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Abstract

In this tutorial we show how complete hierarchical multinomial marginal (HMM) mod-
els for categorical variables can be defined, estimated and tested using the hmmm package.
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1. Introduction

Marginal models are defined for categorical variables by imposing restrictions on marginal
distributions of contingency tables, (Agresti 2013, Ch 12). A complete hierarchical multino-
mial marginal (HMM) model is specified by an ordered set of marginal distributions and a
set of interactions (contrasts of logarithms of sums of probabilities) defined within different
marginal distributions according to the rules of hierarchy and completeness, see Bergsma and
Rudas (2002), Bartolucci, Colombi, and Forcina (2007).
By imposing equality and inequality constraints on marginal interactions, interesting hy-
potheses (i.e., independence in sub-tables where some categories are collapsed, association
in marginal tables, conditional independence or additive effects of covariates in marginal ta-
bles, marginal homogeneity, monotone dependence, positive association, among others) can
be tested in HMM models.
We developed a new package hmmm for the R statistical programming environment (R
Core Team 2012) for estimating and testing HMM models with equality and inequality con-
straints on marginal parameters. The R package hmmm is available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=hmmm.
The class of models that the hmmm package enables us to deal with is wide since the complete
hierarchical marginal models are a generalization of several models proposed in the literature
of categorical data analysis. For example, log-linear models are HMM models where all
the interactions are defined within the joint distribution. The Bergsma and Rudas (2002)
marginal models are HMM models where the interactions of log-linear type are defined in
different marginal distributions. Bartolucci et al. (2007) proposed an extension of the Bergsma
and Rudas HMM models involving more general types of interactions, while Glonek and
McCullagh (1995) multivariate logistic models are HMM models which use all the marginal
distributions and the parameters are the highest order interactions that can be defined within
every marginal distribution.
Furthermore, other models that can be treated with hmmm are hidden Markov models with
observed categorical variables whose distributions conditioned by the latent states are defined
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as HMM models and Lang (2004) multinomial Poisson homogeneous (MPH) models which
include HMM models as special cases.
Marginal models are introduced in Section 2 and the functions of the package hmmm for
defining, estimating and testing HMM models with equality constraints on marginal inter-
actions are illustrated in Sections 3, 4, 5, 6. Sections 4, 5 present more general types of
interactions while Section 6 deals with models for repeated measures. The interactions are
allowed to depend on covariates in Section 7. Section 8 is devoted to inequality constrained
HMM models and Section 9 shows how Lang MPH models, subject to inequality constraints,
can be estimated using the package. Final remarks complete the work.

2. Basic concepts
Consider q categorical variables denoted by the first q integers. The set of all variables is
Q = {1, 2, ..., q} and a subset of variables which defines a given marginal distribution is
denoted by the subset M of the corresponding integers, M ⊆ Q.
The vector containing the cell probabilities of the joint distribution is denoted by π. A
one-to-one function η = g(π) defines a parameterization of π in terms of η.
In the complete hierarchical multinomial marginal models, the elements of η are parameters
called marginal interactions. The marginal interactions are contrasts of logarithms of sums
of probabilities defined within different marginal distributions associated to a non-decreasing
sequence of marginal sets M1, . . . , Mk (Mk = Q) according to the rules of hierarchy and
completeness. More specifically, in complete hierarchical multinomial marginal models, every
interaction is defined in one and only one marginal distribution (completeness) and within
the first marginal set which contains it (hierarchy). For instance, given three binary variables,
and the marginal sets M1 = {1}, M2 = {1, 2}, M3 = {1, 2, 3}, the interactions in η are three
logits, three log-odds ratios and a third-order interaction defined as follows: a logit is defined
on the univariate distribution of variable 1, a second logit and a log-odds ratio are defined on
the bivariate distribution of the first two variables. More precisely the second logit is defined
on the conditional distribution of variable 2 given that the first variable is at the reference
category. All the remaining interactions (a logit, two log-odds ratios and the third-order
interaction) involve variable 3 and are defined in the set M3.
The elements of η, defined on the marginal distribution of the variables in M, are specified
by assigning a logit type to each variable i ∈ M among the 5 different types: baseline
(b) ηi(x; b) = log{Pr(i = x)} − log{Pr(i = 1)} (the reference category is the first), local
(l) ηi(x; l) = log{Pr(i = x)} − log{Pr(i = x − 1)}, global (g) ηi(x; g) = log{Pr(i > x −
1)} − log{Pr(i ≤ x − 1)}, continuation (c) ηi(x; c) = log{Pr(i > x − 1)} − log{Pr(i =
x − 1)} and reverse continuation (rc) ηi(x; rc) = log{Pr(i = x)} − log{Pr(i ≤ x − 1)},
with x = 2, ..., ci, where ci is the number of categories of the variable i. Log-odds ratios
and higher-order interactions are defined as contrasts of the mentioned logits as shown by
Bartolucci et al. (2007), Douglas, Fienberg, Lee, Sampson, and Whitaker (1990), among
others. For example, if logits of type (g) and (c) are used for variable i and j respectively,
the following log-odds ratios of type global-continuation (gc) are defined as ηij(x1, x2; g, c) =
ηj(x2; c|i > x1 − 1) − ηj(x2; c|i ≤ x1 − 1) = ηi(x1; g|j > x2 − 1) − ηi(x1; g|j = x2 − 1)
with x1 = 2, ..., ci and x2 = 2, ..., cj . Moreover, if logit baseline (b) is assigned to a third
variable, third-order interactions are of global-continuation-baseline type (gcb) defined as
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ηijk(x1, x2, x3; g, c, b) = ηi(x1; g|j > x2 −1, k = x3)−ηi(x1; g|j = x2 −1, k = x3)−ηi(x1; g|j >
x2 − 1, k = 1) + ηi(x1; g|j = x2 − 1, k = 1), with x1 = 2, ..., ci, x2 = 2, ..., cj and x3 = 2, ..., ck.
A similar reasoning holds for higher-order interactions.
In the Bergsma and Rudas models the components of η are log-linear parameters defined
in marginal distributions (only baseline type b logits are used), while in the Bartolucci et
al. parameterization all the previous logits can be used and η is called a vector of generalized
marginal interactions which are more meaningful when the variables have an ordinal nature.
Moreover, Cazzaro and Colombi (2013) proposed another type of parameters, called recursive
(or nested) marginal interactions based on a new type of logits (recursive logits, r) which will
be described in Section 5.
The vector η can be written in matrix form as Clog(Mπ) where the rows of the matrix C
are contrasts, M is a zero-one matrix which sums the probabilities of appropriate cells, and
the operator log(.) is coordinate-wise. See the appendix of Bartolucci et al. (2007) for the
construction of the C, M matrices.
Conditional independencies among variables can be considered by imposing simple zero re-
strictions on the model parameters as Eη = 0 (Sections 3, 4, 5, 6), the effect of covariates
on responses can be modelled by a linear predictor as η = Xβ (Section 7) and hypotheses
of stochastic dominance or positive association bear on inequality constraints as Dη ≥ 0
(Section 8).
In the hmmm package, HMM models involving equality and inequality constraints are seen as
special cases of MPH models (Cazzaro and Colombi 2009) and are estimated by maximizing
the log-likelihood function of a reference log-linear model under the constraints: Eη = 0 or
η = Xβ and Dη ≥ 0 through a modified version of the algorithm proposed by Lang (2004)
for equality constraints only. The reference log-linear model is usually the saturated one,
though not necessary.

