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Abstract

A robust scientific conclusion is the result of a rigorous scientific process. In observa-
tional ecology, this process involves making inferences about a population from a sample.
The sample is crucial, and is the result of implementing a survey design. A good survey
design ensures that the data from the survey is capable of answering the research question.
Better designs, such as spatially balanced designs, will also be as precise as possible given
the constraints of the budget.

The MBHdesign package is useful for creating spatially balanced designs. There are
four tasks that it is intended to address: 1) designing spatially-balanced surveys us-
ing Balanced Adaptive Sampling (BAS Robertson et al. 2013, 2017); 2) designing and
analysing spatially-balanced surveys that incorporate existing legacy sites, using Foster
et al. (2017); 3) designing spatially-balanced transect-based surveys using the methods
described in Foster et al. (2020), and; 4) designing spatially-balanced cluster designs Fos-
ter et al. (in press). The first example in this tutorial generates a point-based design and
shows how legacy sites can be incorporated. There are three steps to this process:

1. Altering inclusion probabilities for spatial balance, taking into account the location
of legacy sites. This is done using the function alterInclProbs;

2. Generating spatially balanced designs for a given set of inclusion probabilities,
through the function quasiSamp; and

3. Analysing some (made up) data using model-based methods (using modEsti).
The second example in this tutorial generates a transect-based design over the same in-

clusion probabilities. This consists of just one substantive step: calling the transectSamp
function.

The third example in this tutorial generates a clustered sample, where groups of sites
are chosen to be spatially similar but these clusteres are spatially segregated. This process
relies on use of the quasSamp.cluster function.

Keywords: Spatially-Balanced Survey Design, Balanced Adaptive Sampling, Transect, Cluster,
R.

First Things First
Before starting with this introduction to MBHdesign, we need to make sure that everything
is set up properly. Much of this will vary from computer to computer, but you must have
a working version of R installed (preferably the recent release). This vignette was created
using R version 4.4.1 (2024-06-14). It does not matter whether you prefer to use R through
a development environment (such as RStudio) or through the command line – the results
will be the same. There are two ways to install MBHdesign. The first is through the CRAN
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repository. This version will not be updated very frequently, so it will not have the very latest
developments (nor the associated bugs). This version can be installed by starting R and then
submitting (at command line):

install.packages( "MBHdesign")
## or ##
devtools::install_github( repo="Scott-Foster/MBHdesign", build_vignettes=FALSE)

If you install from CRAN, you will be asked which repository you want to use. Just use one
that is geographically close to where you are (or where your computer is). Installing from
the github repos will give you the most up to date version. However, do take note of the
build_vignettesF̄ALSE argument: the vignette can take a while to build (and has already
been pre-built).
Whichever way the package is installed, you’ll have to load it:

library( MBHdesign)

For illustration is is also good to fix the random number seed, so that this document is
reproducible exactly. However, and due to R evoloving, the results may differ between different
versions of R. In particular, R/3.6 could be quite different from R/3.5.

set.seed( 747) #a 747 is a big plane

Technical note about version on CRAN. CRAN has some strict rules for packages that it
hosts. One of these is that the package must not take long to build. This vignette breaks this
rule... As a work-around the version of this vignette in the CRAN package uses precompiled
data (with the usePrecompiledData variable set to TRUE). However, on GitHub the package
does not use precompiled data. You’ll see locations in the code where the running of certain
functions is conditional on this variable. Please don’t be confused by it.

#TRUE if you want some of the examples shortened by using pre-saved output
usePrecompiledData <- TRUE

Now, we are good to go with the rest of the introduction.

