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Abstract

GiRaF package offers various tools for the analysis of Gibbs (or discrete Markov) ran-

dom fields. The latter form a class of intractable statistical models since, due to the

Markovian dependence structure, the normalising constant of the fields cannot be com-

puted using standard analytical or numerical methods. GiRaF substantially lowers the

barrier for practitioners aiming at analysing such Gibbs random fields. It contains exact

methods for small lattices and several approximate methods for larger lattices that make

the analysis easier for practitioners. This document provides a short description of the

models which are solved as well as short examples of the major functionalities.
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Introduction

Gibbs (or discrete Markov) random fields have been used in many practical settings, surged

by the development in the statistical community since the 1970’s. Notable examples are the
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autologistic model (Besag, 1974) and its extension the Potts model used to describe the spa-

tial dependency of discrete random variables (e.g., shades of grey or colors) on the vertices

of an undirected graph (e.g., a regular grid of pixels). Despite their popularity, running a

statistical analysis is difficult due to the dependence structure that leads to a considerable

computational curse: the normalising constant is intractable and cannot be computed with

standard analytical or numerical methods.

The GiRaF package aims at providing a toolbox for practitioners that makes the analysis of

such models easier. The primary tool is the computation of the intractable normalising con-

stant for small rectangular lattices (NC.mrf) based on the recursive algorithm of Reeves and

Pettitt (2004). In practice, this function allows to have ground truth against which to com-

pare. Beside the latter function, the GiRaF package contains methods that give exact sample

from the likelihood for small enough rectangular lattices (exact.mrf, Friel and Rue (2007)) or

approximate samples from the likelihood using MCMC samplers: the Gibbs sampler or the

Swendsen-Wang algorithm (sampler.mrf) for large lattices.

The GiRaF package provides R functions based on C++ code for the statistical analysis of

Gibbs random fields. As befits an introduction to the GiRaF package, a brief overview of

Gibbs distribution is presented in Section 1 while pointing out the convention used through-

out the package. Then we present the major functions through detailed examples, namely

recursive computing in Section 2 and sampling methods in Section 3.

1 Gibbs Random Fields

1.1 Gibbs-Markov equivalence

A discrete random field X is a collection of random variables Xi indexed by a finite set S =
{1, . . . ,n}, whose elements are called sites, and taking values in a finite state space Xi :=
{0, . . . ,K − 1}, interpreted as colors. For a given subset A ⊂ S , XA and xA respectively de-

fine the random process on A, i.e., {Xi , i ∈ A}, and a realisation of XA . Denotes S \ A =−A the

complement of A in S . When modeling a digital image, the sites lie on a regular 2D-grid of

pixels, and their dependency is given by an undirected graph G which induces a topology on

S : by definition, sites i and j are adjacent or are neighbor of each other if and only if i and

j are linked by an edge in G . A random field X is a Markov random field with respect to G , if

for all configuration x and for all sites i

P (Xi = xi | X−i = x−i ) = P
(
Xi = xi

∣∣ XN (i ) = xN (i )
)

, (1)

where N (i ) denotes the set of all the adjacent sites to i in G . The Hammersley-Clifford the-

orem states that if the distribution of a Markov random field with respect to a graph G is pos-

itive for all configuration x then it admits a Gibbs representation for the same topology (see

for example Grimmett (1973), Besag (1974) and for a historical perspective Clifford (1990)),
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(a) (b)

Figure 1: First and second order neighborhood graphs G . (a) The four closest neighbors graph G4.
Neighbors of the vertex in black are represented by vertices in gray. (b) The eight closest
neighbors graph G8. Neighbors of the vertex in black are represented by vertices in gray.

namely a probability measure π on X =∏n
i=1 Xi given by

π
(
x

∣∣ψ,G
)= 1

Z
(
ψ,G

) exp
{−H

(
x

∣∣ψ,G
)}

, (2)

where ψ is a vector of parameters and H denotes the energy function or Hamiltonian.

The GiRaF package solely focuses on Potts model, that is a pairwise Markov random field

whose Hamiltonian linearly depends on the parameter ψ = {
α,β

}
, where α stands for the

parameter on sites and β stands for the parameter on edges. More precisely,

H
(
x

∣∣α,β,G
)=−

n∑
i=1

K−1∑
k=0

αk 1{xi = k}− ∑
iG∼ j

βi j 1{xi = x j }, (3)

where the above sum
∑

iG∼ j
ranges the set of edges of the graph G .