3. How to define and estimate marginal models
The starting point for the marginal modelling of categorical data is a multidimensional table
providing the joint distribution of two or more unordered and/or (partially) ordered categor-
ical variables.
In this section, we will describe the main functions of the hmmm package to handle marginal
models. Three are the key steps: load the vector of counts, define the HMM model through
the function hmmm.model(), estimate and test the model using hmmm.mlfit(). We will go
through each step to illustrate the flexibility and potential of the package.
In the hmmm package, the input data y must be a vectorized contingency table. The following
example clarifies how the cell frequencies are arranged in y.
To start with, we consider the accident data. This data frame regards accidents occurred to
1052 workers of a northern Italian city in 1998 who claimed for a compensation. The data are
provided by INAIL, the Italian institute for insurance against factory accidents and concern
the variables: Type of the injury (with 3 levels: uncertain, avoidable, not-avoidable),
Time to recover (number of working days lost, an indicator of seriousness of the injury, with
4 levels: 0 |– 7, 7 |– 21, 21 |– 60, >= 60), Age of the worker (years, with 3 levels: <= 25,
26 - 45, > 45) and solar Hour (part of the day in which the accident occurred, with 2 levels:
morning, afternoon).
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Data are in an aggregated case form where the last column stores the counts for each config-
uration of the variables. As an example, look at the first 20 rows of the data frame accident

R> library("hmmm")
R> data("accident", package = "hmmm")
R> accident[1:20,]

Type Time Age Hour Freq
1 uncertain 0 |-- 7 <=25 morning 21
2 avoidable 0 |-- 7 <=25 morning 9
3 not-avoidable 0 |-- 7 <=25 morning 0
4 uncertain 7 |-- 21 <=25 morning 10
5 avoidable 7 |-- 21 <=25 morning 9
6 not-avoidable 7 |-- 21 <=25 morning 0
7 uncertain 21 |-- 60 <=25 morning 5
8 avoidable 21 |-- 60 <=25 morning 1
9 not-avoidable 21 |-- 60 <=25 morning 1
10 uncertain >= 60 <=25 morning 2
11 avoidable >= 60 <=25 morning 0
12 not-avoidable >= 60 <=25 morning 1
13 uncertain 0 |-- 7 26 -- 45 morning 78
14 avoidable 0 |-- 7 26 -- 45 morning 51
15 not-avoidable 0 |-- 7 26 -- 45 morning 1
16 uncertain 7 |-- 21 26 -- 45 morning 46
17 avoidable 7 |-- 21 26 -- 45 morning 28
18 not-avoidable 7 |-- 21 26 -- 45 morning 5
19 uncertain 21 |-- 60 26 -- 45 morning 15
20 avoidable 21 |-- 60 26 -- 45 morning 21

Note that in hmmm, the variables have to be denoted by integers, the lower the number
identifying the variable, the faster its categories change in the vectorized contingency table.
As an example, in the data frame accident, the categories of variable Type change faster
so in hmmm Type is var. 1. Variable Time changes after Type so Time is var. 2, Age varies
afterwards Type and Time so it is var. 3, and Hour is var. 4.
Now we show how to get a vector of labeled frequencies from the data frame accident. The
length of the row names is controlled by the st argument. Row names identify the cells of the
contingency table and are used in the outputs displaying estimated cell probabilities. Only
the first three rows are printed to give an example

R> y <- getnames(accident, st = 9)

cell names counts
[1,] uncertain 0 |-- 7 <=25 morning 21
[2,] avoidable 0 |-- 7 <=25 morning 9
[3,] not-avoid 0 |-- 7 <=25 morning 0
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In general, the data can be also organized in a data frame with a separated row for each case
or in a contingency table form, but for using the command getnames in these cases, the data
have to be coerced into the aggregated case form.
We can now define, estimate and test HMM models for these data. Let us start by defining
a saturated HMM model, i.e., a model without any restrictions on the interactions.
As mentioned in Section 2, for defining a HMM model, first the sequence of marginal sets and
the type of logit assigned to each variable within the sets have to be declared. The command
marg.list() serves this need. Here, with respect to the accident data, the chosen marginal
sets are: the bivariate distribution of the variables 3, 4; the two joint distributions of the
variables 1, 3, 4 and 2, 3, 4 and the joint distribution of the four variables. For each variable in
a marginal set the corresponding logit symbol is inserted (b baseline, g global, c continuation,
rc reverse continuation, r recursive, l local), while the variables not included in the marginal
set are denoted by marg. So, for example, in the statement below, "marg-marg-b-b" indicates
the first marginal set involving variables 3, 4 both with baseline logits. In this example, all
the log-linear interactions in every marginal set are of baseline type (Sections 4 and 5 are
devoted to illustrate the use of more general types of interactions)

R> margin <- marg.list(c("marg-marg-b-b", "b-marg-b-b",
+ "marg-b-b-b", "b-b-b-b"))

The function hmmm.model() in the next statement defines the HMM model and creates the list
of interactions on the marginal distributions declared by marg.list(). In the arguments of
hmmm.model(), as well as marg to which the output of marg.list() is assigned, information
on the number of categories lev and on the names of the variables in the stated order are
also given

R> model <- hmmm.model(marg = margin, lev = c(3, 4, 3, 2),
+ names = c("Type", "Time", "Age", "Hour"))
R> model

inter. inter.names marg. marg.names type npar start end
[1,] 3 Age 34 Age,Hour b 2 1 2
[2,] 4 Hour 34 Age,Hour b 1 3 3
[3,] 34 Age.Hour 34 Age,Hour bb 2 4 5
[4,] 1 Type 134 Type,Age,Hour b 2 6 7
[5,] 13 Type.Age 134 Type,Age,Hour bb 4 8 11
[6,] 14 Type.Hour 134 Type,Age,Hour bb 2 12 13
[7,] 134 Type.Age.Hour 134 Type,Age,Hour bbb 4 14 17
[8,] 2 Time 234 Time,Age,Hour b 3 18 20
[9,] 23 Time.Age 234 Time,Age,Hour bb 6 21 26

[10,] 24 Time.Hour 234 Time,Age,Hour bb 3 27 29
[11,] 234 Time.Age.Hour 234 Time,Age,Hour bbb 6 30 35
[12,] 12 Type.Time 1234 Type,Time,Age,Hour bb 6 36 41
[13,] 123 Type.Time.Age 1234 Type,Time,Age,Hour bbb 12 42 53
[14,] 124 Type.Time.Hour 1234 Type,Time,Age,Hour bbb 6 54 59
[15,] 1234 Type.Time.Age.Hour 1234 Type,Time,Age,Hour bbbb 12 60 71
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The output lists the parameters of the model (elements of the parameter vector η described
in Section 2) and illustrates how they are allocated according to the principle of hierarchy
and completeness. In particular, the first two columns (inter., inter.names) indicate the
interactions through integers and the names of the variables they refer to, columns 3 and 4
describe the marginal distributions (marg., marg.names) where the interactions are defined,
the type of logit assigned to the involved variables are specified in column 5, the number
(npar) of interactions is displayed in column 6 and the first and last positions they occupy
in the vector of parameters are indicated in the last two columns start, end. For example,
the first row of the output reveals that interactions 3, related to var. 3 Age, are defined
within the marginal distribution 34 of variables Age,Hour. They are two (2 in column npar)
baseline type (b) logits which occupy the first two positions (1 in column start, 2 in column
end) in the vector of ordered parameters of the model. The two logits are calculated on the
conditional distribution of var. 3 given that var. 4 assumes the reference category. Moreover,
in the third row, the two interactions 34 in 4th and 5th positions are baseline (bb) log-odds
ratios. These interactions are defined in the first marginal distribution 34, so that, for the
principle of hierarchy and completeness, they cannot be defined in the successive marginal
distributions 134, 234, 1234. The rest of the output is interpreted similarly.
Once the parameters of the model are known, we can specify how to constrain them for
satisfying some hypotheses. A non-saturated model can be defined by imposing equality
constraints on certain interactions. For example, we can set to zero the interactions that
occupy the positions 12:13, 14:17 (reported in the columns start, end of the previous
output) in the vector of the parameters in order to state that the conditional independence
1 ⊥⊥ 4 | 3 holds for the variables at hand. This can be achieved by specifying the argument
sel of the hmmm.model() function