A Point-Based Design
Let’s pretend that we want to generate n = 10 samples on a grid of points (representing the
centres of a tessellation). The grid of points consists of N = 100 × 100 = 10000 points in
2-dimensional space (spanning the interval [0, 1] in both dimensions). Let’s also pretend that
there are 3 legacy sites, that have been sampled in previous survey efforts, and we wish to
revisit them in the current survey. The legacy sites are located at random throughout the
study area. Here, I have generated it all in R (painstakingly), but in a real application, most
of this information could be read in from file.
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#number of samples
n <- 10
#number of points to sample from
N <- 100^2
#the sampling grid (offset so that the edge locations have same area)
offsetX <- 1/(2*sqrt( N))
my.seq <- seq( from=offsetX, to=1-offsetX, length=sqrt(N))
X <- expand.grid( my.seq, my.seq)
#the legacy sites (three of them)
legacySites <- matrix( runif( 6), ncol=2, byrow=TRUE)
#names can be useful
colnames( X) <- colnames( legacySites) <- c("X1","X2")

Inclusion Probabilities

Key to this whole design process is the concept of inclusion probabilities. Inclusion proba-
bilities define the chance that any particular site will be part of the sample. So, if a site’s
inclusion probability is small, then the site is unlikely to be included into the sample. Speci-
fying inclusion probabilities can improve efficiency of the sampling design. That is, standard
errors can be reduced for a given number of samples. The ‘trick’ is to specify inclusion proba-
bilities so that the sites that should have highly variable observations are sampled more often
(e.g. Grafström and Tillé 2013). In ecology, variance often increases with abundance (due to
Taylor’s Power Law; Taylor 1961), so inclusion probabilities could be increased with abun-
dance. If there is no knowledge about the area being sampled, then all sites should be given
equal inclusion probabilities. Frequently, a formal requirement is to constrain the inclusion
probabilities so that they sum to n. While MBHdesign does not require this constraint, it can
be useful for communication purposed.

Here, we are going to pretend that there is some gradient in the variance of the population
under study. We stress that this is illustrative only.

#non-uniform inclusion probabilities
inclProbs <- 1-exp(-X[,1])
#scaling to enforce summation to n
inclProbs <- n * inclProbs / sum( inclProbs)
#uniform inclusion probabilities would be inclProbs <- rep( n/N, times=N)
#visualise
image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( inclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),
main="(Undadjusted) Inclusion Probabilities",
ylab=colnames( X)[2], xlab=colnames( X)[1])

#The legacy locations
points( legacySites, pch=21, bg=grey(0.75), cex=1.5)
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Accommodating Legacy Sites

To generate a design that is spatially balanced in both the n new sample sites and the legacy
sites, we adjust the inclusion probabilities. The adjustment (see Foster et al. 2017) reduces
the inclusion probabilities so that sites near legacy sites are less likely to be chosen in the new
sample.

#alter inclusion probabilities
# so that new samples should be well-spaced from legacy
altInclProbs <- alterInclProbs( legacy.sites=legacySites,

potential.sites=X, inclusion.probs = inclProbs)
#visualise
image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( altInclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),
main="Adjusted Inclusion Probabilities",
ylab=colnames( X)[2], xlab=colnames( X)[1])

#The legacy locations
points( legacySites, pch=21, bg=grey(0.75), cex=1.5)
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So, the inclusion probabilities have been reduced around the legacy sites. It is perhaps worth
noting that the reduction in inclusion probabilities, due to the legacy sites, can be viewed as
sequential. This means that the reduction for any legacy site is in addition to the reduction of
all of the other legacy sites – there is no extra joint effect. Also, the adjustment is proportional
to the original inclusion probability, so that a small inclusion probability and a large inclusion
probability are both adjusted proportionally to the same amount.
There are some other arguments to the altInclProbs() function (omitted for clarity here).
These can be seen to refine the call and/or to make the computer to do its work quicker.
Type ?altInclProbs for more details.

Generating the Design
Irrespective of how the inclusion probabilities were obtained, we can now use them to generate
a spatially balanced design.

