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Abstract

The R package CUB has been developed for the analysis of ordinal rating data with
a class of finite mixture distributions whose main feature is the probabilistic specification
of the decision-making process as the combination of uncertainty and feeling components.
Extensions include models for overdispersion, inflated categories and large heterogeneity
occurrences. The parameter estimation procedure is based on maximum likelihood meth-
ods, with the implementation of the Expectation-Maximization (EM) algorithm. Several
features of package CUB, including simulation routines, are presented on two data sets
loaded within the package.
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1. Introduction

Ordered categorical data are commonly used in scientific fields where respondents express a
graduated evaluation on a specific item. Examples include ratings of preference in consumer
studies, degree of pain measured on a visual analogue scale, numerical or verbal rating scale,
sensory evaluation on food perception and appreciation, self evaluation of well-being, job
satisfaction, economic perceived conditions and so on. Cumulative link models are a suitable
class of models for such data since the ordered nature of observation is exploited and the
flexible regression framework allows good fitting performances. These models with a logit link
are widely known as the proportional odds model due to McCullagh (1980). The cumulative
models are also known as ordinal regression models although the latter term is used to indicate
other models for ordinal responses such as continuation ratio models and adjacent category
models (see e.g. Agresti (2010); Tutz (2012)). Other alternatives with the indication of the
logit and probit link functions are ordered logit models and ordered probit models (Greene
and Hensher 2010).
Several R packages or functions for implementing these statistical models for ordered factor
responses have been introduced, mainly addressing methods based on latent variables linked to
observed categorical responses via threshold models. Among others, we quote polr() in MASS
package (Venables and Ripley 2002), fitting logistic or probit regression models, for instance.
In rms the function lrm() is available (Harrell 2009) for binary and proportional odds logistic
regression; in VGAM the function vgml() (Yee 2010) to fit vector generalized linear models,
whereas in Zelig it is possible to exploit zelig() to estimate several statistical models; in nnet
the function multinom() allows to fit multinomial log-linear models (Ripley and Venables
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2016) and in Ordinal the function clm() (Christensen 2015) fits general cumulative link models.
For a Bayesian perspective, Markov Chain Monte Carlo for ordered probit regression are
implemented in the package MCMCpack via calls to MCMCoprobit() (Martin et al. 2009).
An alternative approach is the use of models anchored to a structured discrete probability
distribution (D’Elia and Piccolo 2005) with a close relationship to the data generating pro-
cess. More specifically, a two-component mixture is designed to shape ordinal observations
as a weighted combination of a preference component and an uncertainty component, each
controlled by a given distribution.
The statistical appeal of these models relies on several features, among which: a sharp rela-
tionship with the data generating process producing ordinal data: parsimony in the parameter
estimation; effective graphical devices useful for the interpretation, and direct inclusion of re-
spondents’ characteristics to specify how they relate with the two components.
This class of models stems from the baseline Combination of a discrete Uniform and a shifted
Binomial random variable -cub models- firstly introduced by Piccolo (2003) and D’Elia
and Piccolo (2005), where two latent components, called feeling and uncertainty, are jointly
considered to specify the mixture model. General references for the statistical background
include Iannario (2012a,b, 2015); Iannario and Piccolo (2010a). A detailed list of alternative
models is presented in Iannario and Piccolo (2016a); see also Tutz et al. (2016). Robustness
issues for cub models are discussed in Iannario et al. (2016b).
Further methodological studies have been published about cub models, among others Cord-
uas et al. (2009); Gambacorta et al. (2014); Grilli et al. (2014) for a latent class version; Ian-
nario (2012c,d, 2014); Manisera and Zuccolotto (2014a); Iannario et al. (2016a) for including
don’t know options also with covariates or for assuming non-linear spacing between adjacent
categories: Manisera and Zuccolotto (2014b). In addition, applications have been performed
in many disciplines, ranging from labour economics (Gambacorta and Iannario 2013) to de-
mography (Iannario and Piccolo 2010b), happiness economics (Capecchi and Piccolo 2014),
linguistics (Balirano and Corduas 2008), marketing (Iannario et al. 2012), medicine (D’Elia
2008), sensory science (Piccolo and D’Elia 2008; Capecchi et al. 2015). Proposals for the
generalization of the cub model in a bivariate perspective are discussed by Corduas (2015).
Moreover, Andreis and Ferrari (2013), Colombi and Giordano (2016) introduced a general
multivariate setting.
This article deals with the package CUB written in the R environment and available from
CRAN at http://CRAN.R-project.org. It is presented in its first consistent update, but
the implemented program has been long experienced among scholars and researchers working
with cub models and their extensions.
The paper is organized as follows. Section 2 briefly reviews GEneralized M ixture Models
with uncertainty (gem) for ordinal data stemming from cub models. In Section 3 the main
functions and features of package CUB are illustrated by means of case studies based on
two data-sets loaded within the package. Finally, extra features of gem models and future
extensions are briefly discussed in Section 4.
Ntice that package CUB, although performs statistical analysis for the whole class of gem
models, is named after the original proposal.