R> modelB <- hmmm.model(marg = margin, lev = c(3, 4, 3, 2),
+ names = c("Type", "Time", "Age", "Hour"),
+ sel = c(12:13, 14:17))

The model is then estimated by the command hmmm.mlfit() whose arguments are the vector
of data frequencies and the model

R> modB <- hmmm.mlfit(y, modelB)
R> modB

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 6 ): Gsq = 6.02965 (p = 0.41988 )

The model shows a good fit. Further, estimated parameters can be printed by the following
statement

R> print(modB, aname = "model B", printflag = TRUE)

A much more detailed output with estimated standard errors and estimated cell probabilities
is given by

R> summary(modB)
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Note that, the command summary() shows also the uncostrained estimates of parameters
calculated on the sample frequencies, say OBS LINK. It may happen that certain sample
frenquencies are null thereby implying that some estimates cannot be determined, and in this
case, the summary() of the model displays NaN in the columns OBS LINK and LINK RESID.
When the constrained interactions are log-linear parameters defined in the joint distribution
(Agresti 2013), it is convenient to use the argument formula of the hmmm.model() function for
specifying the log-linear model without the interactions we impose to be zero. For example,
if in addition to the previous constraints, we would like to verify also whether the odds ratios
of Type and Time, in the joint distribution, do not depend on the levels of Age and Hour, we
must set to zero the interactions of the third and fourth order arranged in the positions from
42 to 71. These log-linear interactions are defined in the joint distribution and we can use
the statements

R> modelA <- hmmm.model(marg = margin, lev = c(3, 4, 3, 2),
+ names = c("Type", "Time", "Age", "Hour"), sel = c(12:13, 14:17),
+ formula = ~ Type * Age * Hour + Time * Age * Hour + Type : Time)
R> modA <- hmmm.mlfit(y, modelA)

Thus, modelA is nested in modelB. The likelihood ratio test to compare the two nested models
is obtained by the function anova()

R> anova(modA, modB)

statistics value df pvalue
model A 34.589455 36 0.5356700
model B 6.029646 6 0.4198800
LR test 28.559810 30 0.5407972

The last row of the anova() reports the likelihood ratio test of hypothesis H0 : modelA
versus H1 : modelB, and in this case, it reveals that the more parsimonious modelA cannot be
rejected. First and second rows show the goodness-of-fit of both models tested against the
saturated model, already displayed in the output of hmmm.mlfit().
Note that the previous modelA is not log-linear because some constrained interactions are
defined in marginal distributions. On the contrary, if modelA is defined without constraints
on the marginal interactions 12:13, 14:17, it is log-linear and can be also defined by the
specific function loglin.model() as follows

R> modellog <- loglin.model(lev = c(3, 4, 3, 2),
+ formula = ~ Type * Age * Hour + Time * Age * Hour + Type : Time,
+ names = c("Type", "Time", "Age", "Hour"))
R> modlog <- hmmm.mlfit(y, modellog)

4. Generalized marginal interactions
In the previous section all the interactions defined within the marginal distributions are of
baseline type. Bartolucci et al. (2007) have shown that more general types of interactions
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can be used to parameterize marginal models. This possibility is particularly useful because,
in presence of ordered categorical variables, the univariate marginal distributions are param-
eterized more appropriately using non standard logits such as the global and continuation
ones for example, and bivariate distributions are parameterized by non standard odds ratios
such as the global, global-continuation and the continuation ones. This extension is also im-
portant since several hypotheses of restrictive association and monotone dependence can be
expressed by equality and inequality constraints on these generalized interactions (in Section 8
the usefulness of these interactions for testing hypotheses of stochastic orderings is clarified).
In this section, we will illustrate an example where HMM models with generalized marginal
interactions are defined.
Remind that the marg.list() command is used to make clear the logit types assigned to the
variables in a marginal distribution as any generalized interaction depends on them.
For example, we consider the madsen data (Madsen 1976) concerning 1681 rental property
residents who are classified according to the following variables: feeling of Influence on the
apartment management (var. 1 with 3 ordinal levels: low, medium, high), Satisfaction with
housing conditions (var. 2 with 3 ordinal levels: low, medium, high), degree of Contact with
other residents (var. 3 with 2 levels: low, high), type of Housing (var. 4 with 4 levels: tower
block, apartment, atrium house, terraced house).
For the madsen data, let us consider the statement

R> margin <- marg.list(c("marg-marg-l-l", "g-marg-l-l",
+ "marg-g-l-l", "g-g-l-l"))

This means that in the bivariate distribution of variables 3, 4 all the interactions are of local
(l) type, while in the joint distribution of 1, 3, 4 the interactions 1 are global (g) logits, the
interactions 13 and 14 are global-local (gl) log-odds ratios. In this marginal distribution,
the interactions 134 are differences between the logarithms of two global-local odds ratios. A
similar comment holds for the joint distribution of the variables 2, 3, 4.
The model is defined as

R> model <- hmmm.model(marg = margin, lev = c(3, 3, 2, 4),
+ names = c("In", "Sa", "Co", "Ho"))
R> model

inter. inter.names marg. marg.names type npar start end
[1,] 3 Co 34 Co,Ho l 1 1 1
[2,] 4 Ho 34 Co,Ho l 3 2 4
[3,] 34 Co.Ho 34 Co,Ho ll 3 5 7
[4,] 1 In 134 In,Co,Ho g 2 8 9
[5,] 13 In.Co 134 In,Co,Ho gl 2 10 11
[6,] 14 In.Ho 134 In,Co,Ho gl 6 12 17
[7,] 134 In.Co.Ho 134 In,Co,Ho gll 6 18 23
[8,] 2 Sa 234 Sa,Co,Ho g 2 24 25
[9,] 23 Sa.Co 234 Sa,Co,Ho gl 2 26 27

[10,] 24 Sa.Ho 234 Sa,Co,Ho gl 6 28 33
[11,] 234 Sa.Co.Ho 234 Sa,Co,Ho gll 6 34 39
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[12,] 12 In.Sa 1234 In,Sa,Co,Ho gg 4 40 43
[13,] 123 In.Sa.Co 1234 In,Sa,Co,Ho ggl 4 44 47
[14,] 124 In.Sa.Ho 1234 In,Sa,Co,Ho ggl 12 48 59
[15,] 1234 In.Sa.Co.Ho 1234 In,Sa,Co,Ho ggll 12 60 71