At that stage, the GiRaF package handles homogeneous1 and potentially anisotropic2 Potts

models defined on a rectangular n = h×w lattice, with h ≤ w . Lattice points are ordered from

top to bottom in each column and columns from left to right. The GiRaF package contains

two widely used adjacency structures, namely the graph G4 (first order lattice), respectively

G8 (second order lattice), for which the neighborhood of a site is composed of the four, re-

spectively eight, closest sites on a two-dimensional regular lattice, except on the boundaries

of the lattice, see Figure 1.

Within the set of allowed distributions, the default model in GiRaF is set to the 2-state Potts

models with a first order dependency structure G4, namely

π
(
x

∣∣β,G4
)= 1

Z
(
β,G4

) exp

 ∑
i
G4∼ j

βi j 1{xi = x j }

 .

1Parameters α and β are independent of the relative position of sites or edges
2Parameter β depends on the orientation of the edges.
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Table 1: Interaction parametrisation for a homogeneous Gibbs random field for the isotropic and ani-
sotropic cases. The table gives values of the parameter βi j corresponding to the orientation
of the edge (i , j ).

Orientation of
edge (i , j )

Dependency
graph

G4 G8 G4 G8 G8 G8

Isotropic Gibbs β

Anisotropic Gibbs β1 β2 β3 β4

1.2 GiRaF inputs

Most of the functions in the GiRaF package rely on the following inputs which are detailed

throughout this Section.

h, w respectively the number of rows and columns of the rectangular lat-

tice G .

param numeric entry setting the interaction parameter β (edges parameter).

See details below.

ncolors the number K of states (or colors) for the discrete random variables

Xi . By default, ncolors= 2.

nei the number of neighbors. The latter must be one of nei= 4 or nei= 8,

which respectively correspond to G4 and G8. By default, nei= 4.

Optional inputs

pot numeric entry setting homogeneous potential α on singletons. By

default, pot = NULL.

top, left, bottom,

right, corner

numeric entry setting constant borders for lattice G . By default, top

= NULL, left = NULL, bottom = NULL, right = NULL, corner =

NULL. See details below.

Interaction parameter (param) The GiRaF packages allows to set an isotropic or aniso-

tropic interaction parameter β via the entry param. In the isotropic configuration, param is

simply a scalar while in the anisotropic case param is a vector c(β1,β2) or c(β1,β2,β3,β4) if

G = G4 or G = G8, respectively. The parameter βi j in (3) stands for the component of param

corresponding to the direction defined by the edge (i , j ) but does not depend on the actual

position of sites i and j , that is, given two edges (i1, j1) and (i2, j2) defining the same direc-

tion, βi1, j1 =βi2, j2 (see Table 1).

Constant borders The GiRaF package allows lattices to have fixed borders. More precisely,

each site on the boundary of the lattice has neighbors with respect to the topology induced

by G that are set to constants. Setting the borders can be done using the optional inputs

top = c(t1, . . . , tw ), left = c(ℓ1, . . . ,ℓh), bottom = c(b1, . . . ,bw ), right = c(r1, . . . ,rh) and corner =
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Figure 2: First and second order neighborhood graphs G . (a) The four closest neighbors graph G4.
Neighbors of the vertex in black are represented by vertices in gray. (b) The eight closest
neighbors graph G8. Neighbors of the vertex in black are represented by vertices in gray.

c(c1, . . . ,c4) (see Figure 2). In the absence of a specified border, these will take the default

value NULL.

2 Recursive computing and partition function

The inherent difficulty of Gibbs random fields arises from the intractable normalizing con-

stant, called the partition function, defined by

Z (ψ,G ) = ∑
x∈X

exp
{−H

(
x

∣∣ψ,G
)}

. (4)

The latter is a summation over the numerous possible realizations of the random field X, that

cannot be computed directly except for small grids and small number of colors K .

