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Summary

These notes describe the calculations for the uncondExact2x2 function in the exact2x2 R
package. This function does unconditional exact tests for the two sample binomial problem.
It has options for serval di�erent test statistics, mid p-value adjustments, and Berger and
Boos adjustments.

1 De�nition and Calculation of the Unconditional Exact

Tests

1.1 De�ning the General Method

Let X = [X1, X2] with Xa ∼ Binom(na, θa) for a = 1, 2. Suppose we are interested in
β = b(θ), where b(θ) is some function of θ1 and θ2. Common examples are the di�erence,
βd = θ2 − θ1, the ratio, βr = θ2/θ1, and the odds ratio, βor = {θ2(1− θ1)} / {θ1(1− θ2)}.

We want to test hypotheses of the form H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, where Θ0 and
Θ1 are the set of all possible values of [θ1, θ2] under the null hypothesis or the alternative
hypothesis, repspectively. It is convenient to write Θ0 and Θ1 in terms of β. For example,

Θ0 = {θ : b(θ) = β0}

For this example, instead of writing the null hypothesis as H0 : θ ∈ Θ0, we write it in terms
of β = b(θ) as H0 : β = β0. We are generally interested in three classes of hypotheses:
two-sided hypotheses,

H0 : β = β0

H1 : β ̸= β0

or one of the one-sided hypotheses,

Alternative is Less Alternative is Greater

H0 : β ≥ β0 H0 : β ≤ β0

H1 : β < β0 H1 : β > β0.

First consider parmtype="di�erence". Let T (X) be some test statistic, where larger values
suggest that θ2 is larger than θ1. Then a valid (i.e., exact) p-value for testing H0 : β ≥ β0 is

pU(x, β0) = sup
θ:b(θ)≥β0

Prθ [T (X) ≤ T (x)] .

For testing H0 : β ≤ β0 the p-value is

pL(x, β0) = sup
θ:b(θ)≤β0

Prθ [T (X) ≥ T (x)] .
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When parmtype='ratio' then when x = [0, 0] there is no information about the ratio and
we de�ne the p-value as 1. Similarly, when parmtype='oddsratio' and x = [0, 0] or x = [n1, n2]
there is no information about the odds ratio and we de�ne the p-value as 1, and we do not
calculate probabilities in p-value calculations over values with no information. Speci�cally,
let XI denote the set of X values with information about β. Then if x /∈ XI set pU(x, β0)
and pL(x, β0) to 1, otherwise let pU(x, β0) be

sup
θ:b(θ)≥β0

Pθ [T (X) ≤ T (x)|X ∈ XI ]Pθ [X ∈ XI ]

and analogously, let pL(x, β0) be

sup
θ:b(θ)≤β0

Pθ [T (X) ≥ T (x)|X ∈ XI ]Pθ [X ∈ XI ] .

Since we never reject when x /∈ XI , these de�nitions give valid p-values, and additionally
when x /∈ XI we do not need to de�ne T (x).

The tsmethod option gives two ways to calculate the two-sided p-value. The default
option is `central' to give a central p-value, which is

pts(x, β0) = pcentral(x, β0)

= min {1, 2pU(x, β0), 2pL(x, β0)}

The second options is tsmethod=`square'. For this option, we square the test statistic, T (x),
de�ned in the next section, and de�ne the p-value as

pts(x, β0) = psquare(x, β0)

=

{
supθ∈Θ0

Prθ [T
2(X) ≥ T 2(x)] (for parmtype="di�erence")

supθ∈Θ0
Prθ [T

2(X) ≥ T 2(x)|X ∈ XI ]Prθ [X ∈ XI ] (otherwise).

Since the probability expression only depends on the ordering, and since the ordering of the
square of T (X) is the same as the ordering of absolute value of T (X), we can equivalently
write psquare in terms of absolute values.

These exact p-values are necessarily conservative because for most θ ∈ Θ0 we have

Prθ [pU(X, β0) ≤ α] < α.

A less conservative approach, but one that is no longer valid (i.e., no longer exact), is to use
a mid-p value. For example, the mid-p value associated with pU is

pUmid(x,Θ0) = sup
θ:b(θ)≥β0

{
Prθ [T (X) < T (x)] +

1

2
Prθ [T (X) = T (x)]

}
.