If there is an additive effect of variables 3 and 4 on the global (g) logits of variable 1 in
the marginal distribution 134, the global-local-local (gll) interactions 18:23 in the above
output must be zero and if 2 ⊥⊥ 3 | 4, that is the global (g) logits of var. 2 are not affected by
var. 3 in the marginal distribution 234, the global-local (gl) log-odds ratios 26:27 and the
global-local-local (gll) interactions 34:39 must be null. To define and fit the model under
the mentioned hypotheses we can run the following statements

R> model1 <- hmmm.model(marg = margin, lev = c(3, 3, 2, 4),
+ names = c("In", "Sa", "Co", "Ho"), sel = c(18:23, 26:27, 34:39))
R> data("madsen", package = "hmmm")
R> y <- getnames(madsen, st = 6)
R> mod1 <- hmmm.mlfit(y, model1)
R> mod1

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 14 ): Gsq = 24.49143 (p = 0.039933 )

We try to improve the fitting of model1 by removing the hypothesis 2 ⊥⊥ 3 | 4 but retaining
the additive effect of variables 3, 4 on the global logits of variables 1 and 2 in the marginal
distributions 134 and 234, respectively. So the interactions in positions 26:27 are no longer
null. This model is defined and estimated as follows

R> model2 <- hmmm.model(marg = margin, lev = c(3, 3, 2, 4),
+ names = c("In", "Sa", "Co", "Ho"), sel = c(18:23, 34:39))
R> mod2 <- hmmm.mlfit(y, model2)
R> mod2

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 12 ): Gsq = 14.76183 (p = 0.25472 )

The model fit is definitely improved.
Moreover, to add the hypothesis that the global (g) log-odds ratios of the variables 1 and 2
do not depend on the levels of variables 3 and 4, the (ggl) and (ggll) interactions, which
occupy the positions 44:71 in the vector of parameters, have to be constrained to zero

R> model3 <- hmmm.model(marg = margin, lev = c(3, 3, 2, 4),
+ names = c("In", "Sa", "Co", "Ho"), sel = c(18:23, 34:39, 44:71))
R> mod3 <- hmmm.mlfit(y, model3)
R> mod3
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SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 40 ): Gsq = 45.61355 (p = 0.25008 )

This model has a reasonable fit.
For an alternative way of specifying other similar hypotheses see Section 7 where the effect
of covariates on interactions is taken into account.

5. Recursive marginal interactions
Cazzaro and Colombi (2013) extended the class of generalized marginal interactions by in-
troducing a new logit type: the recursive (or nested) logits. In the simplest case, these logits
are defined in correspondence of a partition of the categories of a variable.
A first set of logits contains the baseline logits defined on the probabilities of the sets of
the partition (the reference set can be chosen arbitrarily). A second set includes the baseline
logits which are defined within every set of the partition (the reference category can be chosen
arbitrarily in every set).
As an example, we consider the relpol data, Bergsma, Croon, and Hagenaars (2009, p. 24),
on religion and political orientation of a sample of 911 U.S. citizens extracted from the General
Social Survey, 1993, with var. 1 Religion with levels PR Protestant, CA Catholic, NO
None and var. 2 Politics with levels EL Extremely liberal, LI Liberal, SL Slightly
liberal, MO Moderate, SC Slightly conservative, CO Conservative, EC Extremely
conservative. For Religion we consider the partition with sets R={PR, CA}, N={NO}
in order to distinguish between religious and non-religious citizens and for Politics we
highlight the partition in the sets L={EL, LI, SL}, M={MO} and C={SC, CO, EC}. Note
that we introduce the sets L and C as aggregation of categories following an obvious ideological
similarity criterion (‘Liberals’ and ‘Conservatives’).
Given the proposed partition, the first recursive logit (with reference categories set R) of the
variable Religion is

log

[
pr(N)
pr(R)

]
and the second recursive logit (reference category PR) is

log

[
pr(CA)
pr(PR)

]
.

Focusing on variable Politics, the first and the second recursive logits (with reference set
L) defined on the probabilities between the sets of the partition are

log

[
pr(C)
pr(L)

]
and log

[
pr(M)
pr(L)

]
;

the recursive logits defined within the sets of the partition are the following four logits

log

[
pr(EL)
pr(LI)

]
, log

[
pr(SL)
pr(LI)

]
, log

[
pr(SC)
pr(CO)

]
and log

[
pr(EC)
pr(CO)

]
,
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respectively. Note that the reference category is LI for Liberals and CO for Conservatives.
The number of recursive logits is always equal to the number of categories minus one. The use
of interactions based on recursive logits is requested in marg.list() by the use of r instead
of b, l, g, c and rc, (see Section 2 for details)

R> marginals <- marg.list(c("r-marg", "marg-r", "r-r"))

The recursive logits are specified by the function recursive() that requires an argument for
every variable. The argument is 0 for every variable to which a recursive logit is not assigned
otherwise it is a matrix. This matrix has as many rows as the number of recursive logits of
the variable involved and columns equal to the number of the categories of the variable. In
particular, the rows of this matrix specify the categories whose probabilities appear in the
numerator and denominator of the recursive logits. In a row, a value 1 (-1) corresponds to the
categories whose probability is cumulated at the numerator (denominator), 0 if the category
is not involved.
With reference to var. 1 Religion, the following are the statements defining matrix rec1

R> rec1 <- matrix(c(-1, -1, 1,
+ -1, 1, 0), 2, 3, byrow = TRUE)

To the first row of matrix rec1 is associated the first logit log [pr(N)/pr(R)] of var. 1 Religion
as it picks out the probabilities pr(PR) and pr(CA) that are summed at the denominator and
the probability pr(NO) at the numerator of the logit; second row identifies the second logit
of var. 1 in a similar way.
These are the necessary statements to define matrix rec2 for var. 2 Politics

R> rec2 <- matrix(c(-1, -1, -1, 0, 1, 1, 1,
+ -1, -1, -1, 1, 0, 0, 0,
+ 1, -1, 0, 0, 0, 0, 0,
+ 0, -1, 1, 0, 0, 0, 0,
+ 0, 0, 0, 0, 1, -1, 0,
+ 0, 0, 0, 0, 0, -1, 1), 6, 7, byrow = TRUE)

The first row, for example, of matrix rec2 identifies the categories whose probabilities are
cumulated at the denominator (pr(EL), pr(LI) and pr(SL)) and at the numerator (pr(SC),
pr(CO) and pr(EC)) of the first recursive logit log [pr(C)/pr(L)] of var. 2 Politics.
The matrices rec1 and rec2 are then the arguments of the function recursive()

R> rec <- recursive(rec1, rec2)

Finally the output of recursive() must be assigned to the argument cocacontr of hmmm.model().
Consider the following statements

R> model <- hmmm.model(marg = marginals, lev = c(3, 7),
+ names = c("Rel", "Pol"), cocacontr = rec)
R> model
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inter. inter.names marg. marg.names type npar start end
[1,] 1 Rel 1 Rel r 2 1 2
[2,] 2 Pol 2 Pol r 6 3 8
[3,] 12 Rel.Pol 12 Rel,Pol rr 12 9 20