2. GEM models specification

http://CRAN.R-project.org
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The basic idea of gem framework is to model the ordinal responses (R1, . . . , Rn), where Ri

is given by the i-th subject, i = 1, . . . , n, with respect to a given item I, on the basis of two
main components related to the decisional process. The first component (C1) related to the
feeling (attraction, satisfaction, awareness towards the item): in the baseline cub model, it
is modelled by means of the shifted Binomial random variable. The second one (C2) concerns
the uncertainty (indecision, blurriness, fuzziness) and it is modelled by means of a discrete
Uniform distribution over the support {1, . . . , m}. Here and in the sequel, m will denote the
number of ordinal categories, and it is assumed that m > 3 for identifiability purposes (Ian-
nario 2010). All available information on subjects’ characteristics (covariates) are collected in
a matrix T , and Y and W are submatrices of T reporting values of respondents’ covariates
useful to explain uncertainty and feeling components, respectively.
Let θ = (β′

, γ ′)′ be the parameter vector characterizing the distribution of (R1, . . . , Rn), with
β

′
, γ ′ denoting the parameter vector for the uncertainty and feeling components, respectively.

Then, the mixture regression model has the following form:

Pr (Ri = r | yi, wi, θ) = πi Pr (C1i = r | wi) + (1 − πi) Pr (C2i = r) , (1)

for i = 1, . . . , n and j = 1, . . . , m, where πi = π(yi, β) ∈ (0, 1] are introduced to weight the
two components and wi ∈ W , yi ∈ Y include the selected covariates for the i-th subject.
They are related to the parameters by means of a logit link, a not compulsory but preferred
choice for easiness of interpretation and robustness properties (Iannario et al. 2017):

logit (1 − πi) = −β
′
yi; logit (1 − ξi) = −γ

′
wi. (2)

The implementation of gem models relies on the Formula interface (Zeileis and Croissant
2010), allowing to specify different regressor matrices for the different parameters. The fol-
lowing call will estimate a gem model for given ordinal observations:

GEM(Formula, family, ...)

where Formula is an object of class Formula, and family indicates which sub-class of models
has to be fitted. Optional inputs for the specification of the models can be passed via the ...
argument, which serves also to modify some technical parameters needed for the estimation
procedure. For instance, it is possible to change the maximum number of iterations allowed
for running the optimization algorithm (maxiter=500 by default) and the error tolerance for
final estimates (toler=1e-6 by default). The argument data is optional. The number of
categories m is, in general, internally retrieved but it is advisable to pass it as an argument to
the call if some category has zero frequency.
As mentioned, the benchmark model is the cub mixture model, where the preference part is
modelled according to a shifted Binomial random variable:

br (ξi) =
(

m − 1
r − 1

)
ξm−r

i (1 − ξi)r−1 , r = 1, 2, . . . , m

with feeling parameters given by ξi, i = 1, . . . , n, as in (2).
The probability distribution chosen to model uncertainty is the discrete Uniform, thus it does
not imply estimable parameters ensuring model parsimony. An increase of πi implies a reduced
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impact of the uncertainty component; thus, the quantity (1 − πi) is a (normalized) measure
of the uncertainty implied by the model. Alternative subjective choices of distributions for
this latent component are proposed and motivated in Gottard et al. (2016).
In the simplest version, the gem model works on the ratings given to a single item and
provides a global measure of feeling and uncertainty for the whole population under study by
letting πi = π and ξi = ξ, that is, by considering no knowledge about subjects’ characteristics.
The corresponding probability distribution can be computed via probcub00(m, pai, csi).
Other extensions which are implemented within package CUB concern the ability to take into
account the presence of inflated categories and the overdispersion effect.

2.1. Inflated CUB models

Inflated cub models imply the presence of a shelter effect (Iannario 2012a) located at category
s ∈ {1, . . . , m}.
cub models are thus extended with the introduction of a degenerate random variable D

(s)
r =

I(R = s), whose probability mass is concentrated at r = s, as a third component in (1). The
function returns the estimation of parameters related both to the specification:

Pr (R = r | θ) = π1 br(ξ) + π2
1
m

+ (1 − π1 − π2) D(s)
r , (3)

and to the alternative formulation:

Pr (R = r | θ) = δ

[
D(s)

r

]
+ (1 − δ)

[
π∗ br(ξ) + (1 − π∗) 1

m

]
, r = 1, 2, . . . , m. (4)

They are equivalent specifications since:{
π1 = π∗(1 − δ)
π2 = (1 − π∗)(1 − δ)

⇐⇒

π⋆ = π1
π1 + π2

δ = 1 − π1 − π2.

The corresponding probability distributions can be computed via probcubshe1(m, pai1,
pai2, csi, shelter) for (3) and probcubshe2(m, pai, csi, delta, shelter) for (4),
respectively.
For the parameterization (4), the estimable parameter vector is θ = (π∗, ξ, δ)′; thus it is
immediate to quantify the shelter effect by means of the parameter δ. Moreover, the modifi-
cation of the uncertainty component so induced is evaluated by comparing the π parameter
in model (1) with π1 in model (3). A further specification of the shelter effect adheres to
the so-called satisficing behaviour, impletemented via probcubshe3(m, lambda, eta, csi,
shelter). Covariates in the model can be specified for all parameters by considering gener-
alized cub models (gecub ) (Iannario and Piccolo 2016b).
The examination of real phenomena where responses are affected by an uncertainty level close
to the maximum and with inflation in just one category suggested the introduction of cush
models (Combination of a Uniform distribution and a SH elter component) (Capecchi et al.
2015; Capecchi and Piccolo 2016; Capecchi and Iannario 2016), whose distribution is especially
useful in dealing with sample surveys affected by large heterogeneity (several examples are
observed in the analysis of activities for leisure times, see the discussion below). In other
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words, cush models are nested into gecub ones when the shifted Binomial component tends
to have zero weight (Capecchi and Iannario 2016): indeed, the distribution without covariates
may be obtained by (4) when π⋆ = 0. The routine probcush(m, delta, shelter) computes
the corresponding probability distribution:

Pr (R = r | θ) = δ D(s)
r + (1 − δ) 1

m
, r = 1, 2, . . . , m, (5)

where θ = δ, the weight of the shelter effect. If X is a submatrix of T specifying the
observations on selected covariates for explaining the shelter effect, then the link: logit(δi) =
ω

′
xi, i = 1, . . . , n , will specify parameters for each respondent profile (here, ω

′ includes an
intercept term).

