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Abstract

The ModelMap package (Freeman, 2009) for R (R Development Core Team, 2008) enables
user-friendly modeling, validation, and mapping over large geographic areas though a single R
function or GUI interface. It constructs predictive models of continuous or discrete responses
using Random Forests or Stochastic Gradient Boosting. It validates these models with an
independent test set, cross-validation, or (in the case of Random Forest Models) with Out
OF Bag (OOB) predictions on the training data. It creates graphs and tables of the model
validation diagnostics. It applies these models to GIS image files of predictors to create
detailed prediction surfaces. It will handle large predictor files for map making, by reading in
the GIS data in sections,thus keeping memory usage reasonable.

1 Introduction

Maps of tree species presence and silvicultural metrics like basal area are needed throughout the
world for a wide variety of forest land management applications. Knowledge of the probable
location of certain key species of interest as well as their spatial patterns and associations to
other species are vital components to any realistic land management activity. Recently developed
modeling techniques such as Random Forest (Breiman, 2001) and Stochastic Gradient Boosting
(Friedman, 2001, 2002) offer great potential for improving models and increasing map accuracy
(Evans and Cushman, 2009; Moisen et al., 2006).

The R software environment offers sophisticated new modeling techniques, but requires advanced
programming skills to take full advantage of these capabilities. In addition, spatial data files can
be too memory intensive to analyze easily with standard R code. The ModelMap package provides
an interface between several existing R packages to automate and simplify the process of model
building and map construction.

While spatial data is typically manipulated within a Geographic Information System (GIS), the
ModelMap package facilitates modeling and mapping extensive spatial data in the R software
environment. ModelMap has simple to use GUI prompts for non-programmers, but still has the
flexibility to be run at the command line or in batch mode, and the power to take full advantage
of sophisticated new modeling techniques. ModelMap uses the raster package to read and predict
over GIS raster data. Large maps are read in by row, to keep memory usage reasonable.

The current implementation of ModelMap builds predictive models using Random Forests, Quan-
tile Regression Forests, and Conditional Inference Forests. Stochastic Gradient Boosting models
are not currently supported. Random Forest models are constructed using the randomForest
package (Liaw and Wiener, 2002). For more information on Quantile Regression Forests and Con-
ditional Inference Forests see the additional vignette, ”‘Pick Your Flavor of Random Forest”. The
ModelMap package models both continuous and binary response variables. For binary response,
the PresenceAbsence package (Freeman, 2007) package is used for model diagnostics.

Random Forest models are built as an ensemble of classification or regression trees (Breiman et al.,
1984). Classification and regression trees are intuitive methods, often described in graphical or
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biological terms. Typically shown growing upside down, a tree begins at its root. An observation
passes down the tree through a series of splits, or nodes, at which a decision is made as to which
direction to proceed based on the value of one of the explanatory variables. Ultimately, a terminal
node or leaf is reached and predicted response is given.

Trees partition the explanatory variables into a series of boxes (the leaves) that contain the most
homogeneous collection of outcomes possible. Creating splits is analogous to variable selection in
regression. Trees are typically fit via binary recursive partitioning. The term binary refers to the
fact that the parent node will always be split into exactly two child nodes. The term recursive is
used to indicate that each child node will, in turn, become a parent node, unless it is a terminal
node. To start with a single split is made using one explanatory variable. The variable and the
location of the split are chosen to minimize the impurity of the node at that point. There are
many ways to minimizing the impurity of each node. These are known as splitting rules. Each of
the two regions that result from the initial split are then split themselves according to the same
criteria, and the tree continues to grow until it is no longer possible to create additional splits or
the process is stopped by some user-defined criteria. The tree may then be reduced in size using a
process known as pruning. Overviews of classification and regression trees are provided by De’ath
and Fabricius (2000), Vayssieres et al. (2000), and Moisen (2008).

While classification and regression trees are powerful methods in and of themselves, much work
has been done in the data mining and machine learning fields to improve the predictive ability of
these tools by combining separate tree models into what is often called a committee of experts, or
ensemble. Random Forests and Stochastic Gradient Boosting are two of these newer techniques
that use classification and regression trees as building blocks.

Random Forests — In a Random Forests model, a bootstrap sample of the training data is chosen.
At the root node, a small random sample of explanatory variables is selected and the best split
made using that limited set of variables. At each subsequent node, another small random sample
of the explanatory variables is chosen, and the best split made. The tree continues to be grown
in this fashion until it reaches the largest possible size, and is left un-pruned. The whole process,
starting with a new bootstrap sample, is repeated a large number of times. As in committee
models, the final prediction is a (weighted) plurality vote or average from prediction of all the
trees in the collection.

Stochastic Gradient Boosting — Stochastic gradient boosting is another ensemble technique in
which many small classification or regression trees are built sequentially from pseudo-residuals
from the previous tree. At each iteration, a tree is built from a random sub-sample of the dataset
(selected without replacement) producing an incremental improvement in the model. Ultimately,
all the small trees are stacked together as a weighted sum of terms. The overall model accuracy
gets progressively better with each additional term.

2 Package Overview

The ModelMap package for R enables user-friendly modeling, diagnostics, and mapping over large
geographic areas though simple R function calls: model.build(), model.diagnostics(), and
model.mapmake(). The function model.build() constructs predictive models of continuous or
discrete responses using Random Forests. The function model.diagnostics() validates these
models with an independent test set, cross-validation, or (in the case of Random Forest Models)
with Out OF Bag (OOB) predictions on the training data. This function also creates graphs and
tables of the basic model validation diagnostics. The functions model.importance.plot() and
model.interaction.plot provide additional graphical tools to examine the relationships between
the predictor variable. The function model.mapmake() applies the models to GIS image files of
predictors to create detailed prediction surfaces. This function will handle large predictor files for
map making, by reading in the GIS data in sections, thus keeping memory usage reasonable. The
raster package is used to read and write to the GIS image files.
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2.1 Interactive Model Creation

The ModelMap package can be run in a traditional R command line mode, where all arguments
are specified in the function call. However, in a Windows environment, ModelMap can also be used
in an interactive, pushbutton mode. If the functions model.build(), model.diagnostics(), and
model.mapmake() are called without argument lists, pop up windows ask questions about the type
of model, the file locations of the data, response variable, predictors, etc . . .

To provide a record of the options chosen for a particular model and map, a text file is generated
each time these functions are called, containing a list of the selected arguments.

This paper concentrates on the traditional command line function calls, but does contain some
tips on using the GUI prompts.

2.2 File Names

File names in the argument lists for the functions can be provided either as the full path, or as
the base name, with the path specified by the folder argument. However, file names in the Raster
Look Up Table (the rastLUTfn, described in section 2.8) must include the full path.

2.3 Training Data

Training and test data can be supplied in two forms. The argument qdata.trainfn can be either
an R data frame containing the training data, or the file name (full path or base name) of the
comma separated values (CSV) training data file. If a filename is given, the file must be a comma-
delimited text file with column headings. The data frame or CSV file should include columns for
both response and predictor variables.

In a Windows environment, if qdata.trainfn = NULL (the default), a GUI interface prompts the
user to browse to the training data file.

Note: If response.type = "binary", any response with a value greater than 0 is treated as a
presence. If there is a cutoff value where anything below that value is called trace, and treated as
an absence, the response variable must be transformed before calling the functions.

2.4 Independent Test Set for Model Validation

The argument qdata.testfn is the file name (full path or base name) of the independent data set
for testing (validating) the model’s predictions, or alternatively, the R data frame containing the
test data. The column headings must be the same as those in the training data (qdatatrainfn).

If no test set is desired (for example, cross-validation will be performed, or RF models with out-
of-bag estimation), set qdata.testfn = FALSE.

In a Windows environment, if qdata.testfn = NULL (default), a prompt will ask the a test set is
available, and if so asks the user to browse to the test data file. If no test set is available, the a
prompt asks if a proportion of the data should be set aside as an independent test set. If this is
desired, the user will be prompted to specify the proportion to set aside as test data, and two new
data files will be generated in the output folder. The new file names will be the original data file
name with "_train" and "_test" pasted on the end.

2.5 Missing predictor values

There are three circumstances that can lead to having missing predictor values. First, there are
true missing values for predictors within the test set or study area. Second, there are categorical
predictors with categories that are present in the test or mapping data but not in the training
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data. And finally, portions of the mapping rectangle lie outside of the study area. Each of the
three cases is handled slightly differently by ModelMap.

In the first instance, true mising data values in the test set or within the study area for production
mapping could be caused by data collection errors. These are data points or pixels for which you
may still need be interested in a prediction based on the other remaining predictors. These missing
values should be coded as NA in the training or test data. In Imagine image files, pixels of the
specified NODATA value will be read into R as NA. The argument na.action will determine how these
NA pixels will be treated. For model diagnostics, there are 2 options: (1) na.action = "na.omit"

(the default) where any data point or pixel with any NA predictors is omitted from the model
building process and the diagnostic predictions, or returned as -9999 in the map predictions; (2)
na.action = "na.roughfix" where before making predictions, a missing categorical predictor is
replaced with the most common category for that predictor, and a missing continuous predictor
is replaced with the median for that predictor. Currently, for map making only one option is
available: na.action = "na.omit".

The second type of missing value occurs when using categorical predictors. There may be cases
where a category is found in the validation test set or in the map region that was not present
in the training data. This is a particularly common occurrence when using cross-validation on a
small dataset. Again, the argument na.action will determine how these data points or pixels are
treated. If na.action = "na.omit", no prediction will be made for these locations. For model
diagnostics, with na.action = "na.roughfix" the most common category will be substituted
for the unknown category. Again, for map making na.action = "na.omit" is the only available
option. In either instance, a warning will be generated with a list of the categories that were
missing from the training data. After examining these categories, you may decide that rather
than omitting these locations or substituting the most common category, a better option would
be to collapse similar categories into larger groupings. In this case you would need to pre-process
your data and run the models and predictions again.

The final type of missing predictor occurs when creating maps of non-rectangular study regions.
There may be large portions of the rectangle where you have no predictors, and are uninterested
in making predictions. The suggested value for the pixels outside the study area is -9999. These
pixels will be ignored, thus saving computing time, and will be exported as NA.

Note: in Imagine image files, if the specified NODATA is set as -9999, any -9999 pixels will be read
into R as NA.