It is worthwhile to remember that the parameters of vector η are defined by assigning a logit
type to each variable (recursive type in this case) and higher-order interactions (as recursive
log-odds ratios in this case) are defined as contrasts of the mentioned logits (for more details
on higher-order recursive interactions see Cazzaro and Colombi (2013)). The output shows
that the vector η of 20 parameters of the models is structured in the following way: the first
two parameters are the recursive logits of var. 1 Religion; successively, the 6 recursive logits
of var. 2 Politics are stated and finally the 12 recursive log-odds ratios of the two involved
variables complete the parameterization of the model.
In particular, note that the first 8 elements of the vector η are the previously presented logits
in the order as we described them. This follows from the order of the rows of the rec1 and
rec2 matrices.
To exemplify the kind of hypotheses that can be modeled with recursive logits and to show
as well how linear constraints on marginal interactions can be tested, let us consider the
constraints

log

[
pr(EL)
pr(LI)

]
− log

[
pr(EC)
pr(CO)

]
= 0 (1)

log

[
pr(SL)
pr(LI)

]
− log

[
pr(SC)
pr(CO)

]
= 0 (2)

stating that the distribution between extreme and moderate attitudes is the same within
conservatives and liberals. The condition in Equation 1 equates the 3th and 6th recursive
logits of Politics that occupy positions 5 and 8 in the vector η of parameters, respectively.
The condition in Equation 2 equates the 4th and 5th recursive logits that are in positions 6
and 7 in the vector η. Remind that in the hmmm package, equality constraints on HMM
models are in the form Eη = 0.
Hence, the previous constraints can be defined by assigning the following constraints matrix
Emat to the argument E of the function hmmm.model(). Note that the Emat matrix has 2 rows
and 20 columns, the number of parameters. Rows 1 and 2 are devoted to constraints reported
in Equations 1 and 2, respectively: all the elements of Emat are zeros apart from a 1 in the
5th position and a -1 in the 8th position in the first row; the second row has a 1 in the 6th
position and a -1 in the 7th position

R> Emat <- cbind(matrix(0, 2, 4), matrix(c(1, 0, 0, 1, 0, -1, -1, 0), 2, 4),
+ matrix(0, 2, 12))
R> modelE <- hmmm.model(marg = marginals, lev = c(3, 7),
+ names = c("Rel", "Pol"), cocacontr = rec, E = Emat)

With reference to the relpol data, the following statements fit the model

R> data("relpol", package = "hmmm")
R> y <- getnames(relpol, st = 4)
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R> modE <- hmmm.mlfit(y, modelE)
R> print(modE)

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 2 ): Gsq = 1.58106 (p = 0.45361 )

The tested model has a good fit.

6. Repeated measures on the response variables
Studies where the categorical response variable is observed for each subject repeatedly, under
various conditions or at several occasions, are very common in applications. In this section, we
show how repeated measures can be treated using HMM models subject to equality constraints
on marginal interactions.
To this aim we consider an example discussed in Section 12.1.1 of Agresti (2013) and we point
out how the marginal logistic models there described can be reformulated as HMM models.
Table 12.1 in Agresti (2013, p. 456) refers to a longitudinal study of mental depression (Koch,
Landis, Freeman, Freeman, and Lehnen 1977) for 340 subjects suffering depression classified in
four groups according to whether the severity of initial diagnosis is mild or severe and whether
the treatment gives standard or new drugs. The study observed the depression assessment
of the patients at 3 time occasions (t = 1, 2, 3) after treatment. So, there are three response
variables: R1: Depression at t=1, R2: Depression at t=2, R3: Depression at t=3,
with levels: normal, abnormal, and two covariates: T: Treatment (with levels: standard,
new drug) and D: Diagnosis (with levels: mild, severe). The data are available in the data
frame depression

R> data("depression", package="hmmm")
R> y <- getnames(depression, st = 9)

Note that, coherently with the table of data reported in the Agresti’s book, in the data frame
depression the counts are arranged in such a way that R3, R2 and R1 are var. 1, var. 2 and
var. 3, respectively, and var. 4, var. 5 are the covariates Treatment and Diagnosis.
Agresti proposes a first marginal model to fit these data

M1 : ltij = α + βT
i + βD

j + βt

where ltij is the logit of the response at occasion t, t = 1, 2, 3, given the categories i of
Treatment (i = 0 for standard drug and i = 1 for new drug), and j of Diagnosis (j = 0 for
mild and j = 1 for severe); βT

i and βD
j are the main effects of the covariates with a reference

category coding βT
0 = 0, βD

0 = 0.

Model M1 is a special case of the saturated logit model

M : ltij = αt + βT
ti + βD

tj + βT,D
tij

obtained under the eight constraints

βT
t1 − βT

11 = 0, βD
t1 − βD

11 = 0, βT,D
t11 = 0, t = 1, 2, 3, (3)
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α3 − 2α2 + α1 = 0. (4)

The constraints in Equation 3 state that the effects of the covariates are additive and do not
differ by time occasion. Moreover, under the constraints in Equations 3 and 4, the logits ltij
are linear function of time.
Agresti provides a second model which permits the treatment effect to differ by time occasion,

M2 : ltij = α + βT
0i + βD

j + βt + βT
1it, t = 1, 2, 3.

Model M2 is obtained by imposing to M the seven constraints

βT
31 − 2βT

21 + βT
11 = 0, βD

t1 − βD
11 = 0, βT,D

t11 = 0, t = 1, 2, 3, (5)

α3 − 2α2 + α1 = 0. (6)

Since models M1 and M2 are logistic models, specified on the marginal distribution of each
response 1, 2, 3 and two covariates 4, 5, we need to insert {1, 4, 5}, {2, 4, 5}, {3, 4, 5} in the
sequence of marginal sets defining the corresponding HMM models. Moreover, we complete
the ordered list of marginal sets by adding the full set {1, 2, 3, 4, 5} which cannot be omitted,
and the set of the covariates {4, 5}. In this way, all the interactions involving only the
covariates will be defined in the first marginal distribution and only the interactions related
to the association among the responses at the three time occasions will be defined in the joint
distribution, by virtue of the hierarchy and completeness assumptions.
Given the marginal sets, the saturated marginal model for the five variables is defined by the
codes

R> margin <- marg.list(c("marg-marg-marg-b-b","b-marg-marg-b-b",
+ "marg-b-marg-b-b", "marg-marg-b-b-b","b-b-b-b-b"))
R> name <- c("R3","R2","R1","T","D")
R> modelsat<-hmmm.model(marg = margin, lev = c(2,2,2,2,2), names = name)
R> modelsat

inter. inter.names marg. marg.names type npar start end
[1,] 4 T 45 T,D b 1 1 1
[2,] 5 D 45 T,D b 1 2 2
[3,] 45 T.D 45 T,D bb 1 3 3
[4,] 1 R3 145 R3,T,D b 1 4 4
[5,] 14 R3.T 145 R3,T,D bb 1 5 5
[6,] 15 R3.D 145 R3,T,D bb 1 6 6
[7,] 145 R3.T.D 145 R3,T,D bbb 1 7 7
[8,] 2 R2 245 R2,T,D b 1 8 8
[9,] 24 R2.T 245 R2,T,D bb 1 9 9

