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Abstract

The ModelMap package (Freeman, 2009) for R (R Development Core Team, 2008) has
added two additional variants of random forests: quantile regression forests and conditional
inference forests. The quantregForest package (Meinshausen and Schiesser, 2015) is used
for quantile regression forest (QRF) models. QRF models provide the ability to map the
predicted median and individual quantiles. This makes it possible to map lower and upper
bounds for the predictions without relying on the assumption that the predictions of individ-
ual trees in the model follow a normal distribution. The party package (Hothorn et al., 2006;
Strobl et al., 2007, 2008) is used for conditional inference forest (CF) models. CF models
offer two advantages over traditional RF models: they avoid RF’s bias towards predictor
variables with higher numbers of categories; and, they provide a conditional importance
measure, allowing a better understanding of the relative importance of correlated predictor
variables.

1 Introduction

The ModelMap package (Freeman, 2009) for R (R Development Core Team, 2008) has added
two additional variants of random forests: quantile regression forests and conditional inference
forests.

Quantile regression forest (QRF) models provide the ability to map the predicted median
as well individual quantiles. This makes it possible to map lower and upper bounds for the
predictions without relying on the assumption that the predictions of individual trees in the
model follow a normal distribution. Mapping the predicted median rather than the predicted
mean also may help avoid non-linearity of data leading to biased mean predictions (Anderson
et al., 2014). The quantregForest package (Meinshausen and Schiesser, 2015) is used for QRF
models.

Conditional inference forest CF models offer two advantages over traditional RF models: they
avoid RF’s bias towards predictor variables with higher numbers of categories; and, they provide
a conditional importance measure, allowing a better understanding of the relative importance
of correlated predictor variables. CF models avoid the potential bias found in RF variable
importance measures when the predictors vary in their scale or their number of categories (Strobl
et al., 2007). This potential bias in RF models is caused by the modeling process itself, where
CART decision trees (Breiman et al., 1984) based on the Gini criterion favor predictors with
more categories or larger scales (Strobl et al., 2007). In addition to the biases in the model
building process, when the permutation importance is calculated, the permutation process favors
correlated predictor variables (Strobl et al., 2008). CF models can avoid both these pitfalls,
though one potential draw back is that CF models are very computer intensive, especially for
large datasets. The party package (Hothorn et al., 2006; Strobl et al., 2007, 2008) is used for CF
models.
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Name Type Description
ELEV250 Continuous 90m NED elevation (ft)

resampled to 250m, average of 49 points
NLCD01 250 Categorical National Land Cover Dataset 2001

resampled to 250m - min. value of 49 points
EVI2005097 Continuous MODIS Enhanced vegetation index
NDV2005097 Continuous MODIS Normalized difference vegetation index
NIR2005097 Continuous MODIS Band 2 (Near Infrared)
RED2005097 Continuous MODIS Band 1 (Red)

Table 1: Predictor variables

2 Example dataset

The model.explore function can be used for both continuous and factored predictors, and for
binary, categorical, and continuous responses. The out put graphics vary depending on the
predictor and response types.

The data set used in this vignette is from a pilot study in Nevada launched in 2004 involving
acquisition and photo-interpretation of large-scale aerial photography, the Nevada Photo-Based
Inventory Pilot (NPIP) (Frescino et al., 2009). The data files for these examples are included
in the ModelMap package installation in the R library directory. The data sets are under the
’external’ then under ’vignetteexamples’.

The predictor data set consists of 6 predictor variables: 5 continuous variables, and 1 categor-
ical variable (Table 1). The predictor layers are 250-meter resolution, pixel-based raster layers
including Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite imagery (Justice
et al., 2002), a Landsat Thematic Mapper-based, thematic layer of predicted land cover, National
Land Cover Data (NLCD) (Homer et al., 2004), and a topographic layer of elevation from the
National Elevation Data (Gesch et al., 2002).

The continuous response variables are percent cover of Pinyon and Sage. The binary response
variables are presence of Pinyon and Sage. The categorical response variable is the vegetation
category: TREE, SHRUB, OTHERVEG, and NONVEG.

The MODIS data included 250-meter, 16-day, cloud-free, composites of MODIS imagery
for April 6, 2005: visible-red (RED) and near-infrared (NIR) bands and 2 vegetation indices,
normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) (Huete
et al., 2002). The land cover and topographic layers were 30-meter products re-sampled to 250
meter using majority and mean summaries, respectively.