2.6 The Model Object

The models built by the ModelMap package are stochastic models. If a seed is not specified
(with argument seed) each function call will result in a slightly different model. The function
model.build() returns the model object. To keep this particular model for use in later R sessions,
assign the function output to an R object, then use the functions save() and load().

Random Forest is implemented through the randomForest package within R. Random Forest has
relatively few user set parameters and is not very sensitive to tuning of these parameters. The
number of predictors used to select the splits (the mtry argument) is the primary user specified
parameter that can affect model performance, and the default for ModelMap is to automatically
optimize this parameter with the tuneRF() function from the randomForest package. In most
circumstance, Random Forest is less likely to over fit data. For an in depth discussion of the
possible penalties of increasing the number of trees (the ntree argument) see Lin and Jeon (2002).
The randomForest package provides two measures to evaluate variable importance. The first is
the percent increase in Mean Standard Error (MSE) as each variable is randomly permuted. The
second is the increase in node purity from all the splits in the forest based on a particular variable,
as measured by the gini criterion (Breiman, 2001). These importance measures should be used
with caution when predictors vary in scale or number of categories (Strobl et al., 2007).

Stochastic gradient boosting is currently disabled in ModelMap.
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2.7 Spatial Raster Layers

The ModelMap uses the raster package to read spatial rasters into R. The data for predictive
mapping inModelMap should be in the form of pixel-based raster layers representing the predictors
in the model. The layers must be a file type recognizeable by the raster package, for example
ERDAS Imagine image (single or multi-band) raster data formats, having continuous or categorical
data values. For effective model development and accuracy, if there is more than one raster layer,
the layers must have the same extent, projection, and pixel size.

To speed up processing of predictor layers, model.mapmake() builds a single raster brick object
containing one layer for each predictor in the model. By default, this brick is stored as a temp
file and deleted once the map is complete. If the argument keep.predictor.brick = TRUE then
the brick will be saved in a native raster package format file, with the file name constructed by
appending ’_brick.grd’ to the OUTPUTfn.

The function model.mapmake() by default outputs an ERDAS Imagine image file of map informa-
tion suitable to be imported into a GIS. (Note: The file extension of the OUTPPUTfn argument can
be used to specify other file types, see the help file for the writeFormats() function in the raster
package for a list of possible file types and extensions.) Maps can then be imported back into R
and view graphically using the raster package.

The supplementary materials in Elith et al. (2008) also contain R code to predict to grids imported
from a GIS program, including large grids that need to be imported in pieces. However this code
requires pre-processing of the raster data in the GIS software to produce ASCII grids for each layer
of data before they can be imported into R. ModelMap simplifies and automates this process, by
reading Imagine image files directly, (including multi band images). ModelMap also will verify
that the extent of all rasters is identical and will produce informative error messages if this is not
true. ModelMap also simplifies working with masked values and missing predictors.

2.8 Raster Look Up Table

The Raster Look Up Table (rastLUTfn) provides the link between the spatial rasters for map
production and the column names of the Training and Test datasets. The Raster Look Up Table
can be given as an R data frame specified by the argument rastLUTfn or read in from a CSV file
specified by rastLUTfn.

The rastLUTfn must include 3 columns: (1) the full path and base names of the raster file or files;
(2) the column headers from the Training and Test datasets for each predictor; (3) the layer (band)
number for each predictor. The names (column 2) must match not only the column headers in
Training and Test data sets (qdata.trainfn and qdata.testfn), but also the predictor names in
the arguments predList and predFactor, and the predictor names in model.obj.

In a windows environment, the function build.rastLUT() may be used to help build the look-up-
table with the aid of GUI prompts.

3 Examples

These examples demonstrate some of the capabilities of the ModelMap package by building three
Random Forest models: continuous response, binary response and categorical response. The
continuous response variables are percent cover for two species of interest: Pinyon and Sage. The
binary response variables are Presence/Absence of these same species.The categorical response is
vegetation category.

Next, model validation diagnostics are performed with three techniques: an independent test set,
Out Of Bag estimation, and cross-validation. Note: in an actual model comparison study, rather
than a package demonstration, the models would be compared with the same validation technique,
rather than mixing techniques.

5



Name Type Description
ELEV250 Continuous 90m NED elevation (ft)

resampled to 250m, average of 49 points
NLCD01 250 Categorical National Land Cover Dataset 2001

resampled to 250m - min. value of 49 points
EVI2005097 Continuous MODIS Enhanced vegetation index
NDV2005097 Continuous MODIS Normalized difference vegetation index
NIR2005097 Continuous MODIS Band 2 (Near Infrared)
RED2005097 Continuous MODIS Band 1 (Red)

Table 1: Predictor variables

Finally, spatial maps are produced by applying these models to remote sensing raster layers.

3.1 Example dataset

The dataset is from a pilot study in Nevada launched in 2004 involving acquisition and photo-
interpretation of large-scale aerial photography, the Nevada Photo-Based Inventory Pilot (NPIP)
(Frescino et al., 2009). The data files for these examples are included in the ModelMap package
instalation in the R library dirrectory. The datasets are under the ’external’ then under ’vignette-
examples’.

The predictor data set consists of 6 predictor variables: 5 continuous variables, and 1 categor-
ical variable (Table 1). The predictor layers are 250-meter resolution, pixel-based raster layers
including Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite imagery (Justice
et al., 2002), a Landsat Thematic Mapper-based, thematic layer of predicted land cover, National
Land Cover Dataset (NLCD) (Homer et al., 2004), and a topographic layer of elevation from the
National Elevation Dataset (Gesch et al., 2002).

The continuous response variables are percent cover of Pinyon and Sage. The binary response
variables are presence of Pinyon and Sage. The categorical response variable is the vegetation
category: TREE, SHRUB, OTHERVEG, and NONVEG.

The MODIS data included 250-meter, 16-day, cloud-free, composites of MODIS imagery for April
6, 2005: visible-red (RED) and near-infrared (NIR) bands and 2 vegetation indices, normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) (Huete et al., 2002). The
land cover and topographic layers were 30-meter products re-sampled to 250 meter using majority
and mean summaries, respectively.

The rectangular subset of Nevada chosen for these maps contains a small mountain range sur-
rounded by plains, and was deliberately selected to lie along the edge of the study region to
illustrate how ModelMap handles unsampled regions of a rectangle (Figure 13).

3.2 Example 1 - Random Forest - Continuous Response

Example 1 builds Random Forest models for two continuous response variables: Percent Cover for
Pinyon and Percent Cover for Sage. An independent test set is used for model validation.

3.2.1 Set up

After installing the ModelMap package, find the sample datasets from the R istallation and copy
them to your working directory. The data consists of five files and is located in the vignette
directory of ModelMap, for example, in C:\R\R-2.15.0\library\ModelMap\vignettes.

There are 5 files:

6



VModelMapData.csv
VModelMapData LUT.csv
VModelMapData dem ELEVM 250.img
VModelMapData modis STK2005097.img
VModelMapData nlcd NLCD01 250.img

Load the ModelMap package.

R> library("ModelMap")

Next define some of the arguments for the models.

Specify model type. The choices are "RF" for Random Forest models, "QRF" for quantile regression
forest models, and "CF" for conditional inference forest models. See the ”Pick your flavor of
Random Forest” vignette for further information on QRF and CF models.

R> model.type <- "RF"

Define training and test data file names. Note that the arguments qdata.trainfn and qdata.testfn
will accept either character strings giving the file names of CSV files of data, or the data itself in
the form of a data frame.

R> qdatafn <- "VModelMapData.csv"

R> qdata.trainfn <- "VModelMapData_TRAIN.csv"

R> qdata.testfn <- "VModelMapData_TEST.csv"

Define the output folder.

R> folder <- getwd()

Split the data into training and test sets. In example 1, an independent test set is used for
model validation diagnostics. The function get.test() randomly divides the original data into
training and test sets. This function writes the training and test sets to the folder specified by
folder, under the file names specified by qdata.trainfn and qdata.testfn. If the arguments
qdata.trainfn and qdata.testfn are not included, filenames will be generated by appending
"_train" and "_test" to qdatafn.

R> get.test( proportion.test=0.2,

qdatafn=qdatafn,

seed=42,

folder=folder,

qdata.trainfn=qdata.trainfn,

qdata.testfn=qdata.testfn)

Define file names to store model output. This filename will be used for saving the model itself. In
addition, since we are not defining other output filenames, the names for other output files will be
generated based on MODELfn.

R> MODELfn.a <- "VModelMapEx1a"

R> MODELfn.b <- "VModelMapEx1b"

Define the predictors and define which predictors are categorical. Example 1 uses five continuous
predictors: the four predictor layers from the MODIS imagery plus the topographic elevation layer.
As none of the chosen predictors are categorical set predFactor to FALSE.
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R> predList <- c( "ELEV250",

"EVI2005097",

"NDV2005097",

"NIR2005097",

"RED2005097")

R> predFactor <- FALSE

Define the response variable, and whether it is continuous, binary or categorical.

R> response.name.a <- "PINYON"

R> response.name.b <- "SAGE"

R> response.type <- "continuous"

Define the seeds for each model.

R> seed.a <- 38

R> seed.b <- 39

Define the column that contains unique identifiers for each data point. These identifiers will be
used to label the output file of observed and predicted values when running model validation.

R> unique.rowname <- "ID"

3.2.2 Model creation

Now create the models. The model.build() function returns the model object itself. The func-
tion also saves a text file listing the values of the arguments from the function call. This file is
particularly useful when using the GUI prompts, as otherwise there would be no record of the
options used for each model.

R> model.obj.ex1a <- model.build( model.type=model.type,

qdata.trainfn=qdata.trainfn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.a,

predList=predList,

predFactor=predFactor,

response.name=response.name.a,

response.type=response.type,

seed=seed.a)

R> model.obj.ex1b <- model.build( model.type=model.type,

qdata.trainfn=qdata.trainfn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.b,

predList=predList,

predFactor=predFactor,

response.name=response.name.b,

response.type=response.type,

seed=seed.b)
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3.2.3 Model Diagnostics

Next make model predictions on an independent test set and run the diagnostics on these predic-
tions. Model predictions on an independent test set are not stochastic, it is not necessary to set
the seed.