2.2. Overdispersion

cub models are not suitable to account for a possible extra-variability among responses, since
location and variability of a Binomial random variable are jointly and severely constrained.
Thus, a parsimonious extension has been proposed by introducing cube models (Iannario
2014, 2015). Here, the shifted Binomial distribution for Pr (C1i = r) is replaced by a shifted
Beta-Binomial distribution gr(ξ, ϕ) over the support {1, . . . , m}:

gr(ξ, ϕ) =
(

m − 1
r − 1

) r∏
k=1

(
1 − ξ + ϕ (k − 1)

) m−r+1∏
k=1

(
ξ + ϕ(r − 1)

)
(1 − ξ + ϕ (r − 1))(ξ + ϕ (m − r))

m−1∏
k=1

(1 + ϕ (k − 1))
, r = 1, 2, . . . , m,

(6)
(see betar()). Thus, the probability distribution of a cube model -computed by probcube(m,
pai, csi, phi)- is given by:

Pr (R = r | θ) = π gr(ξ, ϕ) + (1 − π) 1
m

r = 1, 2, . . . , m. (7)

The additional parameter ϕ which characterizes the distribution is a direct measure of overdis-
persion (Iannario 2016). When ϕ = 0, a cube model reduces to a cub one; thus, the latter
is nested into the first one: this implies that the improvement of the fit of cube over cub
models for given data can be easily established by likelihood ratio tests.
Covariates may be introduced for explaining all the three parameters or only the feeling
component of the cube mixture (Piccolo 2015). The logarithmic link is customarily used
for the overdispersion parameter: log (ϕi) = α

′
zi where zi ∈ Z, and Z is a submatrix of T

(α′ includes an intercept term). Feeling and uncertainty components are related to subjects’
characteristics as in (2).
It has been remarked (Iannario 2012b) that cube models with:

π = 1; ξ = (m − 1)θ
1 + m(θ − 2) ; ϕ = 1 − θ

1 + θ(m − 2) , (8)

correspond to ihg models (D’Elia 2003) with θ ∈ [0, 1], where ihg stands for Inverse Hy-
pergeometric distribution. These models arise from unimodal extreme-feeling distributions
with no uncertainty. In this case, for the i-th respondent, a parameter θi characterizes the
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model and gives the probability of observing a rating corresponding to the first/last category:
therefore, θi is a direct measure of preference, attraction, pleasantness towards the investi-
gated item. The routine probihg(m, theta) computes the ihg probability distribution over
m categories:

Pr (R = r | γ) = θ(1 − θ)r−1 m − 1
m

r∏
l=1

m − l + 1
m − l + θ(l − 1) r = 1, . . . , m.

Also for this sub-class of models, it is possible to study response patterns among respondents
by including subjects’ covariates to explain the preference parameter θi, i = 1, . . . , n, via a
logit link: logit(θi) = ν

′
ui, where ui ∈ U and U is a submatrix of T (ν ′ includes an intercept

term).
After this self-contained overview of the statistical methodology grounded on gem models,
next section provides guidelines for the main calls to fit gem models on given data when using
package CUB.

2.3. Main calls

As already specified, the baseline gem model is the cub distribution. To fit a cub model to
given ordinal data arranged in a vector ordinal, the most general call to run is:

GEM(Formula(ordinal~Y|W|X), family="cub", ...)

where Y, W, X indicate the model matrices of explanatory variables for uncertainty, feeling
and possible shelter components, respectively. If, for all components, no covariate is included
in the model, then Y=0, W=0, X=0 need to be specified. For instance

GEM(Formula(ordinal~0|0|0), family="cub")

fits a cub model with no covariates for given ordinal data. Then,

GEM(Formula(ordinal~Y|0|0), family="cub")

considers only the covariate matrix Y to explain the uncertainty component. Similarly,

GEM(Formula(ordinal~0|W|0), family="cub")

includes the covariate matrix W to explain only the feeling component, whereas:

GEM(Formula(ordinal~Y|W|0), family="cub")

specifies a cub model with covariates for both components.
To test for a shelter effect, it is possible to implement either a cub model without covariates
by specifying the value of the shelter s in the main call to GEM():
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GEM(Formula(ordinal~0|0|0), family="cub", shelter=s)

or to implement the more comprehensive specification concerning gecub models:

GEM(Formula(ordinal~Y|W|X), family="cub", shelter=s)

cush models can be fitted by the main function GEM(), optionally with the specification of
covariates, by specifying family argument to "cush":

GEM(Formula(ordinal~0), family="cush", shelter = s) # without covariates
GEM(Formula(ordinal~X), family="cush", shelter = s) # with covariates