The rectangular subset of Nevada chosen for these maps was deliberately selected to lie along
the diagonal edge of the study region to illustrate how ModelMap handles unsampled regions of
a rectangle (Figure 1).

Load the ModelMap package.

R> library("ModelMap")

R> library(raster)

R> elevfn <- paste(getwd(),"/VModelMapData_dem_ELEVM_250.img",sep="")

R> mapgrid <- raster(elevfn)
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Figure 1: Elevation of the subset of the study region used for this vignette. This is a small area
located along the southeast edge of nevada, containing a portion of a small mountain range. The
Projection: Universal Transverse Mercator (UTM) Zone 11, Datum: NAD83
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2.1 Set up

After installing the ModelMap package, find the sample data sets from the R installation and
copy them to your working directory. The data consists of five files and is located in the vignette
directory of ModelMap, for example, in C:\R\R-2.15.0\library\ModelMap\vignettes.

There are 5 files:
VModelMapData.csv
VModelMapData LUT.csv
VModelMapData dem ELEVM 250.img
VModelMapData modis STK2005097.img
VModelMapData nlcd NLCD01 250.img

Next define some of the arguments.
Define training and test data file names. Note that the arguments qdata.trainfn and

qdata.testfn will accept either character strings giving the file names of CSV files of data, or
the data itself in the form of a data frame.

R> qdatafn <- "VModelMapData.csv"

R> qdata.trainfn <- "VModelMapData_TRAIN.csv"

R> qdata.testfn <- "VModelMapData_TEST.csv"

Define the output folder.

R> folder <- getwd()

Split the data into training and test sets. In example 1, an independent test set is used for
model validation diagnostics. The function get.test() randomly divides the original data into
training and test sets. This function writes the training and test sets to the folder specified by
folder, under the file names specified by qdata.trainfn and qdata.testfn. If the arguments
qdata.trainfn and qdata.testfn are not included, file names will be generated by appending
"_train" and "_test" to qdatafn.

R> get.test( proportion.test=0.2,

qdatafn=qdatafn,

seed=42,

folder=folder,

qdata.trainfn=qdata.trainfn,

qdata.testfn=qdata.testfn)

Define the predictors and define which predictors are categorical. Example 1 uses five continu-
ous predictors: the four predictor layers from the MODIS imagery plus the topographic elevation
layer. As none of the chosen predictors are categorical set predFactor to FALSE.

R> predList <- c( "ELEV250",

"NLCD01_250",

"EVI2005097",

"NDV2005097",

"NIR2005097",

"RED2005097")

R> predFactor <- c("NLCD01_250")

Define the column that contains unique identifiers for each data point. These identifiers will
be used to label the output file of observed and predicted values when running model validation.
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R> unique.rowname <- "ID"

Define raster look up table.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table( rastLUTfn,

header=FALSE,

sep=",",

stringsAsFactors=FALSE)

R> rastLUTfn[,1] <- paste(folder,rastLUTfn[,1],sep="/")

3 Example 1 - Quantile Regression Forest

3.1 Build Models

Also, when working with QRF models, ModelMap will create two models: the QRF model, and
a RF model built with from the same training data and with the same model parameters. This
allows simple comparison of predicted median and predicted mean. When model.type="QRF"

the model.build() function returns these models as a list with two components. This list can be
used as the model.obj argument to the other ModelMap functions. If you wish to use functions
from outside ModelMap on these models you can extract the individual QRF and RF models by
name. For example: model.obj$QRF and model.obj$RF.

R> MODELfn.pinyon <- "VQuantile_QRF_Pinyon"

R> MODELfn.sage <- "VQuantile_QRF_Sage"

R> response.name.pinyon <- "PINYON"

R> response.name.sage <- "SAGE"

R> response.type <- "continuous"

R> QRF.pinyon <- model.build( model.type="QRF",

qdata.trainfn=qdata.trainfn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.pinyon,

predList=predList,

predFactor=predFactor,

response.name=response.name.pinyon,

response.type=response.type,

#importance currently unavailable for QRF

#importance=TRUE,

#quantiles=c(0.1,0.2,0.5,0.8,0.9)

)

