one treated
unit in each pair equals the randomization distribution, and Pr(Zsj = 1) = 1/2
for each unit j in pair s (see Rosenbaum 2002 for details). However, in an obser-
vational study it may not be true Pr(Zsj = 1) = 1/2 for each unit j in pair s due
to an unobserved covariate usji. We explore this possibility through a sensitivity
analysis described below.

To test Fisher’s sharp null hypothesis of no treatment effect, we define T a
test statistic which is a function of Z and R where T = t(Z, R). If the the
sharp null hypothesis holds, then R = yc and T = t(Z, yc). If the model for
treatment assignment above holds, the randomization distribution for T is known.

We define T as a test statistic from Hansen et al. (2014). To form T , we
rank every outcome, and then average the ranks within schools. Within each
matched pair, we take the weighted sum of the mean ranks in the treated school
minus the mean ranks in the control school. Formally the test statistic is

T =
S∑

s=1
BsQs

where
Bs = 2Zs1 − 1 = ±1, Qs = ws

ns1

ns1∑
i=1

qs1i − ws

ns2

ns2∑
i=1

qs2i.
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where ws are weights which are a function of nsj. Hansen et al. (2014) show
that T is the sum of S independent random variables each taking the value ±Qs

with probability 1/2, so E(T ) = 0 and var(T ) = ∑S
s=1 Q2

s. The central limit
theorem implies that as S → ∞, then T/

√
var(T ) converges in distribution to

the standard Normal distribution.

Above, we referenced, ws, which are weights for each set of matched schools
pairs. There are a number of different weights one could use, but in multiMatch,
we include two different sets of weights. The first set of weights, ws ∝ 1, weight
each set of matched pairs equally. The second set of weight we use are propor-
tional to the total number of students in a matched cluster pair: ws ∝ ns1 + ns2
or ws = (ns1 + ns2)/

∑S
l=1(n11 + n12). These weights allow the treatment effect

to vary with cluster size. This would be true if, for example, the effect of the
treatment was perhaps larger in smaller schools. As we note below, the output
reports p-values based on both sets of weights.

If we test the hypothesis of a shift effect instead of the hypothesis of no
effect, we can apply the method of Hodges and Lehmann (1963) to estimate the
effect of treatment. The Hodges and Lehmann (HL) estimate of τ is the value
of τ0 that when subtracted from Ysji makes T as close as possible to its null ex-
pectation. Intuitively, the point estimate τ̂ is the value of τ0 such that T equals
0 when Tτ0 is computed from Ysji − Zsjτ0. Using constant effects is convenient,
but this assumption can be relaxed; see Rosenbaum (2003). If the treatment
has an additive effect, Ysji = yCsji + τ then a 95% confidence interval for the
additive treatment effect is formed by testing a series of hypotheses H0 : τ = τ0
and retaining the set of values of τ0 not rejected at the 5% level.

To perform an outcome analysis based on randomization inference in multiMatch,
one uses the function multiMatchoutcome. The user simply passes the output
from the multiMatch function to the outcome function. Here, the user must
identify the names of the relevant covariates.

output.fb <- matchMultioutcome(match.fb4, out.name = "mathach",
schl_id_name = "school",
treat.name = "sector")

The results from the outcome analysis are printed to the screen but are also
saved as a list for easy manipulation by the user for more specific formatting.
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5 Sensitivity Analysis
The final stage in a multilevel match study should be a sensitivity analysis. As
noted previously, for causal inferences based on the treatment effect analysis in
the last section to be valid, we must assume that we observe all the relevant
covariates that predict whether a school or student receives treatment. While we
cannot test this assumption of conditional ignorability, we can, however, probe
this assumption with a sensitivity analysis. We recommend that a sensitivity
analysis should accompany any multilevel matching analysis. We first provide
some background on the method of sensitivity analysis included in multiMatch.

We use a sensitivity analysis to quantify the degree to which a key assumption
must be violated in order for our inference to be reversed. In the package, we
include a function base on a model of sensitivity analysis discussed in Rosenbaum
(2002, ch. 4), which we describe now. In our study, matching on observed
covariates xsji made students more similar in their chances of being exposed
to the treatment. However, we may have failed to match on an important
unobserved covariate usji such that xsji = xsji′ ∀ s, j, i, i′, but possibly usji ̸=
usji′ . If true, the probability of being exposed to treatment may not be constant
within matched pairs. To explore this possibility, we use a sensitivity analysis
that imagines that before matching, student i in pair s had a probability, πs, of
being exposed to the treatment. For two matched students in pair s, say i and
i′, because they have the same observed covariates xsji = xsji′ it may be true
that πs = πs′ . However, if these two students differ in an unobserved covariate,
usji ̸= usji′ , then these two students may differ in their odds of being exposed
to the treatment by at most a factor of Γ ≥ 1 such that