GiRaF contains generalised recursion proposed by Reeves and Pettitt (2004) for computing

the normalising constant of general factorisable models such as the autologistic or the Potts

model (NC.mrf). This method, based on an algebraic simplification due to the reduction in

dependence arising from the Markov property, applies to lattices with a small number h of

rows. Note that the complexity of the algorithm is exponential in the number of rows (O (K h))

and linear in the number of columns. Hence the current limitation is K h ≤ 225 for computing

the normalising constant.

2.1 NC.mrf

The function NC.mrf computes the partition function (4) of a K -state Potts model defined on

a rectangular h ×w lattices (h ≤ w), with either a first order or a second order dependency

structure (see Figure 1) and a small number of rows (up to 25 for 2-states models).
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Usage:

NC.mrf(h, w, param, ncolors = 2, nei = 4, pot = NULL, top = NULL,

left = NULL, bottom = NULL, right = NULL, corner = NULL)

Inputs: see Section 1.2.

Example: # NC.mrf

# Dimension of the lattice

height <- 8

width <- 10

# Interaction parameter

Beta <- 0.6 # Isotropic configuration

# Beta <- c(0.6, 0.6) # Anisotropic configuration for a first

# order dependency structure (nei = 4).

# Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration for a second

# order dependency structure (nei = 8).

# Number of colors. Automatically set to 2 if not specified.

K <- 2

# Number of neighbors. Automatically set to 4 if not specified.

G <- 4

# Optional potential on sites. Automatically set to NULL if not specified

potential <- runif(K,-1,1)

# Optional borders. Automatically set to NULL if not specified

Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)

Left <- Right <- sample(0:(K-1), height, replace = TRUE)

Corner <- sample(0:(K-1), 4, replace = TRUE)

# Partition function for the default setting

NC.mrf(h = height, w = width, param = Beta)

# When specifying the number of colors and neighbors

NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta)

# When specifying an optional potential on sites

NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta,

pot = potential)

# When specifying possible borders. The users will omit to mention all

# the non-existing borders

NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta,

top = Top, left = Left, bottom = Bottom, right = Right,
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corner = Corner)

3 Sampling from a Gibbs random field

Sampling from a Gibbs distribution can be a daunting task due to the correlation structure on

a high dimensional space, and standard Monte Carlo methods are impracticable except for

very specific cases. For rectangular lattices with a small number of row, Friel and Rue (2007)

have extended the recursive algorithm of Reeves and Pettitt (2004) to allow exact sampling

from the likelihood (exact.mrf). But for larger lattices, Markov chain Monte Carlo (MCMC)

methods have played a dominant role in dealing with such intractable likelihood, the idea

being to generate a Markov chain whose stationary distribution is the distribution of interest.

The GiRaF package contains two widely used MCMC procedure to give approximate samples:

the Gibbs sampler and the Swendsen-Wang algorithm (sampler.mrf).

3.1 exact.mrf

The function exact.mrf gives exact sample from the likelihood (2) of a K -state Potts model

defined on a rectangular h × w lattice (h ≤ w), with either a first order or a second order

dependency structure (see Figure 1) and a small number of rows (up to 19 for 2-states mod-

els). More generaly, due to the complexity of the algorithm, the current limitation for exact

sampling is K h ≤ 219.

Usage:

exact.mrf(h, w, param, ncolors = 2, nei = 4, pot = NULL,

top = NULL, left = NULL, bottom = NULL,

right = NULL, corner = NULL, view = FALSE)

Inputs: see also Section 1.2.

view Logical value indicating whether the draw should be printed. Do not

display the optional borders.

Example: # exact.mrf

# Dimension of the lattice

height <- 8

width <- 10

# Interaction parameter

Beta <- 0.6 # Isotropic configuration

# Beta <- c(0.6, 0.6) # Anisotropic configuration for a first

# order dependency structure (nei = 4).

# Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration for a second
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# order dependency structure (nei = 8).