#generate the design according to the altered inclusion probabilities.
samp <- quasiSamp( n=n, dimension=2,

study.area=matrix( c(0,0, 0,1, 1,1, 1,0),ncol=2, byrow=TRUE),
potential.sites=X, inclusion.probs=altInclProbs)

#for faster sampling (large problems),
# consider using quasiSamp.raster, which utilises SpatRaster formats
#visualise
image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( altInclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),
main="Adjusted Inclusion Probabilities",
ylab=colnames( X)[2], xlab=colnames( X)[1])

#The legacy locations
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points( legacySites, pch=21, bg=grey(0.75), cex=1.5)
points( samp[,1:2], pch=21)
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Voilà! A spatially balanced design that incorporates legacy sites. It is contained in the object
samp, which looks like:

print( samp, row.names=FALSE)

X1 X2 inclusion.probabilities ID
0.855 0.415 0.0017794542 4186
0.485 0.525 0.0011898872 5249
0.985 0.855 0.0018903022 8599
0.525 0.635 0.0012643162 6353
0.775 0.015 0.0015975614 178
0.655 0.685 0.0014621556 6866
0.905 0.465 0.0018436754 4691
0.085 0.795 0.0002510468 7909
0.585 0.235 0.0010991360 2359
0.715 0.385 0.0015810540 3872

The columns of samp are:

• The sample locations in the X1 and X2 dimensions;

• The inclusion probability for that sampling location; and

• The row number (ID), of the original list of potential sites (X).
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Analysis

After finalising the design, time comes to go and undertake the survey. For illustration, we do
this in silico and generate observations according to a pre-defined function (following Foster
et al. 2017, amongst others).

#generate some `observations' for the new sites
Z <- 3*( X[samp$ID,1]+X[samp$ID,2]) +

sin( 6*( X[samp$ID,1]+X[samp$ID,2]))
#and some for the legacy sites
Zlegacy <- 3*( legacySites[,1]+legacySites[,2]) +

sin( 6*( legacySites[,1]+legacySites[,2]))

These data can be analysed in two ways: 1) design-based, which uses minimal assumptions
about the data; and 2) model-based, which attempts to describe more aspects of the data.
See Foster et al. (2017) for a more complete description. For design-based analysis we take a
weighted average of the estimator for the legacy sites and the estimator for the new sites. In
both cases the estimates follow Horvitz and Thompson (1952). Please do read the section in
Foster et al. (2017) for comments on estimation, it could save you some grief.

#the proportion of legacy sites in the whole sample
fracLegacy <- nrow( legacySites) / (n+nrow( legacySites))
#inclusion probabilities for legacy sites
# (these are just made up, from uniform)
LegInclProbs <- rep( nrow( legacySites) / N, nrow( legacySites))
#estimator based on legacy sites only
legacyHT <- (1/N) * sum( Zlegacy / LegInclProbs)
#estimator based on new sites only
newHT <- (1/N) * sum( Z / inclProbs[samp$ID])
mean.estimator <- fracLegacy * legacyHT + (1-fracLegacy) * newHT
#print the mean
print( mean.estimator)

[1] 3.242095

This is pretty close to the true value of 2.9994. To get a standard error for this estimate, we use
the cont_analysis() function from the spsurvey∗ (Dumelle et al. 2021), which implements
the neighbourhood estimator of Stevens and Olsen (2003).

#load the spsurvey package
library( spsurvey)
#rescale the inclusion probs
# (the sample frames are the same in legacy and new sites)
tmpInclProbs <- ( c( inclProbs[samp$ID], LegInclProbs) / n) *

(n+nrow(legacySites))

∗In versions of spsurvey, prior to version 5, this was acievied through total.est()
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#create a temporary data frame
tmpDat <- data.frame( siteID=

c( samp$ID, paste0( "legacy", 1:nrow(legacySites))),
wgt=1/tmpInclProbs,
xcoord=c(samp$X1,legacySites[,1]),
ycoord=c(samp$X2,legacySites[,2]), Z=c(Z,Zlegacy))

#calculate the standard error
se.estimator <- cont_analysis( tmpDat, vars="Z",

weight="wgt",
xcoord="xcoord",
ycoord="ycoord")$Mean$StdError

#print it
print( se.estimator)

[1] 0.4186033

For model-based mean and standard errors we follow the ‘GAMdist’ approach in Foster et al.
(2017).

tmp <- modEsti( y=c( Z, Zlegacy), locations=rbind( X[samp$ID,], legacySites),
includeLegacyLocation=TRUE, legacyIDs=n + 1:nrow( legacySites),
predPts=X, control=list(B=1000))

print( tmp)

$mean
[1] 2.259459

$se
[1] 0.3548523

$CI
2.5% 97.5%

1.616817 2.942019

In this case, the standard error estimates are quite different. On average, they tend to be
(when there are only a few legacy sites). Even so, this level of difference is unusual.

