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Summary

This vignette uses the evd package to reproduce the �gures, tables and analysis in Chapter 9

of Beirlant et al. (2001). The chapter was written by Segers and Vandewalle (2004). The code

reproduces almost all �gures, but for space reasons only some are shown. Deviations from the

book are given as footnotes. Di�erences will inevitably exist due to numerical optimization and

random number generation.

1 Introduction

The methods used here are illustrated using the lossalae dataset, which contains observations

on 1500 liability claims. The indemnity payment (loss) and the allocated loss adjustment expense
(ALAE) is recorded in USD for each claim. The ALAE is the additional expenses associated

with the settlement of the claim (e.g. claims investigation expenses and legal fees). The dataset

also has an attribute called capped, which gives the row names of the indemnity payments that

were capped at their policy limit.

We �rst scale the data so that one unit corresponds to 100 000 USD. Putting the data on a sensible
scale assists with the numerical optimization involved in maximum likelihood estimation1. The

code below plots the raw data using the log scale for both axes (see Figure 1), and plots the data

transformed to uniform (0, 1) margins using an empirical transform.

> options(show.signif.stars=FALSE)

> library(evd); nn <- nrow(lossalae)

> loss <- lossalae/1e+05; lts <- c(1e-04, 100)

> plot(loss, log = "xy", xlim = lts, ylim = lts)

> ula <- apply(loss, 2, rank)/(nn + 1)

> plot(ula)

1The book reports an unsatisfactory �t of the GEV model to the margins. It therefore uses only empirical

marginal distributions. This was perhaps due to not scaling the data. In this document we use either fully

nonparametric or fully parametric methods.
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Figure 1: Scatterplot of ALAE verses Loss: original data (log-scale).

2 Parametric Models

Any bivariate extreme value distribution function can be represented in the form

G(z1, z2) = exp

{
−(y1 + y2)A

(
y1

y1 + y2

)}
,

where

yj = yj(zj) = {1 + ξj(zj − µj)/σj}
−1/ξj
+

for σj > 0 and j = 1, 2, and where

A(ω) = − log{G(y−1
1 (ω), y−1

2 (1− ω))},

de�ned on 0 ≤ ω ≤ 1 is called the dependence function2. The marginal distributions are

generalized extreme value (GEV), given by Gj(zj) = exp(−yj). It follows that A(0) = A(1) = 1,
and that A(·) is a convex function with max(ω, 1 − ω) ≤ A(ω) ≤ 1 for all 0 ≤ ω ≤ 1. At

independence A(1/2) = 1. At complete dependence A(1/2) = 0.5.

The dependence function represents only the dependence structure of the distribution, and hence

only the dependence parameters of parametric models need to be speci�ed in order to produce

dependence function plots. The code below plots dependence functions for four di�erent para-

metric models. The �rst of these is given in Figure 2.

2The book uses the de�nition B(ω) = A(1− ω).
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> abvevd(dep = 0.5, asy = c(1,1), model = "alog", plot = TRUE)

> abvevd(dep = 0.5, asy = c(0.6,0.9), model = "alog", add = TRUE, lty = 2)

> abvevd(dep = 0.5, asy = c(0.8,0.5), model = "alog", add = TRUE, lty = 3)

> abvevd(dep = -1/(-2), model = "neglog", plot = TRUE)

> abvevd(dep = -1/(-1), model = "neglog", add = TRUE, lty = 2)

> abvevd(dep = -1/(-0.5), model = "neglog", add = TRUE, lty = 3)

> abvevd(alpha = 1, beta = -0.2, model = "amix", plot = TRUE)

> abvevd(alpha = 0.6, beta = 0.1, model = "amix", add = TRUE, lty = 2)

> abvevd(alpha = 0.2, beta = 0.2, model = "amix", add = TRUE, lty = 3)

> abvevd(dep = 1/1.25, model = "hr", plot = TRUE)

> abvevd(dep = 1/0.83, model = "hr", add = TRUE, lty = 2)

> abvevd(dep = 1/0.5, model = "hr", add = TRUE, lty = 3)
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Figure 2: Dependence functions: asymmetric logistic model.

3 Componentwise Maxima

For demonstration purposes we use the data introduced in Section 1 to create a dataset of

componentwise block maxima by randomly taking k = 50 groups of size m = 30, producing k
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componentwise maxima taken over m observations3. Bivariate extreme value distributions are

typically used to model data of this type. The code below creates the componentwise maxima

data cml and produces two data plots, the �rst showing the original data and the componentwise

maxima, and the second showing the componentwise maxima data transformed to standard

exponential margins.