The model.diagnostics() function returns a data frame of observed and predicted values. This
data frame is also saved as a CSV file. This function also runs model diagnostics, and creates
graphs and tables of the results. The graphics are saved as files of the file type specified by
device.type.

For a continuous response model, the model validation diagnostics graphs are the variable impor-
tance plot (Figure 1 and Figure 2), and a scatter plot of observed verses predicted values, labeled
with the Pearson’s and Spearman’s correlation coefficients and the slope and intercept of the linear
regression line (Figure 3 and Figure 4).

For Random forest models, the model diagnostic graphs also include the out of bag model error
as a function of the number of trees(Figure 5 and Figure 6)

In example 1, the diagnostic plots are saved as PDF files.

These diagnostics show that while the most important predictor variables are similar for both
models, the correlation coefficients are considerably higher for the Pinyon percent cover model as
compared to the Sage model.

R> model.pred.ex1a <- model.diagnostics( model.obj=model.obj.ex1a,

qdata.testfn=qdata.testfn,

folder=folder,

MODELfn=MODELfn.a,

unique.rowname=unique.rowname,

# Model Validation Arguments

prediction.type="TEST",

device.type=c("pdf"),

cex=1.2)

R> model.pred.ex1b <- model.diagnostics( model.obj=model.obj.ex1b,

qdata.testfn=qdata.testfn,

folder=folder,

MODELfn=MODELfn.b,

unique.rowname=unique.rowname,

# Model Validation Arguments

prediction.type="TEST",

device.type=c("pdf"),

cex=1.2)

3.2.4 Comparing Variable Importance

The model.importance.plot() function uses a back-to-back barplot to compare variable impor-
tance between two models built from the same predictor variables (Figure 7). Variable Importance
is calculated in various ways depending on the model type, the response type and the importance
type. Importance measures are summarized in (Table 2).

R> model.importance.plot( model.obj.1=model.obj.ex1a,

model.obj.2=model.obj.ex1b,

model.name.1="Pinyon",

model.name.2="Sage",

sort.by="predList",

predList=predList,
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Figure 1: Example 1 - Variable importance graph for Pinyon percent cover (RF model).

Model Response Importance Type Measured By
RF continuous 1 - permutation Percent Increase in MSE
RF binary 1 - permutation Mean Decrease in Accuracy
RF categorical 1 - permutation Mean Decrease in Accuracy
RF continuous 2 - node impurity Residual Sum of Squares
RF binary 2 - node impurity Mean Decrease in Gini
RF categorical 2 - node impurity Mean Decrease in Gini

Table 2: Importance Measures
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Figure 2: Example 1 - Variable importance graph for Sage percent cover (RF model).
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Figure 3: Example 1 - Observed verses predicted values for Pinyon percent cover (RF model).
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Figure 4: Example 1 - Observed verses predicted values for Sage percent cover (RF model).
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Figure 5: Example 1 - Out of Bag error as a function of number of trees for Pinyon (RF model).
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Figure 6: Example 1 - Out of Bag error as a function of number of trees for Sage (RF model).
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Figure 7: Example 1 - Variable Importances for Pinyon verses Sage percent cover models.

scale.by="sum",

main="Variable Importance",

device.type="pdf",

PLOTfn="VModelMapEx1CompareImportance",

folder=folder)

R>

The model.importance.plot() function can also be used to compare the two types of variable
importance (Figure 8).

R> opar <- par(mfrow=c(2,1),mar=c(3,3,3,3),oma=c(0,0,3,0))

R> model.importance.plot( model.obj.1=model.obj.ex1a,

model.obj.2=model.obj.ex1a,

model.name.1="",

model.name.2="",

imp.type.1=1,

imp.type.2=2,

sort.by="predList",

predList=predList,

scale.by="sum",

main="Pinyon",
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device.type="none",

cex=0.9)

R> model.importance.plot( model.obj.1=model.obj.ex1b,

model.obj.2=model.obj.ex1b,

model.name.1="",

model.name.2="",

imp.type.1=1,

imp.type.2=2,

sort.by="predList",

predList=predList,

scale.by="sum",

main="Sage",

device.type="none",

cex=0.9)

R> mtext("Comparison of Importance Types",side=3,line=0,cex=1.8,outer=TRUE)

R> par(opar)

3.2.5 Interaction Plots

The model.interaction.plot() function provides a diagnostic plot useful in visualizing two-way
interactions between predictor variables. Two of the predictor variables from the model are used to
produce a grid of possible combinations over the range of both variables. The remaining predictor
variables are fixed at either their means (for continuous predictors) or their most common value
(for categorical predictors). Model predictions are generated over this grid and plotted as the z
axis. The model.interaction.plot() function was developed from the gbm.perspec function
from the tutorial provided as appendix S3 in Elith et al. (2008).

The model.interaction.plot() function provides two graphical options: an image plot, and a
3-D perspective plot. These options are selected by setting plot.type = "image" or plot.type
= "persp"

The x and y arguments are used to specify the predictor variables for the X and Y axis. The
predictors can be specified by name, or by number, with the numbers referring to the order the
variables appear in predList.

R> model.interaction.plot( model.obj.ex1a,

x="NIR2005097",

y="RED2005097",

main=response.name.a,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn.a,

folder=folder)

R> model.interaction.plot( model.obj.ex1b,

x="NIR2005097",

y="RED2005097",

main=response.name.b,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn.b,

folder=folder)

R> model.interaction.plot( model.obj.ex1a,

x=1,

y=3,
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Figure 8: Example 1 - Variable Importances Types for continuous response models - the relative
importance of predictor variables as measured by the mean decrease in accuracy from randomly
permuting each predictor as compared to the decrease in node impurities from splitting on the
variable.
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Figure 9: Example 1 - Interaction plot for Pinyon percent cover (RF model), showing interactions
between two of the satellite based predictors (NIR2005097 and RED2005097). Image plot, with
darker green indicating higher percent cover. Here we can see that predicted Pinyon cover is
highest at low values of either NIR or RED. However low values of both predictors does not
further raise the predicted cover.

main=response.name.a,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn.a,

folder=folder)

R> model.interaction.plot( model.obj.ex1b,

x=1,

y=3,

main=response.name.b,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn.b,

folder=folder)

19



2000 3000 4000 5000 6000 7000

20
00

40
00

60
00

80
00

SAGE

NIR2005097

R
E

D
20

05
09

7

14

16

18

20

22

24

26

Figure 10: Example 1 - Interaction plot for Sage percent cover (RF model), showing interactions
between two of the satellite based predictors (NIR2005097 and RED2005097). Image plot, with
darker green indicating higher percent cover. Here we can see that predicted Sage cover is lowest
when high values of NIR are combined with RED lying between 2000 and 5000. When NIR is
lower than 2900, RED still has an effect on the predicted cover, but the effect is not as strong.
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Figure 11: Example 1 - Interaction plot for Pinyon percent cover (RF model), showing interactions
between elevation and a satellite based predictor (ELEV250 and NDV2005097). Image plot, with
darker green indicating higher percent cover. Here we can see that predicted Pinyon cover is
highest at elevation greater than 2000m. In addition, high values of NDV slightly increase the
predicted cover, but there seems to be little interaction between the two predictors.

21



500 1000 1500 2000 2500

0
10

00
20

00
30

00
40

00
50

00

SAGE

ELEV250

N
D

V
20

05
09

7

5

10

15

20

25

Figure 12: Example 1 - Interaction plot for Sage percent cover (RF model), showing interactions
between elevation and a satellite based predictor (ELEV250 and NDV2005097). Image plot, with
darker green indicating higher percent cover. Here we do see an interaction between the two
predictors. At low elevations, predicted Sage cover is low throughout the range of NDV, and
particularly low at mid-values. At mid elevations, predicted Sage cover is high throughout the
range of NDV. At high elevations NDV has a strong influence on predicted Sage cover with high
cover tied to low to mid values of NDV.
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3.2.6 Map production

Before building maps of the responses, examine the predictor variable for elevation (Figure 13):

R> elevfn <- paste(folder,"/VModelMapData_dem_ELEVM_250.img",sep="")

R> mapgrid <- raster(elevfn)

R> opar <- par(mar=c(4,4,3,6),xpd=NA,mgp=c(3, 2, .3))

R> col.ramp<-terrain.colors(101)

R> zlim <- c(1500,maxValue(mapgrid))

R> legend.label<-rev(pretty(zlim,n=5))

R> legend.colors<-col.ramp[trunc((legend.label/max(legend.label))*100)+1]

R> legend.label<-paste(legend.label,"m",sep="")

R> legend.label<-paste((7:3)*500,"m")

R> legend.colors<-col.ramp[c(100,75,50,25,1)]

R> image( mapgrid,

col = col.ramp,

xlab="", ylab="",

zlim=zlim,

asp=1, bty="n", main="")

R> legend( x=xmax(mapgrid),y=ymax(mapgrid),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("Elevation of Study Region",side=3,line=1,cex=1.5)

R> par(opar)

Run the function model.mapmake() to map the response variable over the study area.

The model.mapmake() function can extract information about the model from the model.obj, so
it is not necessary to re-supply the arguments that define the model, such as the type of model, the
predictors, etc . . . (Note: If model was created outside ofModelMap, it may be necessary to supply
the response.name argument) Also, unlike model creation, map production is not stochastic, so
it is not necessary to set the seed.

The model.mapmake() uses a look up table to associate the predictor variables with the rasters.
The function argument rastLUTfn will accept either a file name of the CSV file containing the
table, or the data frame itself.

Although in typical user applications the raster look up table must include the full path for
predictor rasters, the table provided for the examples will be incomplete when initially downloaded,
as the working directory of the user is unknown and will be different on every computer. This
needs to be corrected by pasting the full paths to the user’s working directory to the first column,
using the value from folder defined above.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table( rastLUTfn,

header=FALSE,

sep=",",

stringsAsFactors=FALSE)

R> rastLUTfn[,1] <- paste(folder,rastLUTfn[,1],sep="/")

To produce a map from a raster larger than the memory limits of R, predictions are made one row
at a time.

Since this is a Random Forest model of a continuous response, the prediction at each pixel is the
mean of all the trees. Therefore these individual tree predictions can also be used to map measures
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Figure 13: Elevation of study region. Projection: Universal Transverse Mercator (UTM) Zone 11,
Datum: NAD83
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of uncertainty such as standard deviation and coefficient of variation for each pixel. To do so, set
map.sd = "TRUE". To calculate these pixel uncertainty measures, model.map() must keep all the
individual trees in memory, so map.sd = "TRUE" is much more memory intensive.