Last Things Last

The only remaining thing to do is to tidy up our workspace. First, to export our sample
locations. Second, to remove all objects for this analysis from your workspace.

##write csv if wanted
#write.csv( samp, file="pointSample1.csv", row.names=FALSE)
#tidy
rm( list=c( "samp", "tmp", "se.estimator","tmpDat","tmpInclProbs",
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"mean.estimator","newHT","legacyHT","LegInclProbs",
"fracLegacy","Zlegacy","Z","X","altInclProbs", "n", "N",
"my.seq","inclProbs", "offsetX", "legacySites"))
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Transect-Based Surveys

Let’s now pretend that we want to generate n = 10 transect locations over a grid of points
(representing the centres of a tessellation). We will use the methods described in Foster et al.
(2020). The transects are linear and are each of length 0.15, and the grid of points consists
of N = 100 × 100 = 10000 points in 2-dimensional space (spanning the interval [0, 1] in
both dimensions). For this example, we generate all information about the survey area and
inclusion probabilities but in a real application, most of this information is likely to come
from file (e.g. a shapefile).
A small word of warning: this example will take a little while to run. Sorry. Whilst choices
have been made to reduce the computation, at the expense of accuracy, the computation is
still quite intensive.
Another note of warning: while the random number seed is set, different versions of R may
produce different results. This is due to R evoloving. In particular, R/3.6 could be quite
different from R/3.5.

set.seed( 747) #I'm currently on a 787, so it *almost* seems appropriate
#number of transects
n <- 10
#number of points to sample from
N <- 100^2
#the sampling grid (offset so that the edge locations have same area)
offsetX <- 1/(2*sqrt( N))
my.seq <- seq( from=offsetX, to=1-offsetX, length=sqrt(N))
X <- expand.grid( my.seq, my.seq)
colnames( X) <- c("X1","X2")

Inclusion Probabilities

Here, like in the previous example, we are going to pretend that there is some gradient in the
variance of the population under study. We stress that this is illustrative only. The transect
probabilities are set-up to reflect this.

#non-uniform inclusion probabilities
inclProbs <- 1-exp(-X[,1])
#scaling to enforce summation to n
inclProbs <- n * inclProbs / sum( inclProbs)
#uniform inclusion probabilities would be inclProbs <- rep( n/N, times=N)
#visualise
image( x=unique( X[,1]), y=unique( X[,2]),

z=matrix( inclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),
main="(Undadjusted) Inclusion Probabilities",
ylab=colnames( X)[2], xlab=colnames( X)[1])
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We will need to tell the transect sampling function some information about the size and
shape of the transects. For this purpose, the transects should be thought of as a set of
points (arranged on a line for a linear transect). For the particular case of linear transects
the sampling function transectSamp arranges this for us, but we still need to give some
information. The choices made here are compromised in favour of speed-of-execution rather
than accuracy. In a real (and final) design, you may want to consider finer resolutions. These
are the only control options needed in this example, but we note that there are others, which
mostly control different aspects of the algorithm (not the transect setup itself).