[10,] 25 R2.D 245 R2,T,D bb 1 10 10
[11,] 245 R2.T.D 245 R2,T,D bbb 1 11 11
[12,] 3 R1 345 R1,T,D b 1 12 12
[13,] 34 R1.T 345 R1,T,D bb 1 13 13
[14,] 35 R1.D 345 R1,T,D bb 1 14 14
[15,] 345 R1.T.D 345 R1,T,D bbb 1 15 15
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[16,] 12 R3.R2 12345 R3,R2,R1,T,D bb 1 16 16
[17,] 13 R3.R1 12345 R3,R2,R1,T,D bb 1 17 17
[18,] 23 R2.R1 12345 R3,R2,R1,T,D bb 1 18 18
[19,] 123 R3.R2.R1 12345 R3,R2,R1,T,D bbb 1 19 19
[20,] 124 R3.R2.T 12345 R3,R2,R1,T,D bbb 1 20 20
[21,] 134 R3.R1.T 12345 R3,R2,R1,T,D bbb 1 21 21
[22,] 125 R3.R2.D 12345 R3,R2,R1,T,D bbb 1 22 22
[23,] 234 R2.R1.T 12345 R3,R2,R1,T,D bbb 1 23 23
[24,] 135 R3.R1.D 12345 R3,R2,R1,T,D bbb 1 24 24
[25,] 235 R2.R1.D 12345 R3,R2,R1,T,D bbb 1 25 25
[26,] 1234 R3.R2.R1.T 12345 R3,R2,R1,T,D bbbb 1 26 26
[27,] 1235 R3.R2.R1.D 12345 R3,R2,R1,T,D bbbb 1 27 27
[28,] 1245 R3.R2.T.D 12345 R3,R2,R1,T,D bbbb 1 28 28
[29,] 1345 R3.R1.T.D 12345 R3,R2,R1,T,D bbbb 1 29 29
[30,] 2345 R2.R1.T.D 12345 R3,R2,R1,T,D bbbb 1 30 30
[31,] 12345 R3.R2.R1.T.D 12345 R3,R2,R1,T,D bbbbb 1 31 31

Note that, the parameters αt, βT
t1, βD

t1 , βT,D
t11 of modelsat related to the response at the last

occasion (t = 3) occupy the positions 4:7 in the table above, positions 8:11 for the response
at t = 2 and 12:15 for t = 1.
Thus, the constraints which specify both models M1 and M2 involve only the 12 interactions
listed from the 4th to the 15th position. For example α3 − 2α2 + α1 = 0 constrains the
4th, 8th and 12th parameters; βT

21 − βT
11 = 0 and βT

31 − βT
11 = 0 involve the 5th, 9th and

13th parameters; the constraints βD
21 − βD

11 = 0 involve the 6th, 10th and 14th parameters;
βT,D

t11 = 0, t = 1, 2, 3, refers to 7th, 11th and 15th parameters.
For specifying M1 and M2 in terms of HMM models, we cannot use the argument sel in the
function hmmm.model, because the constraints of M1 and M2 are not all zero restrictions on
single parameters. This is the reason why we specify the constraints on the interactions in
the form Eη = 0 (the vector η here contains the parameters of modelsat). Below we give
the details of the construction of the matrix E for both models.
For M1, the matrix E1 has 31 columns as the number of parameters in modelsat and 8
rows as the number of the constraints in Equations 3 and 4. Remind that among those 31
parameters, only the 12 interactions listed from the 4th to 15th position are involved and they
are here arranged in the sub-vector η1 for simplicity. Thus, we need to define the sub-matrix
A1 with 8 rows, one row for each constraint of M1, and 12 columns, one for each parameter
in η1 such as the equation A1η1 = 0 reproduces the constraints in Equations 3 and 4. At
this point, we can define the matrix E1 as a three blocks matrix with a zero-values matrix
in the first and third blocks (columns 1-3 and 16-31 of E1) corresponding to unconstrained
parameters, and the matrix A1 as a middle block (columns 4-15 of E1). In details, we write

R> A1<-matrix(c(
+ 0,0,0,1,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,1,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,0,1,
+ 0,1,0,0,0,0,0,0,0,-1,0,0,
+ 0,0,0,0,0,1,0,0,0,-1,0,0,
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+ 0,0,1,0,0,0,0,0,0,0,-1,0,
+ 0,0,0,0,0,0,1,0,0,0,-1,0,
+ 1,0,0,0,-2,0,0,0,1,0,0,0
+ ),8,12,byrow=TRUE)
R> E1<-cbind(matrix(0,8,3), A1, matrix(0,8,16))

Now we can define and fit model M1 by assigning E1 to the argument E of the function
hmmm.model()

R> model1<-hmmm.model(marg = margin, lev =c(2,2,2,2,2), names = name, E = E1)
R> fitmod1 <- hmmm.mlfit(y, model1)
R> fitmod1

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 8 ): Gsq = 34.57154 (p = 3.1996e-05 )

The fit is really poor as highlighted by Agresti because the model is based on the assumption
that the time effect does not vary by treatment. This hypothesis is removed in model M2.
The matrix E2 computed below follows the same reasoning just detailed and here defines the
constraints in Equations 5 and 6 of M2

R> A2<-matrix(c(
+ 0,0,0,1,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,1,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,0,1,
+ 0,1,0,0,0,-2,0,0,0,1,0,0,
+ 0,0,1,0,0,0,0,0,0,0,-1,0,
+ 0,0,0,0,0,0,1,0,0,0,-1,0,
+ 1,0,0,0,-2,0,0,0,1,0,0,0),
+ 7,12,byrow=TRUE)
R> E2<-cbind(matrix(0,7,3), A2, matrix(0,7,16))

We can now define and fit model M2 using E2 as argument in the next statement

R> model2<-hmmm.model(marg = margin, lev = c(2,2,2,2,2), names = name, E = E2)
R> fitmod2 = hmmm.mlfit(y, model2)
R> fitmod2

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 7 ): Gsq = 4.23174 (p = 0.75273 )

This model fits much better.
We complete the section by specifying and fitting a further model, not considered by Agresti.
It is obtained by assuming that in M2 it also holds that the depression assessment at the last
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time R3 is independent of its severity at the first occasion R1 given the intermediate response
R2 and the covariates Treatment and Diagnosis.
The zero restrictions on the interactions of modelsat which occupy the positions 17, 19,
21, 24, 26, 27, 29, 31, that are needed to satisfy the just introduced Markov condition,
constrain log-linear parameters defined in the joint distribution, so we can use the argument
formula of the hmmm.model() function as explained in Section 3. The statements for this
final model are reported below

R> model3<-hmmm.model(marg = margin, lev = c(2,2,2,2,2), names = name, E = E2,
+ formula=~R1*R2*T*D+R3*R2*T*D )
R> fitmod3 = hmmm.mlfit(y, model3)
R> fitmod3

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 15 ): Gsq = 11.86665 (p = 0.68909 )

The model shows a very good fit.