Other mid p-values are de�ned analogously.
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1.2 Options for T (x)

1.2.1 Overview

We now give the T (x) function that is de�ned by three options: parmtype, nullparm , and
method. The option parmtype is one of `di�erence', `ratio' or `odds ratio', and it determines
the parameter associated with the con�dence interval. The option nullparm de�nes β0. The
default for nullparm=NULL, which is replaced by β0 = 0 for parmtype=`di�erence' and β0 = 1
for parmtype=`ratio' or `odds ratio'. Finally, method de�nes the type of T function:

simple: then T is an estimate of the parmtype using the estimates θ̂1 = x1/n1 and θ̂2 =
x2/n2.

simpleTB: simple with a tie break. Ties in T using the simple method are broken based
on variability, with larger variability further away from the null.

score: here T is based on a score statistic.

wald pooled: T is a Wald statistic on the di�erence in sample means using the pooled
variance estimate.

wald unpooled: T is a Wald statistic on the di�erence in sample means using an unpooled
variance estimate.

FisherAdj: T is a one-sided mid p-value using Fisher's exact test. Note that we create an
exact unconditional test using the ordering by the mid p-value, so the test is valid (or
exact), even though the mid p-values when used as p-values directly are not necessarily
valid.

1.2.2 Simple: Di�erence

When method=`simple' and parmtype=`di�erence' we have,

T (x) = T ([x1, x2]) =
x2

n2

− x1

n1

− β0

The order does not change as β0 changes.

1.2.3 Simple with Tie Break: Di�erence

When method=`simpleTB' and parmtype=`di�erence' and tsmethod=`central' we use T (x)
from the previous subsection, then break ties by ordering by T ∗(x) within each tied value
for T (x), where

T ∗(x) =
θ̂2 − θ̂1√

θ̂1(1−θ̂1)
n1

+ θ̂2(1−θ̂2)
n2

where θ̂1 = x1/n1 and θ̂2 = x2/n2. If T
∗ gives a ratio of 0/0 then it is set to 0.

3



The idea behind T ∗ is that with each β̂d = θ̂2− θ̂1 value, values with lower variability are
more extreme (i.e., ranked higher when β̂d is positive and ranked lower when β̂d is negative).
We do not subtract β0 from the numerator, because we do not want the order to change
for di�erent hypotheses, which makes calculations more di�cult and could possibly lead to
non-uni�ed inferences (e.g., reject the null at level α but the 1− α CI for βd includes 0).

1.2.4 Score:Di�erence

When method=`score' and parmtype=`di�erence' we have,

T ([x1, x2]) =
x2

n2
− x1

n1
− β0√

θ̃1(1− θ̃1)/n1 + θ̃2(1− θ̃2)/n2

,

where θ̃1 and θ̃2 are the maximum likelihood estimates of θ1 and θ2 under the restriction
that b(θ) = β0. See the code of constMLE.di�erence for the formula, or the Appendix of
Farrington and Manning (1990).

1.2.5 Wald-Pooled: Di�erence

When method=`wald-pooled' and parmtype=`di�erence' we have,

T ([x1, x2]) =
θ̂2 − θ̂1 − β0√

θ̂(1− θ̂)
(

1
n1

+ 1
n2

) ,
where θ̂1 = x1/n1 and θ̂2 = x2/n2 and θ̂ = (x1 + x2)/(n1 +n2). If T gives a ratio of 0/0 then
it is set to 0.

1.2.6 Wald-Unpooled: Di�erence

When method=`wald-unpooled' and parmtype=`di�erence' we have,

T ([x1, x2]) =
θ̂2 − θ̂1 − β0√

θ̂1(1− θ̂1)/n1 + θ̂2(1− θ̂2)/n2

,

where θ̂1 = x1/n1 and θ̂2 = x2/n2. If T gives a ratio of 0/0 then it is set to 0.

1.2.7 Simple: Ratio

When method=`simple' and parmtype=`ratio' we have,

T (x) = T ([x1, x2]) = log

(
θ̂2

β0θ̂1

)
= log(θ̂2)− log(θ̂1)− log(β0),

where θ̂a = xa/na for a = 1, 2. Note log(0) ≡ ∞ and log(0)− log(0) ≡ NA. We do not need
to de�ne NA values since x = [0, 0] has no information (see Section 1.1).
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1.2.8 Simple with Tie Break: Ratio

When method=`simpleTB' and parmtype=`ratio' we used T (x) from the previous subsection,
then break ties by ordering by T ∗(x) within each tied value for T (x), where