#my.control is a list that contains
my.control <- list(

#the type of transect
transect.pattern="line",
#the length of transect
line.length=0.15,
#the number of points that define the transect
transect.nPts=15,
#the number of putative directions that a transect can take
nRotate=9

)

Take the Transect Sample

The sample is obtained by a relatively straight-forward call. They are also plotted over the
inclusion probabilities.
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#take the transect sample
if( !usePrecompiledData){

samp <- transectSamp( n=n, potential.sites=X,
inclusion.probs=inclProbs, control=my.control)

} else{
samp <- readRDS( system.file(

"extdata", "transectSamp1.RDS",
package="MBHdesign"))}

image( x=unique( X[,1]), y=unique( X[,2]),
z=matrix( inclProbs, nrow=sqrt(nrow(X)), ncol=sqrt(nrow( X))),
main="(Undadjusted) Inclusion Probabilities",
sub="10 Transects",
ylab=colnames( X)[2], xlab=colnames( X)[1])

points( samp$points[,5:6], pch=20, cex=0.6)
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Last Things Last

The only remaining thing to do is to tidy up our workspace. First, to export our sample
locations. Second, to remove all objects for this analysis from your workspace.

##write csv
#write.csv( samp$transect, file="transectSample1.csv", row.names=FALSE)
#tidy
rm( list=c( "X", "inclProbs", "samp", "my.control",

"my.seq", "offsetX", "n", "N"))
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A Harder/Constrained Transect-Based Survey

The design problem described in the previous section is pretty straight-forward as the sample
space doesn’t have any constraints upon it. Here, we make things more complicated in
this respect, by forcing transects to go down-hill. This mimics towed-platforms, such as
underwater image tools, and was enforced in the seamount example in Foster et al. (2020).
As an illustration, we utilise the volcano altitude dataset from the excellent MASS package
(Venables and Ripley 2002). The inclusion probabilities here are assumed to be uniform, so
that the transects will be spatially-balanced, and even, throughout the study area.

Forcing down-hill transects isn’t the only type of constraint. However, it is illustrative.
Another type of constraint that we regularly encounter is, when sampling some certain types
of seamounts, the desire to run the transects from ‘peak-to-base’ so that all transects must
start at the highest point of the seamount. This kind of constraint can be incorporated
within MBHdesign using the function findTransFromPoint, which only allows transects from
a specified set of points.

library( MASS) #for the data
library( fields) #for image.plot
#library( MBHdesign) #for the spatial design and constraints
set.seed( 717) #Last plan I was on
#number of transects
n <- 20
#load the altitude data
data( volcano) #this is a matrix
n.x <- nrow( volcano)
n.y <- ncol( volcano)
image.plot( x=1:n.x, y=1:n.y, z=volcano, main="Mountain Height (m)", asp=1)
#format for MBHdesign functions
pot.sites <- expand.grid( x=1:n.x, y=1:n.y)
pot.sites$height <- as.vector( volcano)
#details of the transects (see Details section in ?transectSamp)
vol.control <- list( transect.pattern="line", transect.nPts=10,

line.length=7, nRotate=11, mc.cores=1)
#In a real application, transect.nPts and nRotate may need to be increased
#1 cores have been used to ensure generality for all computers.
# Use more to speed things up
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So, that is the data. Note that there are locations where transects could descent and then
ascend. The ‘hole’ (crater) in the middle of the mountain is the largest and most obvious
example. To avoid transects that ascend and descend, we use an MBHdesign function

if( !usePrecompiledData){
vol.constraints <- findDescendingTrans(

potential.sites = pot.sites[,c("x","y")],
bathy=pot.sites$height, in.area=rep( TRUE, nrow( pot.sites)),
control=vol.control)

} else{
vol.constraints <- readRDS( system.file(

"extdata", "transectConstraints1.RDS",
package="MBHdesign"))}

#this is a matrix with nrow given by the number of sites and ncol by
# the number of rotations around each site
print( dim( vol.constraints))