# Number of colors. Automatically set to 2 if not specified.

K <- 2

# Number of neighbors. Automatically set to 4 if not specified.

G <- 4

# Optional potential on sites. Automatically set to NULL if not specified

potential <- runif(K,-1,1)

# Optional borders. Automatically set to NULL if not specified

Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)

Left <- Right <- sample(0:(K-1), height, replace = TRUE)

Corner <- sample(0:(K-1), 4, replace = TRUE)

# Exact sampling for the default setting

exact.mrf(h = height, w = width, param = Beta, view = TRUE)

# When specifying the number of colors and neighbors

exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta,

view = TRUE)

# When specifying an optional potential on sites

exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta,

pot = potential, view = TRUE)

# When specifying possible borders. The users will omit to mention all

# the non-existing borders

exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta,

top = Top, left = Left, bottom = Bottom,

right = Right, corner = Corner, view = TRUE)

3.2 sampler.mrf

The function sampler.mrf gives approximate sample from the likelihood (2) of a K -state Potts

model defined on a rectangular h × w lattice (h ≤ w), with either a first order or a second

order dependency structure (see Figure 1), using one of the following MCMC samplers.

The Gibbs sampler is a highly popular MCMC algorithm in Bayesian analysis starting with the

influential development of (Geman and Geman, 1984). It can be seen as a component-wise

Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings, 1970) where variables are

updated one at a time and for which proposal distributions are the full conditionals them-

selves.

The Swendsen-Wang algorithm (Swendsen and Wang, 1987) originally designed to speed up

simulation of Potts model close to the phase transition3 and bypass slow mixing issues of

3Symmetry breaking for large values of parameter β due to a discontinuity of the partition function when the

8



J. Stoehr, P. Pudlo and N. Friel GiRaF: a toolbox for Gibbs Random Field Analysis

the Gibbs sampler. This algorithm makes a use of auxiliary variables in order to incorporate

simultaneous updates of large homogeneous regions. Note that we solely use Swendsen-

Wang updates and we do not run the chain as a complete coupling chain as proposed by

Huber (1999) to get exact sample from the likelihood.

Usage:

sampler.mrf(iter, sampler = "Gibbs", h, w, ncolors = 2, nei = 4,

param, pot = NULL, top = NULL, left = NULL,

bottom = NULL, right = NULL, corner = NULL,

initialise = TRUE, random = TRUE, view = FALSE)

Inputs: see also Section 1.2.

iter Number of iterations of the algorithm.

sampler The method to be used. The latter must be one of "Gibbs" or "SW"

corresponding respectively to the Gibbs sampler and the Swendsen-

Wang algorithm.

initialise Logical value indicating whether initial guess should be randomly

drawn.

random Logical value indicating whether the sites should be updated se-

quentially or randomdly. Used only with the "Gibbs" option.

view Logical value indicating whether the draw should be printed. Do not

display the optional borders.

Example: # sampler.mrf

# Algorithm settings

n <- 200

method <- "Gibbs"

# Dimension of the lattice

height <- width <- 100

# Interaction parameter

Beta <- 0.6 # Isotropic configuration

# Beta <- c(0.6, 0.6) # Anisotropic configuration for a first

# order dependency structure (nei = 4).

# Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration for a second

# order dependency structure (nei = 8).

# Number of colors. Automatically set to 2 if not specified.

number of sites n tends to infinity. When the parameter is above the critical value log
{
1+p

K
}

of phase transition,
one moves gradually to a multi-modal distribution, that is, values xi are almost all equal
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K <- 2

# Number of neighbors. Automatically set to 4 if not specified.

G <- 4

# Optional potential on sites. Automatically set to NULL if not specified

potential <- runif(K,-1,1)

# Optional borders. Automatically set to NULL if not specified

Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)

Left <- Right <- sample(0:(K-1), height, replace = TRUE)

Corner <- sample(0:(K-1), 4, replace = TRUE)

# Sampling method for the default setting

sampler.mrf(iter = n, sampler = method, h = height, w = width,

param = Beta, view = TRUE)

# Sampling using an existing configuration as starting point

sampler.mrf(iter = n, sampler = method, h = height, w = width,

ncolors = K, nei = G, param = Beta,

initialise = FALSE, view = TRUE)

# Specifying optional arguments. The users may omit to mention all

# the non-existing borders

sampler.mrf(iter = n, sampler = method, h = height, w = width,

ncolors = K, nei = G, param = Beta,

pot = potential, top = Top, left = Left, bottom = Bottom,

right = Right, corner = Corner, view = TRUE)

# Gibbs sampler with sequential updates of the sites.

sampler.mrf(iter = n, sampler = "Gibbs", h = height, w = width,

ncolors = K, nei = G, param = Beta,

random = FALSE, view = TRUE)
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