T ∗(x) =



x2 if x1 = 0 and x2 > 0
1/x1 if x1 > 0 and x2 = 0
0 if x1 = n1 and x2 = n2

log(θ̂2)−log(θ̂1)√
1
x1

− 1
n1

+ 1
x2

− 1
n2

if x1 > 0 and x2 > 0 and not(x1 = n1 and x2 = n2)

where θ̂1 = x1/n1 and θ̂2 = x2/n2.
In words, when x1/n1 = θ̂1 = 0 and x2 > 0 then T (x) = −∞ and we order by x2;

otherwise when we order x2/n2 = θ̂2 = 0 and x1 > 0 then T (x) = ∞ and we order by 1/x1;
otherwise when θ̂1 = θ̂2 = 1 we do not break the ties (by setting T ∗(x) = 0); otherwise
for each log(β̂r) = log(θ̂2/θ̂1) value, we rank values with lower variability are more extreme
(i.e., ranked higher when β̂r > 1 and ranked lower when β̂r < 1 is negative). The variance
formula comes from the variance estimate of the log(β̂r). Fleiss, Levin, and Paik (2003, p.
132, equation 6.112, except there is a typo) give the variance expression,

var(log(β̂r)) ≈
√
n1 − x1

x1n1

+
n2 − x2

x2n2

=

√
1

x1

− 1

n1

+
1

x2

− 1

n2

.

We do not subtract log(β0) from the numerator in the T ∗(|bfx) function to keep it simple.

1.2.9 Score: Ratio

When method=`score' and parmtype=`ratio' we have,

T ([x1, x2]) =
θ̂2 − θ̂1β0√

β0θ̃1(1− θ̃1)/n1 + θ̃2(1− θ̃2)/n2

,

where θ̃1 and θ̃2 are the maximum likelihood estimates of θ1 and θ2 under the restriction that
βr = b(θ) = β0; for the formula for θ̃a for a = 1, 2, see either the constrMLE.ratio, Miettinen
and Nurminen (1985).

1.2.10 Simple: Odds Ratio

When method=`simple' and parmtype=`odds ratio' we have,

T (x) = T ([x1, x2]) = log

(
θ̂2(1− θ̂1)

β0θ̂1(1− θ̂2)

)
,

where θ̂a = xa/na for a = 1, 2.
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1.2.11 Simple with Tie Break: Odds Ratio

When method=`simpleTB' and parmtype=`oddsratio' we used T (x) from the previous sub-
section, then break ties by ordering by T ∗(x) within each tied value for T (x), where

T ∗(x) =


x2 if x1 = 0 or x2 = n2

1/x1 if x1 = n1 or x2 = 0
log(x2)−log(n2−x2)−log(x1)+log(n1−x1)√

1
x1

+ 1
n1−x1

+ 1
x2

+ 1
n2−x2

otherwise

where θ̂1 = x1/n1 and θ̂2 = x2/n2.
In words, when β̂or = ∞ then we order by x2; otherwise when β̂or = −∞ then we order

by 1/x1; otherwise for each log(β̂or) value, we rank values with lower variability are more
extreme (i.e., ranked higher when β̂r > 1 and ranked lower when β̂r < 1 is negative). The
variance formula comes from the variance estimate of the log(β̂or). Fleiss, Levin, and Paik
(2003, p. 102, equation 6.19) give the variance estimate for var(β̂or), and using the delta
method, the estimate for var(log(β̂or)) is

var(log(β̂or)) ≈
√

1

x1

+
1

n1 − x1

+
1

x2

+
1

n2 − x2

.

We do not subtract log(β0) from the numerator to keep it simple.

1.2.12 Score: Odds Ratio

When method=`score' and parmtype=`oddsratio' we use (see Agresti and Min, 2002, p. 381,
except we do not square the statistic because we want to allow one-sided inferences),

T ([x1, x2]) =
{
n2

(
x2

n2

− θ̃2

)}√√√√ 1

n1θ̃1(1− θ̃1)
+

1

n2θ̃2(1− θ̃2)
,

where θ̃1 and θ̃2 are the maximum likelihood estimates of θ1 and θ2 under the restriction that

β̃or =
θ̃2(1− θ̃1)

θ̃1(1− θ̃2)
= β0.

For the formula for θ̃a for a = 1, 2, see either the function constrMLE.oddsratio or Miettinen
and Nurminen (1985).

1.2.13 FisherAdj: Di�erence, Ratio, or Odds Ratio

When method=`FisherAdj' we order by the mid p-value from a one-sided Fisher's exact test.
We do not change the ordering as the β0 changes, so it can be used with any parmtype.

Using the phyper and dhyper functions for the hypergeometric distribution, this becomes:

T ([x1, x2]) = phyper(x2, n2, n1, x2 + x1)− 0.5 ∗ dhyper(x2, n2, n1, x1 + x2)
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FisherAdj
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Figure 1: Plots of the orderings using plotT. Dark blue is highest, dard red is lowest, white
is the middle, and black is no information. The default is method="FisherAdj" (same for all
parmtypes), the method="simple" order by the plug-in estimates with sample proportions.