[1] 5307 11

#The contents describe how the transect lays over the landscape
#So, there are 15592 putative transects that ascend and descend
# (and can't be used in the sample)
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table( as.vector( vol.constraints))

descend descendAndNA_NaN upAndDown
34397 8388 15592

#convert to TRUE/FALSE
#Note that the final possible transect type ('descendAndNA') is
# not present in these data
#If present, we would have to decide to sample these or not
vol.constraints.bool <- matrix( FALSE, nrow=nrow( vol.constraints),

ncol=ncol( vol.constraints))
vol.constraints.bool[vol.constraints %in% c("descend")] <- TRUE
#Let's get a visual to see what has just been done.
tmpMat <- matrix( apply( vol.constraints.bool, 1, sum), nrow=n.x, ncol=n.y)
image.plot( x=1:n.x, y=1:n.y, z=tmpMat,

main="Number of Transects",
sub="Transects centered at cell (max 11)", asp=1)

#There aren't any transects that are centred on ridges or depressions.
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The task is to now sample the reduced sampling frame. Fortunately, with the constraint
matrix just produced, this is pretty easy.
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#take the sample
if( !usePrecompiledData){

volSamp <- transectSamp( n=n, potential.sites=pot.sites[,c("x","y")],
control=vol.control,
constrainedSet=vol.constraints.bool)

} else{
volSamp <- readRDS( system.file(

"extdata", "transectSamp2.RDS",
package="MBHdesign"))}

#visualise the sample
image.plot( x=1:n.x, y=1:n.y, z=volcano,

main="Uniform Probability Transect Sample", asp=1)
points( volSamp$points[,c("x","y")], pch=20)
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The only remaining thing to do is to tidy up our workspace. First, to export our sample
locations. Second, to remove all objects for this analysis from your workspace.

##write csv
#write.csv( volSamp$transect, file="volcanoSample1.csv", row.names=FALSE)
#tidy
rm( list=c( "volSamp", "tmpMat", "vol.constraints.bool",

"vol.constraints", "vol.control", "pot.sites",
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"n", "n.x", "n.y", "volcano"))
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Clustered Surveys
The very nature of spatially-balanced designs implies that the sampling locations will be well
spread out in space. Whilst this is statistically appealing (as it is usually efficient) it can
also create logistic difficulties – for example transit time between sampling locations is large.
To overcome this logistical constraint, the function quasiSamp.cluster has the ability to
group sampling locations into clusters. Spatial balance is maintained at both the between-
cluster and within-cluster levels (see Foster et al. in press, for details). A clustered sample,
consisting of 10 clusters or 5 samples, will now be generated using an exaggerated version of
data representing Soil Moisture at the Root Zone (SMRZ) over a 1km raster of the Australian
Capital Territory (see Frost et al. 2018).

#need raster functions
library( terra)
#import example data
egDat <- rast(system.file(

"extdata", "ACT_DemoData.grd",
package="MBHdesign"))$soilMoisture

values( egDat) <- ( values( egDat) - min( values( egDat), na.rm=TRUE)) * 5

Take the Cluster Sample

The process of taking a clustered sample is almost as straightforward as a regular point-
based sample, and the process mostly follows that of taking a point sample. However, some
extra information is needed about the clusters themselves. The function quasiSamp.cluster
performs all the necessary computations and produces an obvious output. We note that
quasiSamp.cluster, like quasiSamp.raster, accepts only raster objects for the inclusion proba-
bilities.

set.seed( 727)
#take the cluster sample
#increase mc.cores for faster processing
if( !usePrecompiledData){

samp <- quasiSamp.cluster( nCluster=10, clusterSize=5, clusterRadius=5,
inclusion.probs = egDat, mc.cores=1)

} else{
samp <- readRDS( system.file(

"extdata", "clusterSamp1.RDS",
package="MBHdesign"))}

#plot it over the egData data
plot( egDat)
#the sample points
points( samp$x, samp$y, pch=20, cex=0.5)
#the centres of the clusters
# (not sample points but potentially useful nevertheless)
points( attr( samp, "clusterDes")[,c("x","y")], pch=1, col='red', cex=0.5)
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Take a Clustered Oversample

If/when an over-sample is required (e.g. , lar08,van18) so that a survey can be expanded at
future dates, including replacement of non-response sites (missing values), then an extra step
is required. This is because the working inclusion probabilities, which are calculated within
quasiSamp.clust, are calculated for the number of planned observations and not the size
of the planned over-sample. Within the framework of MBHdesign this is achieved by first
calculating the working inclusion probabilities (see Foster et al. in press) for the ‘correctly
sized’ design and then useing these as the basis for an over-sample.
In the design that follows, an over sample of clusters (15 drawn for 10 initial target) is taken.
The planned cluster size is 5, but 10 are taken for each cluster to allow for drop-out. A
property of BAS is that any contiguous set of samples is spatially-balanced, and this applies
within each cluster and between clusters too.