R>

R> model.mapmake( model.obj=model.obj.ex1a,

folder=folder,

MODELfn=MODELfn.a,

rastLUTfn=rastLUTfn,

na.action="na.omit",

# Mapping arguments

map.sd=TRUE)

R> model.mapmake( model.obj=model.obj.ex1b,

folder=folder,

MODELfn=MODELfn.b,

rastLUTfn=rastLUTfn,

na.action="na.omit",

# Mapping arguments

map.sd=TRUE)

The function model.mapmake() creates an Imagine image file of map information suitable to be
imported into a GIS. As this sample dataset is relatively small, we can also import it into R for
display.

We need to define a color ramp. For this response variable, zero values will display as white,
shading to dark green for high values.

R> l <- seq(100,0,length.out=101)

R> c <- seq(0,100,length.out=101)

R> col.ramp <- hcl(h = 120, c = c, l = l)

Next, we import the data and create the map (Figure 14). From the map, we can see that Pinyon
percent cover is higher in the mountains, while Sage percent cover is higher in the foothills at the
edges of the mountains.

Note that the sample map data was taken from the South Eastern edge of our study region, to
illustrate how ModelMap deals with portions of the rectangle that fall outside of the study region.
The empty wedge at lower right in the maps is the portion outside the study area. ModelMap
uses -9999 for unsampled data. When viewing maps in a GIS, a mask file can be used to hide
unsampled regions, or other commands can be used to set the color for -9999 values.

Since we know that percent cover can not be negative, we will set zlim to range from zero to the
maximum value found in our map.

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> mapgrid.a <- raster(paste(MODELfn.a,"_map.img",sep=""))

R> mapgrid.b <- raster(paste(MODELfn.b,"_map.img",sep=""))

R> zlim <- c(0,max(maxValue(mapgrid.a),maxValue(mapgrid.b)))

R> legend.label<-rev(pretty(zlim,n=5))

R> legend.colors<-col.ramp[trunc((legend.label/max(legend.label))*100)+1]

R> legend.label<-paste(legend.label,"%",sep="")

R> image( mapgrid.a,

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,
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Figure 14: Example 1 - Maps of percent cover for Pinyon and Sage (RF models).

asp=1,bty="n",main="")

R> mtext(response.name.a,side=3,line=1,cex=1.2)

R> image( mapgrid.b,

col=col.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.b,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.b),y=ymax(mapgrid.b),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("Percent Cover",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

Next, we will define color ramps for the standard deviation and the coefficient of variation, and
map these uncertainty measures. Often, as the mean increases, so does the standard deviation
(Zar, 1996), therefore, a map of the standard deviation of the pixels (Figure 15) will look to the
naked eye much like the map of the mean. However, mapping the coefficient of variation (dividing
the standard deviation of each pixel by the mean of the pixel), can provide a better visualization
of spatial regions of higher uncertainty (Figure 16). In this case, for Pinyon the coefficient of
variation is interesting as it is higher in the plains on the upper left portion of the map, where
percent cover of Pinyon is lower.

R> stdev.ramp <- hcl(h = 15, c = c, l = l)

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> mapgrid.a <- raster(paste(MODELfn.a,"_map_stdev.img",sep=""))
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Figure 15: Example 1 - Map of standard deviation of Random Forest trees at each pixel for Pinyon
and Sage (RF models).

R> mapgrid.b <- raster(paste(MODELfn.b,"_map_stdev.img",sep=""))

R> zlim <- c(0,max(maxValue(mapgrid.a),maxValue(mapgrid.b)))

R> legend.label<-rev(pretty(zlim,n=5))

R> legend.colors<-stdev.ramp[trunc((legend.label/max(legend.label))*100)+1]

R> legend.label<-paste(legend.label,"%",sep="")

R> image( mapgrid.a,

col=stdev.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.a,side=3,line=1,cex=1.2)

R> image( mapgrid.b,

col=stdev.ramp,xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.b,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.b),y=ymax(mapgrid.b),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("Standard Deviation of Percent Cover",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

R> coefv.ramp <- hcl(h = 70, c = c, l = l)

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)
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Figure 16: Example 1 - Map of coefficient of variation of Random Forest trees at each pixel for
Pinyon and Sage (RF models).

R> mapgrid.a <-raster(paste(MODELfn.a,"_map_coefv.img",sep=""),as.image=TRUE)

R> mapgrid.b <- raster(paste(MODELfn.b,"_map_coefv.img",sep=""),as.image=TRUE)

R> zlim <- c(0,max(maxValue(mapgrid.a),maxValue(mapgrid.b)))

R> legend.label<-rev(pretty(zlim,n=5))

R> legend.colors<-coefv.ramp[trunc((legend.label/max(legend.label))*100)+1]

R> image( mapgrid.a,

col=coefv.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.a,side=3,line=1,cex=1.2)

R> image( mapgrid.b,

col=coefv.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=zlim,

asp=1,bty="n",main="")

R> mtext(response.name.b,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.b),y=ymax(mapgrid.b),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("Coefficient of Variation of Percent Cover",side=3,line=1,cex=1.5,outer=T)

R> par(opar)
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3.3 Example 2 - Random Forest - Binary Response

Example 2 builds a binary response model for presence of Pinyon and Sage. A catagorical predictor
is added to the model. Out-of-bag estimates are used for model validation.

3.3.1 Set up

Define model type.

R> model.type <- "RF"

Define data.

R> qdatafn <- "VModelMapData.csv"

Define folder.

R> folder <- getwd()

Define model filenames.

R> MODELfn.a <- "VModelMapEx2a"

R> MODELfn.b <- "VModelMapEx2b"

Define the predictors. These are the five continuous predictors from the first example, plus one
categorical predictor layer, the thematic layer of predicted land cover classes from the National
Land Cover Dataset. The argument predFactor is used to specify the categorical predictor.

R> predList <- c( "ELEV250",

"NLCD01_250",

"EVI2005097",

"NDV2005097",

"NIR2005097",

"RED2005097")

R> predFactor <- c("NLCD01_250")

Define the data column to use as the response, and if it is continuous, binary or categorical.
Since response.type = "binary" this variable will be automatically translated so that zeros are
treated as Absent and any value greater than zero is treated as Present.

R> response.name.a <- "PINYON"

R> response.name.b <- "SAGE"

R> response.type <- "binary"

Define the seeds for each model.

R> seed.a <- 40

R> seed.b <- 41

Define the column that contains unique identifiers.

R> unique.rowname <- "ID"
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Define raster look up table.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table( rastLUTfn,

header=FALSE,

sep=",",

stringsAsFactors=FALSE)

R> rastLUTfn[,1] <- paste(folder,rastLUTfn[,1],sep="/")

3.3.2 Model creation

Create the model. Because Out-Of-Bag predictions will be used for model diagnostics, the full
dataset can be used as training data. To do this, set qdata.trainfn <- qdatafn, qdata.testfn
<- FALSE and v.fold = FALSE.

R> model.obj.ex2a <- model.build( model.type=model.type,

qdata.trainfn=qdatafn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.a,

predList=predList,

predFactor=predFactor,

response.name=response.name.a,

response.type=response.type,

seed=seed.a)

R> model.obj.ex2b <- model.build( model.type=model.type,

qdata.trainfn=qdatafn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn.b,

predList=predList,

predFactor=predFactor,

response.name=response.name.b,

response.type=response.type,

seed=seed.b)

3.3.3 Model Diagnostics

Make Out-Of-Bag model predictions on the training data and run the diagnostics on these pre-
dictions. This time, save JPEG, PDF, and PS versions of the diagnostic plots.

Out of Bag model predictions for a Random Forest model are not stochastic, so it is not necessary
to set the seed.

Since this is a binary response model model diagnostics include ROC plots and other thresh-
old selection plots generated by PresenceAbsence (Freeman, 2007; Freeman and Moisen, 2008a)
(Figure 17 and Figure 18) in addition to the variable importance graph (Figure 19 and Figure 20).

For binary response models, there are also CSV files of presence-absence thresholds optimized
by 12 possible criteria, along with their associated error statistics. For more details on these
12 optimization criteria see Freeman and Moisen (2008a). Some of these criteria are dependent
on user selected parameters. In this example, two of these parameters are specified: required
sensitivity (req.sens) and required specificity (req.spec). Other user defined parameters, such
as False Positive Cost (FPC) and False Negative Cost (FNC) are left at the default values. When
default values are used for these parameters, model.diagnostics() will give a warning. In this
case:
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1: In error.threshold.plot(PRED, opt.methods = optimal.thresholds(), ... :

costs assumed to be equal

The variable importance graphs show NLCD was a very important predictor for Pinyon presence,
but not an important variable when predicting Sage presence.

R> model.pred.ex2a <- model.diagnostics( model.obj=model.obj.ex2a,

qdata.trainfn=qdatafn,

folder=folder,

MODELfn=MODELfn.a,

unique.rowname=unique.rowname,

# Model Validation Arguments

prediction.type="OOB",

device.type=c("jpeg","pdf","postscript"),

cex=1.2)

R> model.pred.ex2b <- model.diagnostics( model.obj=model.obj.ex2b,

qdata.trainfn=qdatafn,

folder=folder,

MODELfn=MODELfn.b,

unique.rowname=unique.rowname,

# Model Validation Arguments

prediction.type="OOB",

device.type=c("jpeg","pdf","postscript"),

cex=1.2)

Take a closer look at the text file of thresholds optimized by multiple criteria. These thresholds
are used later to display the mapped predictions, so read this file into R now.