R> QRF.sage <- model.build( model.type="QRF",

qdata.trainfn=qdata.trainfn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.sage,

predList=predList,

predFactor=predFactor,
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response.name=response.name.sage,

response.type=response.type,

#importance currently unavailable for QRF

#importance=TRUE,

#quantiles=c(0.1,0.2,0.5,0.8,0.9)

)

3.2 Diagnostics

R> QRF.pinyon.pred <- model.diagnostics( model.obj=QRF.pinyon,

qdata.testfn=qdata.testfn,

folder=folder,

MODELfn=MODELfn.pinyon,

unique.rowname=unique.rowname,

quantiles=c(0.1,0.5,0.9),

# Model Validation Arguments

prediction.type="TEST",

device.type=c("pdf","png"),

cex=1.2)

R> QRF.sage.pred <- model.diagnostics( model.obj=QRF.sage,

qdata.testfn=qdata.testfn,

folder=folder,

MODELfn=MODELfn.sage,

unique.rowname=unique.rowname,

quantiles=c(0.1,0.5,0.9),

# Model Validation Arguments

prediction.type="TEST",

device.type=c("pdf","png"),

cex=1.2)

3.3 Importance Plots

Importance is currently unavailable for QRF models. It will be re-enabled when the quantreg-
Forest package is updated.

3.4 Interaction Plots

For QRF models, interaction plots can be generated for the median predicted value, as well as
for individual quantiles.

The model.interaction.plot() function provides a diagnostic plot useful in visualizing
two-way interactions between predictor variables. Two of the predictor variables from the model
are used to produce a grid of possible combinations over the range of both variables. The
remaining predictor variables are fixed at either their means (for continuous predictors) or their
most common value (for categorical predictors). Model predictions are generated over this grid
and plotted as the z axis. The model.interaction.plot() function was developed from the
gbm.perspec function from the tutorial provided as appendix S3 in Elith et al. (2008).

The model.interaction.plot() function provides two graphical options: an image plot,
and a 3-D perspective plot. These options are selected by setting plot.type = "image" or
plot.type = "persp". The x and y arguments are used to specify the predictor variables for
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the X and Y axis. The predictors can be specified by name, or by number, with the numbers
referring to the order the variables appear in predList.

The pred.means argument allows you to use a named vector to specify values for the pre-
dictors not being used as X and Y axis variables. In the example below, pred.means are set
to values associated with high levels of Pinyon, as determined from the model.explore() plots.
The reasoning behind this, is to see what effect the X and Y axis variables have on Pinyon cover,
when the other predictors are at their ideal values (

R> pred.means <- c( ELEV250 = 2300,

NLCD01_250 = 42,

EVI2005097 = 1800,

NDV2005097 = 3100,

NIR2005097 = 2000,

RED2005097 = 1000)

R> opar <- par(mfrow=c(3,1),mar=c(2,3,0,2),oma=c(0,0,3,0))

R> for(quantile in c(0.1,0.5,0.9)){

model.interaction.plot( QRF.pinyon$QRF,

x="ELEV250",

y="EVI2005097",

main="",

plot.type="persp",

device.type=c("none"),

MODELfn=MODELfn.pinyon,

folder=paste(folder,"/interaction",sep=""),

quantile=quantile,

pred.means=pred.means,

zlim=c(0,60))

mtext(paste( quantile*100,"% Quantile",sep=""),side=2,line=1,font=2,cex=1)

}

R> mtext("Pinyon Cover by Quantile",side=3,line=1,cex=1.8,outer=TRUE)

R> par(opar)

R>
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Figure 2: Pinyon Percent Cover - Interaction between elevation and EVI with other predictors
fixed at optimum values for Pinyon.

8



3.5 Map production

3.5.1 Raster Lookup Table

The model.mapmake() uses a look up table to associate the predictor variables with the rasters.
The function argument rastLUTfn will accept either a file name of the CSV file containing the
table, or the data frame itself.