> set.seed(131); cml <- loss[sample(nn),]

> xx <- rep(1:50, each = 30); lts <- c(1e-04, 100)

> cml <- cbind(tapply(cml[,1], xx, max), tapply(cml[,2], xx, max))

> colnames(cml) <- colnames(loss)

> plot(loss, log = "xy", xlim = lts, ylim = lts, col = "grey")

> points(cml)

> ecml <- -log(apply(cml,2,rank)/51)

> plot(ecml)

The following code estimates and plots the dependence function A(·) from the componentwise

maxima data. The �rst code chunk uses various nonparametric estimates of the dependence

function, and also uses empirical (i.e. nonparametric) estimation of the margins, as speci�ed by

epmar = TRUE. The four di�erent estimates are shown in Figure 3. The second code chunk uses

maximum likelihood estimation for parametric models. The call to fbvevd �ts the model, and

the call to plot plots the parametric dependence function estimates. The argument speci�cation

asy1 = 1 in the �rst call to fbvevd constrains the model �t so that the �rst asymmetry parameter

of the model is �xed at the value one.

> pp <- "pickands"; cc <- "cfg"

> abvnonpar(data = cml, epmar = TRUE, method = pp, plot = TRUE, lty = 3)

> abvnonpar(data = cml, epmar = TRUE, method = pp, add = TRUE, madj = 1, lty = 2)

> abvnonpar(data = cml, epmar = TRUE, method = pp, add = TRUE, madj = 2, lty = 4)

> abvnonpar(data = cml, epmar = TRUE, method = cc, add = TRUE, lty = 1)

> m1 <- fbvevd(cml, asy1 = 1, model = "alog")

> m2 <- fbvevd(cml, model = "log")

> m3 <- fbvevd(cml, model = "bilog")

> plot(m1, which = 4, nplty = 3)

> plot(m2, which = 4, nplty = 3, lty = 2, add = TRUE)

> plot(m3, which = 4, nplty = 3, lty = 4, add = TRUE)

The objects produced by fbvevd contain information about the parametric �t of the bivariate

extreme value distribution. For example, m2 contains information on the �t of a (symmetric)

logistic extreme value distribution, which has a single dependence parameter and three parame-

ters on each of the GEV margins. Using plot(m2) produces several diagnostic plots, including

quantile curves and spectral densities. Using deviance(m2) produces the deviance, which is

equal to twice the negative log-likelihood. The following shows the parameter estimates and

their standard errors, and gives an analysis of deviance table for testing m2 verses m3, which is

possible since the models are nested, with m3 having one additional dependence parameter. The

call to exind.test produces a score test for independence, following Tawn (1988). Omitting the

method argument gives a likelihood ratio test, also from Tawn (1988), which is typically more

accurate.

3The data may be completely di�erent to the book due to random selection.
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Figure 3: Nonparametric dependence function estimates by Pickands (dotted line), Deheuvels

(dashed line), Hall-Tajvidi (dot-dashed line) and Capéràa-Fougères-Genest (solid line) based on

componentwise block maxima data and using empirical marginal estimation.

> round(rbind(fitted(m2), std.errors(m2)), 3)

loc1 scale1 shape1 loc2 scale2 shape2 dep

[1,] 2.236 1.407 0.392 0.564 0.320 0.639 0.817

[2,] 0.231 0.203 0.140 0.051 0.054 0.150 0.097

> anova(m3, m2)

Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

m3 8 281.45

m2 7 284.61 1 3.1574 0.07558

> evind.test(cml, method = "score")

Score Test Of Independence

data: cml
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norm.score = -1.8224, p-value = 0.0342

alternative hypothesis: true dependence is greater than independence

sample estimates:

dep

0.816961

The code below uses the function qcbvnonpar to plot quantile curves using nonparametric de-

pendence function estimates. Quantile curves are de�ned as

Q(F, p) = {(z1, z2) : F (z1, z2) = p},

where F is a distribution function and p is a probability. We use the default nonparametric

estimation method and we again use empirical estimation of the margins4, as speci�ed by epmar

= TRUE. For parametric dependence models similar plots can be produced using e.g. plot(m2,

which = 5). Note that because we plot curves corresponding to the distribution of the original

dataset rather than the componentwise maxima, we pass the argument mint = 30.