R> opt.thresh.a <- read.table( paste(MODELfn.a,"_pred_optthresholds.csv",sep=""),

header=TRUE,

sep=",",

stringsAsFactors=FALSE)

R> opt.thresh.a[,-1]<-signif(opt.thresh.a[,-1],2)

R> opt.thresh.b <- read.table( paste(MODELfn.b,"_pred_optthresholds.csv",sep=""),

header=TRUE,

sep=",",

stringsAsFactors=FALSE)

R> opt.thresh.b[,-1]<-signif(opt.thresh.b[,-1],2)

R> pred.prev.a <- read.table( paste(MODELfn.a,"_pred_prevalence.csv",sep=""),

header=TRUE,

sep=",",

stringsAsFactors=FALSE)

R> pred.prev.a[,-1]<-signif(pred.prev.a[,-1],2)

R> pred.prev.b <- read.table( paste(MODELfn.b,"_pred_prevalence.csv",sep=""),

header=TRUE,

sep=",",

stringsAsFactors=FALSE)

R> pred.prev.b[,-1]<-signif(pred.prev.b[,-1],2)

Optimized thresholds for Pinyon:

R> opt.thresh.a

opt.methods threshold PCC sensitivity specificity

1 Default 0.50 0.92 0.92 0.92
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2 Sens=Spec 0.52 0.92 0.92 0.92

3 MaxSens+Spec 0.62 0.92 0.91 0.93

4 MaxKappa 0.62 0.92 0.91 0.93

5 MaxPCC 0.64 0.92 0.90 0.94

6 PredPrev=Obs 0.57 0.92 0.91 0.92

7 ObsPrev 0.46 0.92 0.92 0.91

8 MeanProb 0.47 0.92 0.92 0.91

9 MinROCdist 0.62 0.92 0.91 0.93

10 ReqSens 0.76 0.90 0.85 0.95

11 ReqSpec 0.22 0.90 0.96 0.85

12 Cost 0.64 0.92 0.90 0.94

Kappa

1 0.83

2 0.83

3 0.84

4 0.84

5 0.84

6 0.84

7 0.83

8 0.83

9 0.84

10 0.81

11 0.81

12 0.84

And for Sage:

R> opt.thresh.b

opt.methods threshold PCC sensitivity specificity

1 Default 0.50 0.66 0.81 0.48

2 Sens=Spec 0.61 0.67 0.67 0.66

3 MaxSens+Spec 0.61 0.67 0.67 0.66

4 MaxKappa 0.61 0.67 0.67 0.66

5 MaxPCC 0.60 0.67 0.69 0.65

6 PredPrev=Obs 0.59 0.66 0.70 0.61

7 ObsPrev 0.56 0.66 0.74 0.57

8 MeanProb 0.60 0.67 0.69 0.64

9 MinROCdist 0.61 0.67 0.67 0.66

10 ReqSens 0.44 0.66 0.86 0.40

11 ReqSpec 0.79 0.56 0.33 0.86

12 Cost 0.60 0.67 0.69 0.65

Kappa

1 0.29

2 0.33

3 0.33

4 0.33

5 0.33

6 0.32

7 0.31

8 0.33

9 0.33

10 0.27

11 0.18

12 0.33
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Observed and predicted prevalence for Pinyon:

R> pred.prev.a

opt.thresh.opt.methods threshold Obs.Prevalence pred

1 Default 0.50 0.46 0.47

2 Sens=Spec 0.52 0.46 0.47

3 MaxSens+Spec 0.62 0.46 0.46

4 MaxKappa 0.62 0.46 0.46

5 MaxPCC 0.64 0.46 0.45

6 PredPrev=Obs 0.57 0.46 0.46

7 ObsPrev 0.46 0.46 0.47

8 MeanProb 0.47 0.46 0.47

9 MinROCdist 0.62 0.46 0.46

10 ReqSens 0.76 0.46 0.42

11 ReqSpec 0.22 0.46 0.52

12 Cost 0.64 0.46 0.45

And for Sage:

R> pred.prev.b

opt.thresh.opt.methods threshold Obs.Prevalence pred

1 Default 0.50 0.56 0.69

2 Sens=Spec 0.61 0.56 0.53

3 MaxSens+Spec 0.61 0.56 0.53

4 MaxKappa 0.61 0.56 0.53

5 MaxPCC 0.60 0.56 0.54

6 PredPrev=Obs 0.59 0.56 0.57

7 ObsPrev 0.56 0.56 0.60

8 MeanProb 0.60 0.56 0.54

9 MinROCdist 0.61 0.56 0.53

10 ReqSens 0.44 0.56 0.74

11 ReqSpec 0.79 0.56 0.25

12 Cost 0.60 0.56 0.54

The model quality graphs show that the model of Pinyon presence is much higher quality than
the Sage model. This is illustrated with four plots: a histogram plot, a calibration plot, a ROC
plot with it’s associated Area Under the Curve (AUC), and an error rate verses threshold plot

Pinyon has a double humped histogram plot, with most of the observed presences and absences
neatly divided into the two humps. Therefor the optimized threshold values fall between the two
humps and neatly divide the data into absences and presences. For Sage, on the other hand, the
observed presences and absences are scattered throughout the range of predicted probabilities,
and so there is no single threshold that will neatly divide the data into present and absent groups.
In this case, the different optimization criteria tend to be widely separated, each representing a
different compromise between the error statistics (Freeman and Moisen, 2008b).

Calibration plots provide a goodness-of-fit plot for presence-absence models, as described by Pearce
and Ferrier (2000), Vaughan and Ormerod (2005), and Reineking and Schröder (2006). In a
Calibration plot the predicted values are divided into bins, and the observed proportion of each
bin is plotted against the predicted value of the bin. For Pinyon, the standard errors for the bins
overlap the diagonal, and the bins do not show a bias. For Sage, however, the error bars for the
highest and lowest bins do not overlap the diagonal, and there is a bias where low probabilities
tend to be over predicted, and high probabilities tend to be under predicted.
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Figure 17: Example 2 - Model quality and threshold selection graphs for Pinyon presence (RF
model).

The ROC plot from a good model will rise steeply to the upper left corner then level off quickly,
resulting in an AUC near 1.0. A poor model (i.e. a model that is no better than random assign-
ment) will have a ROC plot lying along the diagonal, with an AUC near 0.5. The Area Under
the Curve (AUC) is equivalent to the chance that a randomly chosen plot with an observed value
of present will have a predicted probability higher than that of a randomly chosen plot with an
observed value of absent. The PresenceAbsence package used to create the model quality graphs
for binary response models uses the method from DeLong et al. (1988) to calculate Area Under
the Curve (AUC). For these two models, the Area Under the Curve (AUC) for Pinyon is 0.97 and
the ROC plot rises steeply, while the AUC for Sage is only 0.70, and the ROC plot is much closer
to the diagonal.

In the Error Rate verses Threshold plot sensitivity, specificity and Kappa are plotted against all
possible values of the threshold (Fielding and Bell, 1997). In the graph of Pinyon error rates,
sensitivity and specificity cross at a higher value, and also, the error statistics show good values
across a broader range of thresholds. The Kappa curve is high and flat topped, indicating that
for this model, Kappa will be high across a wide range of thresholds. For Sage, sensitivity and
specificity cross at a lower value, and the Kappa curve is so low that it is nearly hidden behind
the graph legend. For this model even the most optimal threshold selection will still result in a
relatively low Kappa value.
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Figure 18: Example 2 - Model quality and threshold selection graphs for Sage presence (RF model).
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Figure 19: Example 2 - Variable importance graph for Pinyon presence (RF model).
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Figure 20: Example 2 - Variable importance graph for Sage presence (RF model).
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Figure 21: Example 2 - Variable Importances for Pinyon verses Sage presence models.

3.3.4 Comparing Variable Importance

The model.importance.plot() function uses a back-to-back barplot to compare variable impor-
tance between two models built from the same predictor variables (Figure 21).

R> model.importance.plot( model.obj.1=model.obj.ex2a,

model.obj.2=model.obj.ex2b,

model.name.1="Pinyon",

model.name.2="Sage",

sort.by="predList",

predList=predList,

scale.by="sum",

main="Variable Importance",

device.type="pdf",

PLOTfn="VModelMapEx2CompareImportance",

folder=folder)

R>

Because a binary response model is a two-class example of a categorical response model, we can
use categorical tools to investigate the class specific variable importances. (Figure 22) compares
the relative importance of the predictor variables inr predicting Presences to their importances in
predicting Absences.
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R> opar <- par(mfrow=c(2,1),mar=c(3,3,3,3),oma=c(0,0,3,0))

R> model.importance.plot( model.obj.1=model.obj.ex2a,

model.obj.2=model.obj.ex2a,

model.name.1="Absence",

model.name.2="Presence",

class.1="0",

class.2="1",

sort.by="predList",

predList=predList,

scale.by="sum",

main="Pinyon Variable Importance",

device.type="none",

cex=0.9)

R> model.importance.plot( model.obj.1=model.obj.ex2b,

model.obj.2=model.obj.ex2b,

model.name.1="Absence",

model.name.2="Presence",

class.1="0",

class.2="1",

sort.by="predList",

predList=predList,

scale.by="sum",

main="Sage Variable Importance",

device.type="none",

cex=0.9)

R> mtext("Presence-Absence Variable Importance Comparison",side=3,line=0,cex=1.8,outer=TRUE)

R> par(opar)

3.3.5 Interaction Plots

Here we will look at how the model.interaction.plot() function works with a factored predictor
variable.

In image plots the levels of the factored predictor are shown as vertical or horizontal bars across
the plot region.

In 3-D perspective plots the levels are represented by ribbons across the prediction surface.

R> model.interaction.plot( model.obj.ex2a,

x="ELEV250",

y="NLCD01_250",

main=response.name.a,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn.a,

folder=folder)

R> model.interaction.plot( model.obj.ex2b,

x="ELEV250",

y="NLCD01_250",

main=response.name.b,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn.b,

folder=folder)
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Figure 22: Example 2 - Relative variable importances (permutation based) for predicting Presences
verses predicting Absences for Pinyon and Sage.
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R> model.interaction.plot( model.obj.ex2a,

x="ELEV250",

y="NLCD01_250",

main=response.name.a,

plot.type="persp",

device.type="pdf",

MODELfn=MODELfn.a,

folder=folder,

theta=300,

phi=55)

R> model.interaction.plot( model.obj.ex2b,

x="ELEV250",

y="NLCD01_250",

main=response.name.b,

plot.type="persp",

device.type="pdf",

MODELfn=MODELfn.b,

folder=folder,

theta=300,

phi=55)

3.3.6 Map production

The function model.mapmake() creates ascii text files of map predictions.