7. Covariates effects on the response variables
Different models can be estimated by taking into account the effects of covariates on the
response variables as in Marchetti and Lupparelli (2011) and Glonek and McCullagh (1995).
Note that the models tested in this section are Glonek and McCullagh multivariate logistic
models with categorical covariate variables.
We consider the accident data (see Section 3 for details), but note that, now, var. 1 Type
of the injury (3 levels), var. 2 Time to recover (4 ordinal levels) are considered as response
variables, as they describe the nature of the accidents occurred to workers in terms of preven-
tion and seriousness, and var. 3 Age of the worker (3 levels) and var. 4 solar Hour (2 levels)
as covariates since Age can be considered as indicator of experience and Hour as indicator
of tiredness of the worker. Remind that the lower the variable number, the faster the vari-
able changes in the vectorized table. Furthermore, the categories of the covariates determine
the strata and the data must be arranged in such a way that the categories of the response
variables change faster than the categories of the covariates.
In order to estimate different models taking into account the covariate effects on the response
variables, the list of the marginal sets of the response variables has to be specified (using
marg.list()). The necessary statement is

R> marginals <- marg.list(c("b-marg", "marg-g", "b-g"))

For the accident data, it is stated that in the marginal distribution of Type the interactions
are baseline logits, in the marginal distribution of Time the interactions are global logits and
in the bivariate distribution of Type and Time the interactions are baseline-global log-odds
ratios.
Successively, a list of model formulas, each for every interaction specified above, defining the
effects of the covariates, is needed. The following statements account for additive effect of the
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covariates Age and Hour on the marginal logits of the response variables Type and Time and
on the association (log-odds ratios) between the responses Type and Time

R> al <- list(
+ Type = ~ Type * (Age + Hour),
+ Time = ~ Time * (Age + Hour),
+ Type.Time = ~ Type.Time * (Age + Hour)
+ )

It is worthwhile to note that each component of the list has the name of the interaction and
contains the model formula of the covariate effects on such interaction.
The model that takes into account the covariate effects on the response variables is then speci-
fied through the function hmmm.model.X(). Several arguments are included in hmmm.model.X():
the marginal sets (marg), the names of the response variables (names), their number of cate-
gories (lev), the names of the covariate variables (fnames) and the number of their categories
(strata) but, in particular, the main argument is Formula to which a list as al must be as-
signed

R> model <- hmmm.model.X(marg = marginals, lev = c(3, 4),
+ names = c("Type", "Time"), Formula = al, strata = c(3, 2),
+ fnames = c("Age", "Hour"))

The model is then estimated by the command hmmm.mlfit()

R> data("accident", package = "hmmm")
R> y <- getnames(accident, st = 9)
R> mod1 <- hmmm.mlfit(y, model)
R> mod1

SUMMARY of MODEL:
OVERALL GOODNESS OF FIT:

Likelihood Ratio Stat (df= 22 ): Gsq = 16.47375 (p = 0.7917 )

More detailed output (the estimated effects and the estimated standard errors, among others)
is given by

R> summary(mod1)

Note that the covariate effects preceded by the main general effect (Intercept) are listed for
every interaction.
The necessary list of model formulas to test another interesting hypothesis, where there is the
covariates Age, Hour additive effect on the marginal logits of the responses and the stochastic
independence between Type and Time in each sub-table identified by the levels of Age and
Hour, is



Manuela Cazzaro, Roberto Colombi, Sabrina Giordano 19

R> alind <- list(
+ Type = ~ Type * Age + Type * Hour,
+ Time = ~ Time * Age + Time * Hour,
+ Type.Time = "zero"
+ )

We use "zero" to constrain to zero all the interactions of a given type, in this case the
log-odds ratios between Type and Time.
To test the so-called ‘Parallel log-odds model’, that is if the effect of the covariates Age and
Hour is identical for each of the logits and the log-odds ratios of the responses Type and Time,
we need the following statement

R> alpar <- list(
+ Type = ~ Type + Age + Hour,
+ Time = ~ Time + Age + Hour,
+ Type.Time = ~ Type.Time + Age + Hour
+ )

8. Inequality constraints on interactions
Hypotheses of monotone dependence and positive/negative association between ordered cat-
egorical variables can be ascertained by testing marginal models with inequality constraints
on certain interactions. We illustrate how to define, fit and test models with parameters
constrained by inequalities using the dataset polbirth, Bergsma et al. (2009, p. 30), based
on the U.S. General Social Survey, 1993.
In the dataset polbirth involving data on political orientation and opinion on teenage birth
control of a sample of 911 U.S. citizens, var. 1 is Politics with categories: Extremely
liberal, Liberal, Slightly liberal, Moderate, Slightly conservative, Conservative,
Extremely conservative and var. 2 is Birth with Strongly agree, Agree, Disagree,
Strongly disagree categories.
With these variables, for example, we can test the hypothesis that the distributions of
Politics, given the levels of Birth, are ordered according to the simple dominance criterion
coherently with the strength of the opinion on Birth control. This hypothesis is equivalent
to require that all the global-local log-odds ratios are non-negative. Continuation-local or
local log-odds ratios can be constrained to consider successively stronger notions of monotone
dependence (uniform and likelihood ratio stochastic orderings), see Dardanoni and Forcina
(1998) and Shaked and Shanthikumar (1994).
Let us test the simple monotone dependence of Politics on Birth.
The marginal sets, the logit types and the labels of the variables are declared below

R> data("polbirth", package = "hmmm")
R> y <- getnames(polbirth)
R> marginals <- marg.list(c("g-marg", "marg-l", "g-l"))
R> names <- c("Politics", "Birth")
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The marginal set marg where the interactions are defined, the interactions int subject to
inequality constraints, and the types of logit used for each variable are listed as follows, so
that the log-odds ratios of global-local types are the interactions to be constrained

R> ineq <- list(marg = c(1, 2), int = list(c(1, 2)), types = c("g", "l"))

The marginal model with inequalities on global-local interactions is defined using the function
hmmm.model() where ineq is assigned to the argument dismarg

R> model <- hmmm.model(marg = marginals, dismarg = ineq, lev = c(7, 4),
+ names = names)

More than one list, like that specified in ineq, can compose dismarg if interactions defined
in different marginal distributions have to be constrained (see details in the help of the
hmmm.model() function).
The model with non-negative global-local log-odds ratios (simple monotone dependence model)
is estimated with the function hmmm.mlfit() where the argument noineq is declared FALSE

R> mlr <- hmmm.mlfit(y, model, noineq = FALSE)

Note that if noineq = TRUE (the default) inequality constraints are ignored. The model
estimated without any inequality constraints on parameters is, in this case, the saturated
model

R> msat <- hmmm.mlfit(y, model)

If the inequality constraints are turned into equality, all the global-local log-odds ratios are
null and the corresponding model is the stochastic independence model

R> model0 <- hmmm.model(marg = marginals, lev = c(7, 4), sel = c(10:27),
+ names = names)
R> mnull <- hmmm.mlfit(y, model0)

The fitted models are compared through the function hmmm.chibar(). The arguments of
hmmm.chibar() are the estimated models with inequality constraints turned into equalities
(nullfit), with inequality constraints (disfit) and without inequality constraints on pa-
rameters (satfit)

R> test <- hmmm.chibar(nullfit = mnull, disfit = mlr, satfit = msat)

Function hmmm.chibar() can be only used to test problems of type A and B, Silvapulle and
Sen (2005, p. 61): the test of type A compares the H0 : nullfit model against the H1 :
disfit model; while the type B problem means testing H0 : disfit model against H1 :
satfit model. The main difference between type A and type B problems is that inequalities
are present in the alternative hypothesis of type A and in the null hypothesis of type B
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problems. To compare nested models without inequality constraints the function anova(),
introduced in Section 3, has to be used.
The null distribution of the likelihood ratio statistic for or against inequality constraints turns
out to be chi-bar-square, that is a mixture of chi-square distributions. Its tail probabilities
are computed by simulation, the method Simulation 2 described in Silvapulle and Sen (2005,
p. 79) is implemented in hmmm.chibar() as default. Alternatively, if the number of inequality
constraints is not large, (<= 15), the tail probabilities can be exactly computed by the Kudo’s
method, (Silvapulle and Sen 2005, p. 83), by setting the argument kudo of hmmm.chibar()
equal to TRUE.
The output of hmmm.chibar() provides the values of the likelihood ratio statistics and their
p values for both tests of type A and B

R> test

CHIBAR P VALUES

test pvalue
testA 64.457490 1.586069e-09
testB 2.033941 9.660213e-01

In this case, testA rejects the nullfit model in favour of disfit model, and testB does
not reject disfit model versus the saturated model. Therefore, the model under inequalities
seems to suit the data. A more detailed output is printed by summary.