1
Γ ≤ πs/(1 − πs′)

πs′/(1 − πs)
≤ Γ, ∀ s, s′, with xsji = xsji′ ∀ j, i, i′. (1)

If Γ = 1, then πs = πs′ , and the randomization distribution for T is valid. If
Γ > 1, then quantities such as p-values and point estimates are unknown but are
bounded by a known interval. In the sensitivity analysis, we observe at what value
of Γ the upper-bound on the p-value exceeds the conventional 0.05 threshold for
each test. If this Γ value is relatively large, we can be confident that the test
of equivalence is not sensitive to hidden bias from nonrandom treatment assign-
ment. The derivation for the sensitivity analysis as applied to our test statistic
T can be found in Hansen et al. (2014).
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Sensitivity to hidden bias may vary with the choice of weights ws (Hansen
et al., 2014). To understand whether different weights lead to different sensi-
tivities to a hidden confounder, we can conduct a different sensitivity analysis
for each set of weights and correct these tests using a Bonferroni correction.
Rosenbaum (2012b) develops an alternative multiple testing correction based on
correlations among the test statistics. We use this multiple testing correction so
that the analyst only receives a single corrected p-value.

The process for conducting a sensitivity analysis in matchMulti is like con-
ducting an outcome analysis. To perform a sensitivity analysis in multiMatch,
we use the matchMultisens function. The analyst simply passes the matched
object to the function. The function also requires some additional user input.
First, the function defaults to a Γ value of 1, which assumes there is no hidden
confounding. The user then increases the value of Γ until the p-value is just
below 0.05. It is this value of Γ that tells you how strong the hidden confounder
would need to be before your estimate of the treatment is no longer statistically
significant. The function prints out a single p-value for any value of Γ. This p-
value is equivalent to the two p-values reported from the matchMultioutcome,
except that the single p-value reported has been correctd for multiple testing.

#Compare to Less Balanced Match
matchMultisens(match.fb4, out.name = "mathach",

schl_id_name = "school",
treat.name = "sector")

As we observed when we did the outcome analysis above, the Catholic school
effect did not reach standard levels of statistical significance. Thus one might
not proceed to a sensitivity analysis. One can perform a sensitivity analysis when
the estimated treated effect is not statistically significant, but that is beyond the
scope of the current exercise. Instead we conduct a sensitivity analysis for one of
the earlier matches. In this case, the first match where we applied fine balance
to allow for matching on school-level covariates.

matchMultisens(match.fb, out.name = "mathach",
schl_id_name = "school",
treat.name = "sector")

First, note that the p-value from the earlier match is well below the conven-
tional threshold for statistical significance. This p-value may allow us to reject
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the null hypothesis because Catholic schools do cause higher test scores, or per-
haps we are rejecting the null due to the fact that we have failed to match on
a key covariate. The next step in the process of a sensitivity analysis is to in-
crease the value for Γ. In this case, Γ would have to be 2.17. That is, the
hidden confounder would have to increase the odds of treatment by 2.17 before
the estimate is no longer statistically significant. Ideally, the value of Γ will
be quite large which imply that it would take a hidden confounder with a very
large effect to reverse the conclusions from our study. As rule of thumb, Γ val-
ues above 3 are fairly large in that odds-ratios above 3 are often big effects. Γ
values of 5 and above indicate the results are quite robust to hidden confounding.

matchMultisens(match.fb, out.name = "mathach",
schl_id_name = "school",
treat.name = "sector", Gamma=2.17)

Of course, in this setting, we know that serious imbalances remain, so the
effect here is actually the result of the fact that there are significant differences
between Catholic schools and public schools. However, if the data were balanced
and the effect was statistically significant, then we would conduct a sensitivity
analysis.

6 Discussion
In general, multilevel matching is a difficult analytic exercise. Typically, sample
sizes are much smaller for the groups that need to be matched, which invari-
ably makes it more difficult to balance the treated and control groups. In the
application, we improved balance considerably through matching, but had to dra-
matically trim the number of Catholic schools to achieve that level of balance.
As we have outlined above, the functions in matchMulti give users a number of
different tools to balance multilevel data. Moreover, the package has a full set
of methods for outcome and sensitivity analysis once matching is complete.
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