R> model.mapmake( model.obj=model.obj.ex2a,

folder=folder,

MODELfn=MODELfn.a,

rastLUTfn=rastLUTfn,

na.action="na.omit")

R> model.mapmake( model.obj=model.obj.ex2b,

folder=folder,

MODELfn=MODELfn.b,

rastLUTfn=rastLUTfn,

na.action="na.omit")

R>

When working with categorical predictors, sometimes there are categories in the prediction data
(either the test set, or the map data) not found in the training data. In this case, there were three
classes for the predictor NLCD01_250 that were not present in the training data. With the default
na.action = "na.omit" the model.mapmake() function generated the following warnings, and
these pixels will show up as blank pixels in the maps.

2: In production.prediction(model.obj = model.obj, rastLUTfn = rastLUTfn, :

categorical factored predictor NLCD01_250 contains levels 41, 43, 20 not

found in training data

3: In production.prediction(model.obj = model.obj, rastLUTfn = rastLUTfn, :

Returning -9999 for data points with levels not found in the training

data

Begin by mapping the probability surface, in other words, the probability that the species is
present at each grid point (Figure 27).
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Figure 23: Example 2 - Interaction plot for Pinyon presence-absence (RF model), showing interac-
tions between elevation and National Land Cover Dataset classes (ELEV250 and NLCD01 250).
Image plot, with darker green indicating higher probability of presence. Here we see that in all
NLCD classes predicted Pinyon presence is strongly tied to elevation, with low presence below
2000m, and moderate presence at higher elevations.
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Figure 24: Example 2 - Interaction plot for Sage presence-absence (RF model), showing interac-
tions between elevation and National Land Cover Dataset classes (ELEV250 and NLCD01 250).
Image plot, with darker green indicating higher probability of presence. Here we see that predicted
Sage presence is influenced by both elevation and NLCD class. In most NLCD classes predicted
presence is highest between 1400m and 2000m, with very low presence at lower elevations and
low presence at higher elevations. In contrast, in NLCD class 50 while predicted presence drops
slightly as elevation increases, it remains quite high all the way to 3000m.
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Figure 25: Example 2 - Interaction plot for Pinyon presence-absence (RF model), showing interac-
tions between elevation and National Land Cover Dataset classes (ELEV250 and NLCD01 250).
Perspective plot, with probability or presence shown on the Z axis. In the perspective plot (as
compared to the image plot) it is easier to see that while predicted Pinyon presence is influenced
by both elevation and NLCD class, the shape of the relationship between elevation and presence is
similar in all NLCD classes, and while the overall probability is higher in some classes, the curves
relating probability to elevation are generally parallel from class to class. Therefore there appears
to be little 2-way interaction between these predictors.
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Figure 26: Example 2 - Interaction plot for Sage presence-absence (RF model), showing interac-
tions between elevation and National Land Cover Dataset classes (ELEV250 and NLCD01 250).
Perspective plot, with probability or presence shown on the Z axis. Here we can see that while all
NLCD classes have low predicted Sage presence at low elevation, in NLCD class 50 at mid eleva-
tions predicted presence shoots higher than the other classes, and then does not drop as far as the
other classes at high elevations. Resulting in a different shape of the elevation verses probability
curve for class 50.
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First Define a color ramp. For this map, pixels with a high probability of presence will display as
green, low probability will display as brown, and model uncertainty (probabilities near 50%) will
display as yellow. Notice that the map for Pinyon, is mostly dark green and dark brown, with
a thin dividing line of yellow. With a high quality model, most of the pixels are assigned high
or low probabilities. The map for Sage, however, is mostly yellow, with only occasional areas of
green and brown. With poor quality models, many of the pixels are inderminate, and assigned
probabilities near 50%.

R> h=c( seq(10,30,length.out=10),

seq(31,40,length.out=10),

seq(41,90,length.out=60),

seq(91,100,length.out=10),

seq(101,110,length.out=10))

R> l =c( seq(25,40,length.out=10),

seq(40,90,length.out=35),

seq(90,90,length.out=10),

seq(90,40,length.out=35),

seq(40,10,length.out=10))

R> probpres.ramp <- hcl(h = h, c = 80, l = l)

Import the data and create the map. Since we know that probability of presence can range from
zero to one, we will use those values for zlim.

R> opar <- par(mfrow=c(1,2),mar=c(3,3,2,1),oma=c(0,0,3,4),xpd=NA)

R> mapgrid.a <- raster(paste(MODELfn.a,"_map.img",sep=""))

R> mapgrid.b <- raster(paste(MODELfn.b,"_map.img",sep=""))

R> legend.subset<-c(100,80,60,40,20,1)

R> legend.colors<-probpres.ramp[legend.subset]

R> legend.label<-c("100%"," 80%"," 60%"," 40%"," 20%"," 0%")

R> image( mapgrid.a,

col=probpres.ramp,

xlab="",ylab="",yaxt="n",main="",zlim=c(0,1),

asp=1,bty="n",xaxt="n")

R> mtext(response.name.a,side=3,line=1,cex=1.2)

R> image( mapgrid.b,

col=probpres.ramp,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=c(0,1),

asp=1,bty="n",main="")

R> mtext(response.name.b,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid.b),y=ymax(mapgrid.b),

legend=legend.label,

fill=legend.colors,

bty="n",

cex=1.2)

R> mtext("Probability of Presence",side=3,line=1,cex=1.5,outer=T)

R> par(opar)

To translate the probability surface into a Presence-Absence map it is necessary to select a cutoff
threshold. Probabilities below the selected threshold are mapped as absent while probabilities
above the threshold are mapped as present. Many criteria that can be used for threshold selection,
ranging from the traditional default of 50 percent, to thresholds optimized to maximize Kappa, to
thresholds picked to meet certain management criteria. The choice of threshold criteria can have
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Figure 27: Example 2 - Probability surface map for presence of Pinyon and Sage (RF models).

a dramatic effect on the final map. For further discussion on this topic see Freeman and Moisen
(2008b).

Here are examples of Presence-Absence maps for Pinyon and Sage produced by four different
threshold optimization criteria (Figures 28 and 29). For a high quality model, such as Pinyon, the
various threshold optimization criteria tend to result in similar thresholds, and the models tend to
be less sensitive to threshold choice, therefore the Presence Absence maps from the four criteria
are very similar. Poor quality models, such as this model for Sage, tend to have no single good
threshold, as each criteria is represents a different compromise between errors of omission and
errors of commission. It is therefore particularly important to carefully match threshold criteria
to the intended use of the map.

R> opar <- par(mfrow=c(2,2),mar=c(2.5,3,4,1),oma=c(0,0,4,6),xpd=NA)

R> mapgrid <- raster(paste(MODELfn.a,"_map.img",sep=""))

R> criteria <- c("Default","MaxKappa","ReqSens","ReqSpec")

R> criteria.labels<-c("Default","MaxKappa","ReqSens = 0.9","ReqSpec = 0.9")

R> for(i in 1:4){

thresh <- opt.thresh.a$threshold[opt.thresh.a$opt.methods==criteria[i]]

presencegrid <- mapgrid

v <- getValues(presencegrid)

v <- ifelse(v > thresh,1,0)

presencegrid <- setValues(presencegrid, v)

image( presencegrid,

col=c("white","forestgreen"),

zlim=c(0,1),

asp=1,

bty="n",

xaxt="n", yaxt="n",
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main="",xlab="",ylab="")

if(i==2){

legend( x=xmax(mapgrid),y=ymax(mapgrid),

legend=c("Present","Absent"),

fill=c("forestgreen","white"),

bty="n",

cex=1.2)}

mtext(criteria.labels[i],side=3,line=2,cex=1.2)

mtext(paste("threshold =",thresh),side=3,line=.5,cex=1)

}

R> mtext(MODELfn.a,side=3,line=0,cex=1.2,outer=TRUE)

R> mtext(response.name.a,side=3,line=2,cex=1.5,outer=TRUE)

R> par(opar)

R> opar <- par(mfrow=c(2,2),mar=c(2.5,3,4,1),oma=c(0,0,4,6),xpd=NA)

R> mapgrid <- raster(paste(MODELfn.b,"_map.img",sep=""))

R> criteria <- c("Default","MaxKappa","ReqSens","ReqSpec")

R> criteria.labels<-c("Default","MaxKappa","ReqSens = 0.9","ReqSpec = 0.9")

R> for(i in 1:4){

thresh <- opt.thresh.b$threshold[opt.thresh.b$opt.methods==criteria[i]]

presencegrid <- mapgrid

v <- getValues(presencegrid)

v <- ifelse(v > thresh,1,0)

presencegrid <- setValues(presencegrid, v)

image( presencegrid,

col=c("white","forestgreen"),

xlab="",ylab="",xaxt="n", yaxt="n",

zlim=c(0,1),

asp=1,bty="n",main="")

if(i==2){

legend( x=xmax(mapgrid),y=ymax(mapgrid),

legend=c("Present","Absent"),

fill=c("forestgreen","white"),

bty="n",

cex=1.2)}

mtext(criteria.labels[i],side=3,line=2,cex=1.2)

mtext(paste("threshold =",thresh),side=3,line=.5,cex=1)

}

R> mtext(MODELfn.b,side=3,line=0,cex=1.2,outer=TRUE)

R> mtext(response.name.b,side=3,line=2,cex=1.5,outer=TRUE)

R> par(opar)

3.4 Example 3 - Random Forest - Categorical Response

Example 3 builds a categorical response model for vegetation category. The response variable
consists of four categories: TREE, SHRUB, OTHERVEG, and NONVEG. This model will use the
same predictors as Model 2. Out-of-bag estimates are used for model validation.

3.4.1 Set up

Define model type.
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Figure 28: Example 2 - Presence-Absence maps by four different threshold selection criteria for
Pinyon (RF model).
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Figure 29: Example 2 - Presence-Absence maps by four different threshold selection criteria for
Sage (RF model).
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R> model.type <- "RF"

Define data.

R> qdatafn <- "VModelMapData.csv"

Define folder.

R> folder <- getwd()

Define model filenames.

R> MODELfn <- "VModelMapEx3"

Define the predictors. These are the five continuous predictors from the first example, plus one
categorical predictor layer, the thematic layer of predicted land cover classes from the National
Land Cover Dataset. The argument predFactor is used to specify the categorical predictor.