2 Comparing Orderings

In Figure 1 we show the default orderings and the method="simple" orderings for di�erent
values of parmtype.

In Figure 2 we show the similarity of several of the parmtype="di�erence" orderings.
The wald method gives a strange ordering at x = (0, 0) and x = (n1, n2) when β0 is close

to zero (see Figure 3).
When tsmethod="square" then a small di�erence in β0 can make a big di�erence in the

p-value (see Figure 4 for ordering di�erence, Figure 5 for a p-value example).
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Figure 2: Plots of the orderings using plotT. Notice how the orderings are nearly the same
for the 4 methods. The FisherAdj method has the advantage that it does not change with
parmtype or β0.
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simple difference, beta0=0.01
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Figure 3: Plots of the orderings using plotT. Since we de�ne 0/0 = 0, when we have θ̂1 = θ̂2
and β0 = 0 then the Wald methods give 0 (see Figure 1). But when β0 = 0.01 these values
at x = (0, 0) and x = (n1, n2) go to −∞.
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simple diff, T^2, beta0=0
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Figure 4: Plots of the orderings using plotT. Small changes in β0 can have large changes in
the ordering, because of the denominators equalling 0 at x = (0, 0) and x = (n1, n2).
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Figure 5: P-values from method="wald-pooled", tsmethod="square", and parm-

type="di�erence" for the data x1/n1 = 5/13 and x2/n2 = 12/14. Notice the strange
behaviour of the p-value at β0 = 0. This is because the denominator at x = (0, 0) and
x = (n1, n2) is 0 and 0/0 is de�ned as zero, and the p-value is de�ned as the sup over the
sample space which can give very large probability mass at x = (0, 0) or x = (n1, n2).
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3 Con�dence Intervals

Then we can create 100(1− α)% con�dence regions as the set of β0 value that fail to reject
the associated null hypothesis. For example,

Cts(x, 1− α) = {β : pts(x, β) > α}

gives a �two-sided� con�dence region. The region may not be an interval if the p-value
function is not unimodal. This problem occurs with Fisher's exact test (the Fisher-Irwin
version, or `minlike' version). For central con�dence regions we take the union of the one-
sided con�dence regions, in other words,

Cc(x, 1− α) = CL(x, 1− α/2) ∪ CU(x, 1− α/2),

where CL and CU are the one-sided con�dence regions,

CL(x, 1− α/2) = {β : pL(x, β) > α/2}

and

CU(x, 1− α/2) = {β : pU(x, β) > α/2} .

If the regions are intervals, and we let L(x, 1−α/2) = minCL(x, 1−α/2) and U(x, 1−α/2) =
maxCU(x, 1− α/2), then the central interval is

Cc(x, 1− α) = {L(x, 1− α/2), U(x, 1− α/2)} .

For the mid-p con�dence regions, we replace the p-values with the mid-p values.

4 Berger and Boos Adjustment

The Berger-Boos (1994) adjustment is as follows. Do the usual unconditional exact test, but
instead of taking the supremum over the entire null parameter space, we calculate a 100(1−
γ)% con�dence region over the null space, and only search within that. The 100(1 − γ)%
con�dence region is the union of the 100(1−γ/2) exact central two-sided con�dence interval
for θ1 and the analogous 100(1− γ/2) interval for θ2. This is the method used by StatXact.
Searching over that space gives anti-conservative p-values, so we turn those anti-conservative
p-values into valid p-values by adding γ to them. For details see Berger and Boos (1994) or
the StatXact manual.

5 The E+M Adjustment

Lloyd (2008) proposed another adjustment called the estimated and maximized (E + M)
p-value that can be applied to any ordering and any parmtype. In this method, we replace
an ordering statistic, T , with T ∗, where T ∗ is an estimated p-value when testing H0 : β ≤
β0 (or the negative estimated p-value when testing H0 : β ≥ β0). We estimate the p-
value by plugging in θ̂0 = [θ̂10, θ̂20] instead of taking the supremum of θ under the null,
where θ̂0 is the maximum likelihood estimator of θ under the null hypothesis. For example,
the approximation for pL uses p̂L(x, β0) = Pθ̂0

[T (X) ≤ T (x)]. Then we �maximize� using
T ∗(x) = p̂L(x, β0) instead of T as the ordering function. For details see Loyd (2008).
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