Although in typical user applications the raster look up table must include the full path for
predictor rasters, the table provided for the examples will be incomplete when initially down-
loaded, as the working directory of the user is unknown and will be different on every computer.
This needs to be corrected by pasting the full paths to the user’s working directory to the first
column, using the value from folder defined above.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table( rastLUTfn,

header=FALSE,

sep=",",

stringsAsFactors=FALSE)

R> rastLUTfn[,1] <- paste(folder,rastLUTfn[,1],sep="/")

3.5.2 Predict Over the Rasters

R> model.mapmake( model.obj=QRF.pinyon,

folder=folder,

MODELfn=MODELfn.pinyon,

rastLUTfn=rastLUTfn,

na.action="na.omit",

# Mapping arguments

map.sd=TRUE,

quantiles=c(0.1,0.5,0.9))

R> model.mapmake( model.obj=QRF.sage,

folder=folder,

MODELfn=MODELfn.sage,

rastLUTfn=rastLUTfn,

na.action="na.omit",

# Mapping arguments

map.sd=TRUE,

quantiles=c(0.1,0.5,0.9))

3.5.3 RF Map

When building QRF models, ModelMap creates both a QRF model and an ordinary RF model.
We will start by comparing the maps of mean predicted canopy cover from the RF model
(Figure 3) with those of median predicted canopy cover from teh QRF model (Figure 4).

From the RF and the QRF maps, we can see that Pinyon percent cover is higher in the
mountains, while Sage percent cover is higher in the foothills at the edges of the mountains.

Note that the sample map data was taken from the South Eastern edge of our study region, to
illustrate howModelMap deals with portions of the rectangle that fall outside of the study region.
The empty wedge at lower right in the maps is the portion outside the study area. ModelMap
uses -9999 for unsampled data. When viewing maps in a GIS, a mask file can be used to hide
unsampled regions, or other commands can be used to set the color for -9999 values.
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Since we know that percent cover can not be negative, we will set zlim to range from zero to
the maximum value found in our map and define a color ramp such that zero values will display
as white, shading to dark green for high values of cover.

R> l <- seq(100,0,length.out=101)

R> c <- seq(0,100,length.out=101)

R> col.ramp <- hcl(h = 120, c = c, l = l)

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> mapgrid.pinyon <- raster(paste(MODELfn.pinyon,"_map_RF.img",sep=""))

R> mapgrid.sage <- raster(paste(MODELfn.sage,"_map_RF.img",sep=""))

R> zlim <- c(0,60)

R> legend.label<-rev(pretty(zlim,n=5))

R> legend.colors<-col.ramp[trunc((legend.label/max(legend.label))*100)+1]

R> legend.label<-paste(legend.label,"%",sep="")

R> image( mapgrid.pinyon,

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.pinyon,side=3,line=1,cex=1.2)

R> image( mapgrid.sage,

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.sage,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.sage),y=ymax(mapgrid.sage),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("RF - Mean Percent Cover",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> mapgrid.pinyon <- brick(paste(MODELfn.pinyon,"_map_QRF.img",sep=""))

R> mapgrid.sage <- brick(paste(MODELfn.sage,"_map_QRF.img",sep=""))

R> image( mapgrid.pinyon[[2]],

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.pinyon,side=3,line=1,cex=1.2)

R> image( mapgrid.sage[[2]],

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")
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Figure 3: RF Maps of mean percent cover for Pinyon and Sage (RF models).

R> mtext(response.name.sage,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.sage),y=ymax(mapgrid.sage),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("QRF - Median (50% quantile) Percent Cover",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> image( mapgrid.pinyon[[1]],

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.pinyon,side=3,line=1,cex=1.2)

R> image( mapgrid.sage[[1]],

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.sage,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.sage),y=ymax(mapgrid.sage),
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Figure 4: Maps of median percent cover (50% quantile) for Pinyon and Sage (QRF models).

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("QRF - Lower bound (10% quantile)",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> image( mapgrid.pinyon[[3]],

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.pinyon,side=3,line=1,cex=1.2)

R> image( mapgrid.sage[[3]],

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.sage,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.sage),y=ymax(mapgrid.sage),

legend=legend.label,

fill=legend.colors,
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Figure 5: Maps of Lower bound (10% quantile) for Pinyon and Sage (QRF models).

bty="n",

cex=1.2)

R> mtext("QRF model - Upper - 90% quantile",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

3.6

4 Conditional Inference Forest

Conditional Inference (CF) models (from the party package) address two possible biases in Ran-
dom Forest models. First, it has been shown that variable importance in Random Forest is biased
in cases where predictor variables are different is scale (for continuous predictors) or number of
categories (for factored predictors) (Strobl et al., 2007). Second, when predictor variables are cor-
related, traditional random forest will divide the importance amongst the correlated predictors,
sometimes giving the impression that none of these predictors are important to the model.