R> predList <- c( "ELEV250",

"NLCD01_250",

"EVI2005097",

"NDV2005097",

"NIR2005097",

"RED2005097")

R> predFactor <- c("NLCD01_250")

Define the data column to use as the response, and if it is continuous, binary or categorical.

R> response.name <- "VEGCAT"

R> response.type <- "categorical"

Define the seeds for each model.

R> seed <- 44

Define the column that contains unique identifiers.

R> unique.rowname <- "ID"

Define raster look up table.

R> rastLUTfn <- "VModelMapData_LUT.csv"

R> rastLUTfn <- read.table( rastLUTfn,

header=FALSE,

sep=",",

stringsAsFactors=FALSE)

R> rastLUTfn[,1] <- paste(folder,rastLUTfn[,1],sep="/")
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3.4.2 Model creation

Create the model. Because Out-Of-Bag predictions will be used for model diagnostics, the full
dataset can be used as training data. To do this, set qdata.trainfn <- qdatafn, qdata.testfn
<- FALSE and v.fold = FALSE.

R> model.obj.ex3 <- model.build( model.type=model.type,

qdata.trainfn=qdatafn,

folder=folder,

unique.rowname=unique.rowname,

MODELfn=MODELfn,

predList=predList,

predFactor=predFactor,

response.name=response.name,

response.type=response.type,

seed=seed)

R>

3.4.3 Model Diagnostics

Make Out-Of-Bag model predictions on the training data and run the diagnostics on these pre-
dictions. Save PDF versions of the diagnostic plots.

Out of Bag model predictions for a Random Forest model are not stochastic, so it is not necessary
to set the seed.

Since this is a categorical response model model diagnostics include a CSV file the observed and
predicted values, as well as a CSV file of the confusion matrix and its associated Kappa value and
MAUC.

R> model.pred.ex3 <- model.diagnostics( model.obj=model.obj.ex3,

qdata.trainfn=qdatafn,

folder=folder,

MODELfn=MODELfn,

unique.rowname=unique.rowname,

# Model Validation Arguments

prediction.type="OOB",

device.type="pdf",

cex=1.2)

R>

Take a closer look at the text file output for the confusion matrix. Read this file into R now.

R> CMX.CSV <- read.table( paste( MODELfn,"_pred_cmx.csv",sep=""),

header=FALSE,

sep=",",

stringsAsFactors=FALSE)

R> CMX.CSV

V1 V2 V3

1 Kappa Kappa.sd observed

2 0.279154 0.0238329 NONVEG

3 predicted NONVEG 492

4 predicted OTHERVEG 7

5 predicted SHRUB 80
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6 predicted TREE 90

7 total total 669

8 Omission Omission 0.26457399103139

9 MAUC 0.794949436880685 cmx

V4 V5 V6

1 observed observed observed

2 OTHERVEG SHRUB TREE

3 37 101 143

4 17 8 1

5 19 114 1

6 3 2 76

7 76 225 221

8 0.776315789473684 0.493333333333333 0.656108597285068

9 cmx cmx cmx

V7 V8

1 total Commission

2 total Commission

3 773 0.363518758085382

4 33 0.484848484848485

5 214 0.467289719626168

6 171 0.555555555555556

7 1191 PCC

8 PCC 0.586901763224181

9 cmx cmx

The PresenceAbsence package function Kappa() is used to calculate Kappa for the confusion
matrix. Note that while most of the functions in the PresenceAbsence package are only applicable
to binary confusion matrices, the Kappa() function will work on any size confusion matrix.

The HandTill2001 package is used to calculate the Multiple class Area under the Curve (MAUC)
and described by Hand and Till (2001).

The text file output of the confusion matrix is designed to be easily interpreted in Excel, but is
not very workable for carrying out analysis in R. However, it is relativly easy to calculate the
confusion matrix from the CSV file of the observed and predicted values.

R> PRED <-read.table( paste( MODELfn,"_pred.csv",sep=""),

header=TRUE,

sep=",",

stringsAsFactors=TRUE)

R> head(PRED)

ID obs pred NONVEG OTHERVEG SHRUB

1 1 NONVEG NONVEG 0.4730539 0.029940120 0.32934132

2 2 NONVEG TREE 0.4406780 0.000000000 0.01129944

3 3 NONVEG NONVEG 0.7807487 0.000000000 0.02673797

4 4 TREE NONVEG 0.5606936 0.000000000 0.06936416

5 5 NONVEG NONVEG 0.5164835 0.005494505 0.12637363

6 6 SHRUB NONVEG 0.4480874 0.000000000 0.37704918

TREE

1 0.1676647

2 0.5480226

3 0.1925134

4 0.3699422

5 0.3516484

6 0.1748634
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For categorical models, this file contains the observed category for each location, the category
predicted by majority vote, as well as one column for each category observed in the data, giving
the proportion of trees that voted for that category.

To calculate the confusion matrix from the file we will use the observed and predicted columns.
The read.table() function will convert columns containing character strings to factors. If the
categories had been numerical, the as.factor() function can be used to convert the columns to
factors. Because there may be catergories present in the observed data that are missing from the
predictions (and vice versa), to get a symetric confusion matrix it is important to make sure all
levels are present in both factors.

The following code will work for both numerical and character categories:

R> #

R> #these lines are needed for numeric categories, redundant for character categories

R> #

R> PRED$pred<-as.factor(PRED$pred)

R> PRED$obs<-as.factor(PRED$obs)

R> #

R> #adjust levels so all values are included in both observed and predicted

R> #

R> LEVELS<-unique(c(levels(PRED$pred),levels(PRED$obs)))

R> PRED$pred<-factor(PRED$pred,levels=LEVELS)

R> PRED$obs<- factor(PRED$obs, levels=LEVELS)

R> #

R> #calculate confusion matrix

R> #

R> CMX<-table( predicted=PRED$pred, observed= PRED$obs)

R> CMX

observed

predicted NONVEG OTHERVEG SHRUB TREE

NONVEG 492 37 101 143

OTHERVEG 7 17 8 1

SHRUB 80 19 114 1

TREE 90 3 2 76

To calculate the errors of Omission and Comission:

R> CMX.diag <- diag(CMX)

R> CMX.OMISSION <- 1-(CMX.diag/apply(CMX,2,sum))

R> CMX.COMISSION <- 1-(CMX.diag/apply(CMX,1,sum))

R> CMX.OMISSION

NONVEG OTHERVEG SHRUB TREE

0.2645740 0.7763158 0.4933333 0.6561086

R> CMX.COMISSION

NONVEG OTHERVEG SHRUB TREE

0.3635188 0.4848485 0.4672897 0.5555556

To calculate PCC:

R> CMX.PCC <- sum(CMX.diag)/sum(CMX)

R> CMX.PCC
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[1] 0.5869018

To calculate Kappa:

R> CMX.KAPPA <- PresenceAbsence::Kappa(CMX)

R> CMX.KAPPA

Kappa Kappa.sd

NONVEG 0.2791541 0.02383285

The MAUC is calculated from the category specific predictions (the percent of trees that voted
for each category):

R> VOTE <- HandTill2001::multcap( response = PRED$obs,

predicted= as.matrix(PRED[,-c(1,2,3)]) )

R> MAUC <- HandTill2001::auc(VOTE)

R> MAUC

[1] 0.7949483

Note, both the PresenceAbsence package and the HandTill2001 package have functions named
auc(). The :: operator is used to specify that we are calling the auc() function from the
HandTill2001 package.

As in continuous and binary response models, the model.diagnostics() function creates a vari-
able importance graph (Figure 30).

With categorical response models, the model.diagnostics() function alse creates category spe-
cific variable importance graphs, for example (Figure 31).

3.4.4 Comparing Variable Importance

In example 1 the model.importance.plot() function was used to compare the importance be-
tween two continuous Random Forest models, for percent cover of Pinyon and of Sage. Here we
will compare the variable importances of the binary models from Example 2 with the categorical
model we have just created in example 3 (Figure 32). We are examining the question “Are the
same predictors important for determining vegetaion category as were important for determining
species presence?” Keep in mind that to use model.importance.plot() the two models must be
built from the same predictor variables. For example, we could not use it to compare the models
from Example 1 and Example 3, because in Example 1 "NLCD01_250" was not included in the
predictors.

R> opar <- par(mfrow=c(2,1),mar=c(3,3,3,3),oma=c(0,0,3,0))

R> model.importance.plot( model.obj.1=model.obj.ex2a,

model.obj.2=model.obj.ex3,

model.name.1="Pinyon",

model.name.2="VEGCAT",

type.label=FALSE,

sort.by="predList",

predList=predList,

scale.by="sum",

main="Pinyon Presence vs VEGCAT",

device.type="none",

cex=0.9)

R> model.importance.plot( model.obj.1=model.obj.ex2b,
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Figure 30: Example 3 - Overall variable importance graph for predicting vegetation category.
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Figure 31: Example 3 - Category specific variable importance graph for vegetation category ”Tree”.
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Figure 32: Example 3 - Comparison of variable importances between categorical model of vegeta-
tion category (VEGCAT) and binary models for Pinyon presence and Sage presence.

model.obj.2=model.obj.ex3,

model.name.1="Sage",

model.name.2="VEGCAT",

type.label=FALSE,

sort.by="predList",

predList=predList,

scale.by="sum",

main="Sage Presence vs VEGCAT",

device.type="none",

cex=0.9)

R> mtext("Variable Importance Comparison",side=3,line=0,cex=1.8,outer=TRUE)

R> par(opar)

With categorical models the model.importance.plot() function also can be usde to compare
the variable importance between categories of the same model. The importance measure used
for category specific importance is the relative influence of each variable, calculated by randomly
permuting each predictor variable, and looking at the decrease in model accuracy associated with
each predictor.