> lts <- c(0.01,100)

> plot(loss, log = "xy", col = "grey", xlim = lts, ylim = lts)

> points(cml); pp <- c(0.98,0.99,0.995)

> qcbvnonpar(pp, data = cml, epmar = TRUE, mint = 30, add = TRUE)

4 Excesses Over A Threshold

We now consider all the 1500 observations on liability claims. We assume that the data are

distributed according to the distribution function F , and we are interested in F (z) where z =
(z1, z2) is in some sense large. The methods we use assume that F is in the domain of attraction

of some bivariate extreme value distribution G, and we focus on large data points to estimate

features of G, and hence of F (z) for large z.

Typically we focus on points z that lie above a certain threshold. The functions tcplot and

mrlplot can be used for producing plots on each margin to help determine thresholds u1 and u2
for methods that focus primarily on points z such that z1 > u1 and z2 > u2. Alternatively, the
function bvtcplot can be used to help determine a single threshold u∗ for methods that focus

on points z such that r(z) > u∗, where r(z) = x1(z1) + x2(z2), and xj(zj) = −1/ log F̂j(zj) for
j = 1, 2 where Fj is estimated empirically.

Following Segers and Vandewalle (2004), a sensible choice for threshold u∗ might be found from

Figure 5 by taking the kth largest r(z), where k is the largest value for which the y-axis is close

to two. Figure 5 is plotted below using bvtcplot. The value of k is returned invisibly. Setting

spectral = TRUE uses the kth largest points to plot a nonparametric estimate of H([0, ω]) where
H is the spectral measure of G.

> k0 <- bvtcplot(loss)$k0

> bvtcplot(loss, spectral = TRUE)

4Using parametric marginal estimates tends to produce more sensible quantile curve plots, but we follow the

book here. Unlike the book, the quantile curves in Figure 4 are not step functions because the empirical marginal

transforms include interpolation.
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Figure 4: Estimated quantile curves Q(F̂ , p) for p = 0.98, 0.99, 0.995 based on the componentwise
block maxima data shown as black circles, using the Capéràa-Fougères-Genest nonparametric

estimate of the dependence function and using empirical marginal estimation.

The parametric approach to the problem can employ models similar to those used for bivariate

extreme value distributions. We �rst consider the margins separately by �tting a univariate

generalized Pareto distribution to the excesses over the threshold uj on each margin j = 1, 2.
We choose the thresholds so that the number of exceedances is roughly5 half of the value k0.

> thresh <- apply(loss, 2, sort, decreasing = TRUE)[(k0+5)/2,]

> mar1 <- fitted(fpot(loss[,1], thresh[1]))

> mar2 <- fitted(fpot(loss[,2], thresh[2]))

> rbind(mar1,mar2)

scale shape

mar1 0.8313558 0.4562441

mar2 0.2148189 0.4455429

Parametric threshold models can be �tted using the function fbvpot, with the parametric model

speci�ed using the model argument. The default approach uses censored likelihood methodol-

ogy, where a bivariate extreme value dependence structure is �tted to the data censored at the

marginal thresholds u1 and u2. Alternatively, a Poisson process model can be employed using the
likelihood argument, employing the methodology of Coles and Tawn (1991). Some examples

5The value is chosen so that the thresholds match exactly with those used in the book.
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Figure 5: A plot of (k/n)r(n−k) as a function of k, where r(1) ≤ · · · ≤ r(n) are the ordered values

of r. The y-axis provides an estimate of H([0, 1]) = 2 for the spectral measure H of G.

of parametric �ts are given below. Diagnostic plots for the �tted models can be produced using

e.g. plot(m2).

> m1 <- fbvpot(loss, thresh, model = "alog", asy1 = 1)

> m2 <- fbvpot(loss, thresh, model = "bilog")

> m3 <- fbvpot(loss, thresh, model = "bilog", likelihood = "poisson")

> round(rbind(fitted(m2), std.errors(m2)), 3)

scale1 shape1 scale2 shape2 alpha beta

[1,] 0.780 0.601 0.205 0.556 0.579 0.760

[2,] 0.113 0.133 0.027 0.118 0.086 0.047

The following code plots parametric and nonparametric estimates for the bivariate extreme value

dependence structure �tted to the upper tail of F . The parametric estimates use the previously
�tted models. The nonparametric estimate can be plotted using the "pot" method and takes

the value k0 to specify the threshold.