CF models do not preferentially select for predictors of larger scale or higher numbers of
categories. And CF models have an option to calculate the conditional importance, to distinguish
between predictors that are truly important to the model, and predictors that only appear
important due to their correlation with other predictors.

A draw back with CF models is that they are much more memory intensive than RF models.
And currently if you have more than just 3 or 4 predictors, it is not possible for most desktop or
laptop computers to calculate the conditional importance for more than approximately 400 data
points.
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Figure 6: Maps of upper bound (90% quantile) for Pinyon and Sage (QRF models).

4.1 Build Models

R> MODELfn.pinyon <- "VQuantile_CF_Pinyon"

R> MODELfn.sage <- "VQuantile_CF_Sage"

R> response.name.pinyon <- "PINYON"

R> response.name.sage <- "SAGE"

R> response.type <- "continuous"

R> qdata<-read.csv(qdata.trainfn)

R> IS.NUM<-sapply(qdata,is.numeric)

R> qdata[,IS.NUM]<-sapply(qdata[,IS.NUM],as.numeric)

R> CF.pinyon <- model.build( model.type="CF",

qdata.trainfn=qdata,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.pinyon,

predList=predList,

predFactor=predFactor,

response.name=response.name.pinyon,

response.type=response.type)

R> CF.sage <- model.build( model.type="CF",

qdata.trainfn=qdata,

folder=folder,

unique.rowname=unique.rowname,
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MODELfn=MODELfn.sage,

predList=predList,

predFactor=predFactor,

response.name=response.name.sage,

response.type=response.type)

4.2 Importance Plots

Here we will compare the unconditional variable importances from the CF model with the uncon-
ditional importances from the ordinary RF model (Figure 7). For conditional CF importances,
change cf.conditional.1 to TRUE. It is also possible to use model.importance.plot() to com-
pare conditional and unconditional importances for a single CF model.

Be aware that conditional importance will take much longer to calculate, and may fail com-
pletely if your training data has more than approximately 400 data points.

Note, importances are currently unavailable for QRF models, and even the RF model built
as part of a QRF model only currently has imp.type equals 2 (the node impurity).

R> opar <- par(mfrow=c(2,1),mar=c(3,3,3,3),oma=c(0,0,3,0))

R> Imp.pinyon<-model.importance.plot( model.obj.1=CF.pinyon,

model.obj.2=QRF.pinyon$RF,

model.name.1="unconditional (CF)",

model.name.2="unconditional (RF)",

imp.type.1=1,

imp.type.2=2,

cf.conditional.1=FALSE,

sort.by="predList",

predList=predList,

scale.by="sum",

main="Pinyon Percent Cover",

device.type="none",

cex=0.9)

R> Imp.sage<-model.importance.plot( model.obj.1=CF.sage,

model.obj.2=QRF.sage$RF,

model.name.1="unconditional (CF)",

model.name.2="unconditional (RF)",

imp.type.1=1,

imp.type.2=2,

cf.conditional.1=FALSE,

sort.by="predList",

predList=predList,

scale.by="sum",

main="Sage Percent Cover",

device.type="none",

cex=0.9)

R> mtext("CF versus RF Variable Importance",side=3,line=0,cex=1.8,outer=TRUE)

R> par(opar)
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Figure 7: Comparison of conditional variable importance from the CF model with unconditional
importance form the RF model .
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4.3 Map production

4.3.1 Predict Over the Rasters

R> model.mapmake( model.obj=CF.pinyon,

folder=folder,

MODELfn=MODELfn.pinyon,

rastLUTfn=rastLUTfn,

na.action="na.omit"

)

R> model.mapmake( model.obj=CF.sage,

folder=folder,

MODELfn=MODELfn.sage,

rastLUTfn=rastLUTfn,

na.action="na.omit"

)

4.3.2 CF Map

Maps of CF models (Figure 8).

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> mapgrid.pinyon <- raster(paste(MODELfn.pinyon,"_map.img",sep=""))

R> mapgrid.sage <- raster(paste(MODELfn.sage,"_map.img",sep=""))

R> zlim <- c(0,60)

R> image( mapgrid.pinyon,

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.pinyon,side=3,line=1,cex=1.2)

R> image( mapgrid.sage,

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.sage,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.sage),y=ymax(mapgrid.sage),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("CF - Mean Percent Cover",side=3,line=1,cex=1.5,outer=T)

R> par(opar)
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