R> opar <- par(mfrow=c(2,1),mar=c(3,3,3,3),oma=c(0,0,3,0))
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R> model.importance.plot( model.obj.1=model.obj.ex3,

model.obj.2=model.obj.ex3,

model.name.1="SHRUB",

model.name.2="TREE",

class.1="SHRUB",

class.2="TREE",

sort.by="predList",

predList=predList,

scale.by="sum",

main="VEGCAT - SHRUB vs. TREE",

device.type="none",

cex=0.9)

R> model.importance.plot( model.obj.1=model.obj.ex3,

model.obj.2=model.obj.ex3,

model.name.1="OTHERVEG",

model.name.2="NONVEG",

class.1="OTHERVEG",

class.2="NONVEG",

sort.by="predList",

predList=predList,

scale.by="sum",

main="VEGCAT - OTHERVEG vs. NONVEG",

device.type="none",

cex=0.9)

R> mtext("Category Specific Variable Importance",side=3,line=0,cex=1.8,outer=TRUE)

R> par(opar)

3.4.5 Interaction Plots

We will look at how the model.interaction.plot() function behaves with a categorical response
variable. With categorical models, interactions can affect one prediction category, without influ-
encing other categories. For example, if modelling disturbance type, it is possible that landslides
might be influenced by an interaction between soil type and slope, while fires might be influenced
by both variables individually, but without any interaction.

Therefore when calling model.interaction.plot() it is neccessary to specify a particular cate-
gory. The function then will graph how the probability of that category varies as a function of the
two specified predictor variables.

Here we look at the interaction between elevation and land cover class for two of our response
categories (Figure 34, Figure 35 ).

R> model.interaction.plot( model.obj.ex3,

x="ELEV250",

y="NLCD01_250",

main=response.name,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn,

folder=folder,

response.category="SHRUB")

R> model.interaction.plot( model.obj.ex3,

x="ELEV250",

y="NLCD01_250",
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Figure 33: Example 3 - Category specific comparison of variable importances for the model of
vegetation category (VEGCAT). National Land Cover DATA (NLCD) and elevation (ELEV)
are the most important predictor variables for both TREE and SHRUB categories, though the
relative importance of the remote sensing bands differs between these two categories. ELEV is
relativly less important for the NONVEG and OTHERVEG categories, while ELEV is important
for classifying OTHERVEG but relativly unimportant for the classifying NONVEG. In other
words, if the model lost the information contained in NLCD and ELEV, the predictions for TREE
and SHRUB categories would suffer, but there would be less of an effect on the prediction accuracy
for NONVEG. The predictions for OTHERVEG would suffer if NLCD were removed from the
model, but would lose relativly little accuracy if ELEV were removed.
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main=response.name,

plot.type="image",

device.type="pdf",

MODELfn=MODELfn,

folder=folder,

response.category="NONVEG")

R>

3.4.6 Map production

The function model.mapmake() creates an ascii text files and an imagine image file of predictions
for each map pixel.

R> model.mapmake( model.obj=model.obj.ex3,

folder=folder,

MODELfn=MODELfn,

rastLUTfn=rastLUTfn,

na.action="na.omit")

With categorical models, the model.mapmake() function outputs a map file, using integer codes
for each category, along with a table relating these codes to the original categories. In this example
na.action was set to "na.omit", therefore pixels with factored predictors with values not found
in the training data will be omited from the map.

Take a look at the codes:

R> MAP.CODES<-read.table( paste(MODELfn,"_map_key.csv",sep=""),

header=TRUE,

sep=",",

stringsAsFactors=FALSE)

R> MAP.CODES

row category integercode

1 1 NONVEG 1

2 2 OTHERVEG 2

3 3 SHRUB 3

4 4 TREE 4

Column one gives the row number for each code. Column two gives the category names. Column
three gives the integer codes used to represent each category in the map output. In this example the
categories in the training data are character strings, and model.mapmake() assigned the integers
1 through the Number of categories. If the training data categories were already numeric codes,
for example, c(30,42,50,80), then model.mapmake() would keep the original values in the map
output, and columns two and three would contain the same values.

Next we define a color for each category. The colors() function will generate a list of the possible
color names. Some are quite poetical.

R> MAP.CODES$colors<-c("bisque3","springgreen2","paleturquoise1","green4")

R> MAP.CODES

Import the map output and transform the values of the map output to intergers from 1 to n (the
number of map categories).
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Figure 34: Example 3 - Interaction plot for SHRUB vegetation category (RF model), showing inter-
actions between elevation and National Land Cover Dataset classes (ELEV250 and NLCD01 250).
Image plot, with darker green indicating higher probability of being assigned to the specified cate-
gory. Here we see the direct effect of NLCD class: SHRUB has a low probability of being assigned
to landcover class 42. We also see a direct effect of elevation, with SHRUB having a slightly
higher probability of being assigned to middle elevations. There is little evidence of interaction
between these two predictors, since relationship of probability to elevation is similar for all land
cover classes.
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Figure 35: Example 3 - Interaction plot for NONVEG vegetation category (RF model), show-
ing interactions between elevation and National Land Cover Dataset classes (ELEV250 and
NLCD01 250). Image plot, with darker green indicating higher probability of being assigned
to the specified category. NONVEG has a much higher chance of being assigned than SHRUB
in all combinations of the two predictor variables, reflecting its higher prevalence in the training
data (56% as opposed to 19%). NONVEG does show some interaction between landcover class
and elevation. In all land cover classes NONVEG has a higher chance of being predicted at low
elevations, but while in most land cover classes the probability goes down at elevations above
1400m, in land cover class 42 NONVEG matains a high chance of being predicted to over 2000m.
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Note that here in example 3, where the categorical responses were character strings, the model.mapmake()
function generated integer codes from 1 to n for the raster output. So for this example this step is
not actually neccessary. However, if the categories in the training data had been unevenly spaced
numeric codes, for example, c(30,42,50,80), then model.mapmake() would keep these original
numeric codes in the raster output. In such cases, to produce a map in R with the image()

function (as opposed to viewing the image in a GIS environment) creating a new raster where
the numeric codes are replaced with the numbers 1 to n makes assigning specific colors to each
category simpler.

R> mapgrid <- raster(paste(MODELfn,"_map.img",sep=""))

R> integergrid <- mapgrid

R> v <- getValues(mapgrid)

R> v <- MAP.CODES$row[match(v,MAP.CODES$integercode)]

R> integergrid <- setValues(integergrid, v)

Produce the map (Figure 36).

R> opar <- par(mfrow=c(1,1),mar=c(3,3,2,1),oma=c(0,0,3,8),xpd=NA)

R> image( integergrid,

col = MAP.CODES$colors,

xlab="",ylab="",xaxt="n",yaxt="n",

zlim=c(1,nrow(MAP.CODES)),

main="",asp=1,bty="n")

R> mtext(response.name,side=3,line=1,cex=1.2)

R> legend( x=xmax(mapgrid),y=ymax(mapgrid),

legend=MAP.CODES$category,

fill=MAP.CODES$colors,

bty="n",

cex=1.2)

R> par(opar)

4 Conclusion

In summary, theModelMap software package for R creates sophisticated models from training data
and validates the models with an independent test set, cross-validation, or in the case of Random
Forest Models, with out-of-bag (OOB) predictions on the training data. It creates graphs and
tables of the model diagnostics. It applies these models to GIS image files of predictors to create
detailed prediction surfaces. It will handle large predictor files for map making, by reading in the
GIS data in sections, and output the prediction for each of these sections, before reading the next
section.
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Figure 36: Example 3 - Map of predicted vegetation category (RF model). The white pixels found
just below the center of this map idicate pixels with factored predictor variables that have values
not found in the training data.
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Appendices

Arguments for model.build()
model.type Model type: "RF" or "QRF" or "CF".
qdata.trainfn Filename of the training data file for building model.
folder Folder for all output.
MODELfn Filename to save model object.
predList Predictor short names used to build the model.
predFactor Predictors from predList that are factors (i.e categorical).
response.name Response variable used to build the model.
response.type Response type: "binary" or "continuous".
unique.rowname Unique identifier for each row in the training data.
seed Seed to initialize randomization to build stochastic models.
na.action Specifies the action to take if there are NA values in the prediction data
keep.data Should a copy of the predictor data be included in the model object. Useful

if model.interaction.plot will be used later.
Random Forest Models:

ntree Number of random forest trees.
mtry Number of variables to try at each node of Random Forest trees.
replace Should sampling be done with or without replacement.
strata A (factor) variable that is used for stratified sampling.
sampsize For classification, if strata provided, sampling is stratified by strata. For

binary response models, if argument strata is not provided then sampling
is stratified by presence/absence.
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Arguments for model.diagnostics
model.obj The model object to use for prediction, if the model has been previously

created.
qdata.trainfn Filename of the training data file for building model.
qdata.testfn Filename of independent data set for testing (validating) model.
folder Folder for all output.
MODELfn Filename to save model object.
response.name Response variable used to build the model.
unique.rowname Name of column in training and test that uniquely identifies each row .
diagnostic.flag Name of column in training that indicates subset of data to use for diag-

nostics.
seed Seed to initialize randomization to build stochastic models.
prediction.type Type of prediction to use for model validation: "TEST", "CV", "OOB" or

"TRAIN"

MODELpredfn Filename for output of validation prediction *.csv file.
na.action Specifies the action to take if there are NA values in the prediction data or if

there is a level or class of a categorical predictor variable in the validation
test set or the mapping data set, but not in the training data set.

v.fold The number of cross-validation folds.
device.type Vector of one or more device types for graphical output: "default",

"jpeg", "pdf", "postscript", "win.metafile". "default" refers to the
default graphics device for your computer

DIAGNOSTICfn Filename for output files from model validation diagnostics.
jpeg.res Pixels per inch for jpeg output.
device.width Device width for diagnostic plots in inches.
device.height Device height for diagnostic plots in inches.
cex Cex for diagnostic plots.
req.sens Required sensitivity for threshold optimization for binary response model.
req.spec Required specificity for threshold optimization for binary response model.
FPC False Positive Cost for threshold optimization for binary response model.
FNC False Negative Cost for threshold optimization for binary response model.

Arguments for model.mapmake()
model.obj The model object to use for prediction, if the model has been pre-

viously created.
folder Folder for all output.
MODELfn Filename to save model object.
rastLUTfn Filename of .csv file for a raster look up table.
na.action Specifies the action to take if there are NA values in the prediction

data or if there is a level or class of a categorical predictor variable
in the validation test set or the mapping data set, but not in the
training data set.

keep.predictor.brick If TRUE then the raster brick containing the predictors from the
model object is saved as a native raster package format file.

map.sd Should maps of mean, standard deviation, and coefficient of varia-
tion of the predictions be produced: TRUE or FALSE. Only used if
response.type = "continuous".

OUTPUTfn Filename for output raster file for map production. If NULL,
"modelfn _map.txt".
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