9. MPH models under inequality restrictions
The hmmm package can handle Lang multinomial Poisson homogeneous models subject to
inequality constraints (see Cazzaro and Colombi 2009) through the function mphineq.fit.
The MPH models are characterized by an independent sampling plan and a system of equality
and/or inequality homogeneous constraints on the vector of expected table counts. The
sampling scheme can be a product of Poisson and/or multinomial random variables.
To give an example, we refer to Lang (2004) that investigated citation patterns in three
journals of statistics and probability (Journal of the American Statistical Association JASA,
Biometrics BMCS, The Annals of Statistics ANNS). Let (i, j) be a cross-citation, where i is
the journal of the citing article (1=JASA, 2=BMCS, 3=ANNS) and j is the journal of the
cited article (1=JASA, 2=BMCS, 3=ANNS). In particular, we consider the observed counts
of Table 2 - “1999 statistics journals citation pattern counts," Lang (2004, p. 349)

R> y <- matrix(c(104, 24, 65, 76, 146, 30, 50, 9, 166), 9, 1)

Note that the frequency of cross-citation (i, j) of Lang’s table enters the vector y in position
3(i−1)+j. The sampling scheme can be described by two matrices, Z and ZF. The number of
strata are established by the number of columns of the population matrix Z that is a zero-one
matrix having as many rows as the number of counts. A 1 in row c and column s means that
the cth count comes from the sth stratum. The columns of ZF, the sample constraints matrix,
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are the subset of the columns in Z corresponding to the multinomial strata with fixed sample
size (see details in the help of the mphineq.fit() function).
With respect to the previous example, the following statements

R> Zmat <- kronecker(diag(3), matrix(1, 3, 1))
R> ZFmat <- kronecker(diag(3), matrix(1, 3, 1))[,3]

mean that the population matrix Z involves 3 strata with 3 observations each and that the
third stratum sample size is considered as fixed.
Lang makes inference on some functions of the mijs, the expected counts of cross-citations. He
considers the Gini concentrations of citations for each of the journals: Gi =

∑3
j=1(mij/mi+)2,

i = 1, 2, 3. The hypothesis tested by Lang considers equal Gini concentrations in the strata,
G1 − G2 = 0 and G3 − G1 = 0. The following statement builds the Gini indices for each of
the journals and calculates the constraints on them

R> Gini <- function(m) {
+ A<-matrix(m,3,3,byrow=TRUE)
+ GNum<-rowSums(A^2)
+ GDen<-rowSums(A)^2
+ G<-GNum/GDen
+ c(G[1], G[3]) - c(G[2], G[1])
+ }

The model can then be estimated by the command mphineq.fit() assigning the function
Gini() to the argument h.fct. Note that the command mphineq.fit() includes several
arguments: the observed counts (y), the population matrix (Z), the sample constraints matrix
(ZF), the function for the equality (h.fct) or inequality (d.fct) constraints, among others

R> mod_eq <- mphineq.fit(y, Z = Zmat, ZF = ZFmat, h.fct = Gini)

One hypothesis of interest, that implies the one proposed (but not tested) by Lang himself,
is to consider that there is more concentration in ANNS than in the other two journals and
more concentration in JASA than in BMCS. This is an example of MPH model subject to
inequality constraints: G3 > G1 > G2 or equivalently G1 − G2 > 0, G3 − G1 > 0. The
model is again defined through the function mphineq.fit() where the function Gini() is
now assigned to the argument d.fct

R> mod_ineq <- mphineq.fit(y, Z = Zmat, ZF = ZFmat, d.fct = Gini)

The fitted models can be, finally, compared through the function hmmm.chibar(), already
illustrated in Section 8. In this context, it is worthwhile to note that the reference model
without inequality constraints corresponds to the saturated model

R> mod_sat <- mphineq.fit(y, Z = Zmat, ZF = ZFmat)
R> hmmm.chibar(nullfit = mod_eq, disfit = mod_ineq, satfit = mod_sat)
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CHIBAR P VALUES

test pvalue
testA 24.1438779 0.0000016524
testB 0.4896523 0.4676897157

Evidently, the model of common Gini concentrations (mod_eq) is untenable as we deduced
from testA, coherently with Lang results. The outcome of testB is in favour of mod_ineq, it
then appears that there is more concentration in ANNS than in the other two journals and
more concentration in JASA than in BMCS.

10. Discussion
The main contribution of the R package hmmm is to give user-friendly tools to define and fit
complete hierarchical multinomial marginal models under equality and inequality constraints
on a wide variety of marginal interactions. Classical and more recent marginal models, pro-
posed in the categorical data literature, are special cases of the HMM models. Thus, the
potential applicability of the package is wide as several contributions on marginal models are
implemented.
In this paper, only the main features of this package have been illustrated, whereas other
aspects have not been here analyzed.
First, such a package permits to estimate non-hierarchical or non-complete marginal models.
In particular, a marginal model is non-hierarchical when an interaction is not defined in the
first marginal distribution containing it and non-complete when an interaction is defined in
more than one distribution. Most of these models are not smooth, so the standard MLE
asymptotic theory does not apply. Anyway, under some conditions they are smooth and
therefore they can be fitted by hmmm. Forcina (2012) shows examples of smooth non-
hierarchical marginal models. In the case of non-hierarchical non-complete smooth marginal
models for every marginal distribution, the list of interactions must be specified by the syntax
used for inequalities.
In addition to this, the package can fit hidden Markov models where the conditional distribu-
tion of several observable variables and the transition probabilities of the latent chain can be
specified by HMM models, see Colombi and Giordano (2011). The hidden.emfit() function
computes the ML estimates of the parameters via an EM algorithm, but the current version
of the package does not provide standard errors.
Moreover, consider that the package is designed to deal with multiway tables and cannot
handle individual data, commonly used in presence of non-categorical covariates.
Finally, we are aware that some HMM models are Markov with respect to chain or mixed
graphs that can be easily defined in R (see for example the R package ggm by Marchetti, Drton,
and Sadeghi 2012). Therefore, it could be an useful improvement to enable the package to
define a HMM model starting from a graphical representation.
Updated versions of the package will be oriented to overcome the mentioned limits.
We highlighted that in the R environment, other authors dealt with contents connected with
our package but in a more restrictive purpose: the R package cmm by Bergsma and van der
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Ark (2013), accompanying the book by Bergsma et al. (2009), and the Lang’s mph.fit func-
tion handling multinomial Poisson homogeneous models (available from the author).
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