> abvnonpar(data = loss, method = "pot", k = k0, epmar = TRUE,

+ plot = TRUE, lty = 3)

> plot(m1, which = 2, add = TRUE)

> plot(m2, which = 2, add = TRUE, lty = 4)

> plot(m3, which = 2, add = TRUE, lty = 2)
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Figure 6 uses our �tted asymmetric logistic model m1 to plot quantile curves at probabilities

p = 0.98, 0.99, 0.995. The thresholds used for the censored likelihood model �t are also added to

the plot.

> lts <- c(1e-04, 100)

> plot(loss, log = "xy", col = "grey", xlim = lts, ylim = lts)

> plot(m1, which = 3, p = c(0.95,0.975,0.99), tlty = 0, add = TRUE)

> abline(v=thresh[1], h=thresh[2])
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Figure 6: Quantile curves for probabilities p = 0.98, 0.99, 0.995 for an asymmetric logistic model

�t using censored likelihood estimation, with censoring at marginal thresholds given by the

vertical and horizontal lines.

Models based on bivariate extreme value distributions assume that the margins are either asymp-

totically dependent or are perfectly independent. They cannot account for situations where the

dependence between the margins vanishes at increasingly extreme levels. The remainder of this

section illustrates the estimation of dependence measures that can identify such cases.

We consider three quantities as de�ned in Coles et al. (1999). The coe�cient of extremal depen-

dence χ ∈ [0, 1] is the tendency for one variable to be large given that the other is large. When

χ = 0 the variables are asymptotically independent, and when χ > 0 they are asymptotically

independent. The second measure χ̄ identi�es the strength of dependence for asymptotically

independent variables. When χ̄ = 1 the variables are asymptotically dependent, and when

−1 ≤ χ̄ < 1 they are asymptotically independent. The third measure is the coe�cient of tail

dependence η, which satis�es χ̄ = 2η − 1.
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The following code produces Figure 7 which shows estimates of the functions χ(u) and χ̄(u), as
de�ned in Coles et al. (1999), for 0 < u < 1. The functions are de�ned so that χ = limu→1 χ(u)
and χ̄ = limu→1 χ̄(u). In this case χ(u) > 0 for all u but there is little evidence that χ̄ is close

to one, so it is di�cult to specify the form of dependence on the basis of this plot.

> old <- par(mfrow = c(2,1))

> chiplot(loss, ylim1 = c(-0.25,1), ylim2 = c(-0.25,1), nq = 200,

+ qlim = c(0.02,0.98), which = 1:2, spcases = TRUE)

> par(old)
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Figure 7: The dependence measures χ(u) and χ̄(u). Estimates (solid line), 95% pointwise con-

�dence intervals (dot-dashed lines). The dashed lines represent the theoretical limits of the

functions and the exact independence case at zero.

We now consider the coe�cient of tail dependence η. We can estimate η using univariate theory

because of its relationship with T = min{x1(z1), x2(z2)}. If we �t a generalized Pareto distri-

bution to the data points in T that exceed a large �xed threshold, then the estimated shape

parameter of the �tted distribution provides an estimate of η. The call to tcplot plots estimates
of η at di�erent thresholds in order to assist with threshold choice. The plot seems roughly linear
after u = 0.8, so we take the 80th percentile of T as our threshold. Finally, we use anova to

perform a likelihood ratio test for asymptotic dependence, with the null hypothesis η = 1 versus
the alternative η < 1.

> fla <- apply(-1/log(ula), 1, min)

> thresh <- quantile(fla, probs = c(0.025, 0.975))
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> tcplot(fla, thresh, nt = 100, pscale = TRUE, which = 2, vci = FALSE,

+ cilty = 2, type = "l", ylim = c(-0.2,1.2), ylab = "Tail Dependence")

> abline(h = c(0,1))

> thresh <- quantile(fla, probs = 0.8)

> m1 <- fpot(fla, thresh = thresh)

> cat("Tail Dependence:", fitted(m1)["shape"], "\n")

Tail Dependence: 0.7979134

> m2 <- fpot(fla, thresh = thresh, shape = 1)

> anova(m1, m2, half = TRUE)

Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

m1 2 1596.5

m2 1 1599.6 1 6.2247 0.0126
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Figure 8: Maximum likelihood estimates (solid line) and 95% pointwise con�dence intervals

(dot-dashed lines) for η at di�erent threshold probabilities.
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