Scott D. Foster 21

#Create the working probabilties for the correct sized cluster.
if( !usePrecompiledData){

workProbs <- alterInclProbs.cluster( nCluster=15, clusterSize=5,
mc.cores=1, clusterRadius=5, inclusion.probs=egDat)

} else{
workProbs <- readRDS( system.file(

"extdata", "clusterWorkProbs1.RDS",
package="MBHdesign"))}

#take the (over-sample)
set.seed( 747)
overSamp <- quasiSamp.cluster( nCluster=15, clusterSize=10,

clusterRadius=5, working.inclusion.probs = workProbs)
#plot the results
par( mfrow=c(1,2))
plot( egDat, main="Planned and Spare points")
#the planned sample
points( overSamp[overSamp$cluster<=10 & overSamp$point<=5,c("x","y")], cex=0.5)
#the over-sample (within clusters 1:10)
points( overSamp[overSamp$cluster<=10 & overSamp$point>5,c("x","y")],

cex=0.5, col='red')
plot( egDat, main="Over-sampled clusters")
#the overs-sampled clusters (themselves oversampled)
points( overSamp[overSamp$cluster>10 & overSamp$point<=5,c("x","y")], cex=0.5)
points( overSamp[overSamp$cluster>10 & overSamp$point>5,c("x","y")],

cex=0.5, col='red')
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Over−sampled clusters

Last Things Last

The only remaining thing to do is to tidy up our workspace. First, to export our sample
locations. Second, to remove objects for this analysis from your workspace.

##write csv
#write.csv( as.data.frame( overSamp),
# file="clusterSamp1.csv", row.names=FALSE)
#tidy
rm( list=c("egDat","overSamp","workProbs","samp","usePrecompiledData"))
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Appendix

Computational details

This vignette was created using the following R and add-on package versions

• R version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Time zone: Etc/UTC

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.1 LTS

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

• LAPACK:
/usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ;
LAPACK version3.12.0

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

• Other packages: MASS 7.3-61, MBHdesign 2.3.15, Matrix 1.7-1, fields 16.3, knitr 1.48,
sf 1.0-18, spam 2.11-0, spsurvey 5.5.1, survey 4.4-2, survival 3.7-0, terra 1.7-83,
viridisLite 0.4.2
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• Loaded via a namespace (and not attached): AlgDesign 1.2.1.1, DBI 1.2.3,
KernSmooth 2.23-24, Rcpp 1.0.13, abind 1.4-8, boot 1.3-31, buildtools 1.0.0,
class 7.3-22, classInt 0.4-10, codetools 0.2-20, compiler 4.4.1, crossdes 1.1-2,
deldir 2.0-4, digest 0.6.37, dotCall64 1.2, e1071 1.7-16, evaluate 1.0.1, geometry 0.5.0,
gtools 3.9.5, highr 0.11, lattice 0.22-6, lme4 1.1-35.5, lpSolve 5.6.21, magic 1.6-1,
magrittr 2.0.3, maketools 1.3.1, maps 3.4.2, mgcv 1.9-1, minqa 1.2.8, mitools 2.4,
mvtnorm 1.3-1, nlme 3.1-166, nloptr 2.1.1, parallel 4.4.1, proxy 0.4-27,
randtoolbox 2.0.5, rngWELL 0.10-10, sampling 2.10, splines 4.4.1, sys 3.4.3,
tools 4.4.1, units 0.8-5, xfun 0.49
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