If Y, W and Z are matrices of values of selected covariates for explaining uncertainty, feeling
and overdispersion, respectively, cube models can be estimated via:

GEM(Formula(ordinal~0|0|0), family="cube") # without covariates
GEM(Formula(ordinal~0|W|0), family="cube") # with covariates for feeling
GEM(Formula(ordinal~Y|W|Z), family="cube") # with covariates for all parameters

For cube model with no covariates, the default option expinform = FALSE implies that
the variance-covariance matrix of estimates is based on the observed information matrix.
If expinform = TRUE is added as an extra argument, the procedure considers the expected
information matrix instead. Note that the fitting procedure for cube models with covariates
for all components might be particularly slow: hence, in the first runs, we tentatively suggest
to lower the tolerance and the maximum number of iterations allowed for the optimization
algorithm by specifying maxiter and toler arguments in the function call (for instance,
maxiter=50, toler=1e-3). Alternatively, one might estimate a random sub-sample of data
and adopt the resulting estimates as preliminary values for a gem fit to the whole data.
Finally, estimation of ihg models is implemented via:

GEM(Formula(ordinal~0),family="ihg") # without covariates
GEM(Formula(ordinal~U),family="ihg") # with covariates

Every call to the main GEM creates an object of the class "GEM" -to which the subclass specified
by the family argument is appended. Next sections provide details on inferential issues for
gem models, and the corresponding implemented S3 methods.

3. Implementation and inference in CUB
Package CUB fits the models presented in Section 2 using Maximum Likelihood (ML) esti-
mation as performed by classical EM procedures (McLachlan and Krishnan 1997). For every
unspecified detail about gem models, see Iannario and Piccolo (2016a). Further, details about
the EM steps for cub models can be found in Piccolo (2006), for cube models in Iannario
(2014); Piccolo (2015), and for gecub models in Iannario and Piccolo (2016b). For cush
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models, the reader is referred to Capecchi and Piccolo (2016) for a full discussion, whereas
for ihg see D’Elia (2003).

3.1. Method implementation

For an object of class "GEM", storing the information of the fitting procedure of a gem model to
given data, the standard S3 method logLik() applies to return the maximized log-likelihood
at the final ML estimates. Thus, in the baseline version of a gem model, parameters are
estimated by maximizing the log-likelihood:

ℓ(θ) =
n∑
i

log
[
Pr (Ri = r | yi, wi, θ)

]
.

The optimization procedure is run via the function optim(), except for cub models without
covariates (for which the EM steps are directly implemented: D’Elia and Piccolo (2005))
and for cush models without covariates (for which the ML estimate of the shelter parameter
can be straightforwardly computed, see Capecchi and Piccolo (2016)). Whenever bounds on
parameter estimates have to be required, the box-constrained option for optim() is selected,
and it considers a restriction of the admissible range of the parameter space: in this case,
method = "L-BFGS-B" is selected for multidimensional optimization problems (with finite
difference approximation selected with the option gr = NULL), while method = "Brent" is
selected for the unidimensional optimization problem when ihg models with no covariate are
fitted. In all other cases, the default Nelder-Mead method is selected.
In addition, for given ordinal data and model-specific parameters, log-likelihood values can be
computed via the following main calls (the default option is that neither covariate nor shelter
effect are included):

llCUB <- loglikCUB(ordinal,m,param,Y=Y,W=W,X=X,shelter=s)
llCUBE <- loglikCUBE(ordinal,m,param,Y=Y,W=W,Z=Z)
llIHG <- loglikIHG(ordinal,m,param,U=U)
llCUSH <- loglikCUSH(ordinal,m,param,X=X,shelter=s)

The vector param lists the parameters for the specified model, with the uncertainty param-
eters always specified first, followed by the feeling ones and, last, by the overdispersion or
shelter parameters when considering cube or cub models with shelter effect, respectively. For
ihg and cush models, param is a one-dimensional vector when no covariates are considered,
otherwise it lists all the regression coefficients for the preference and the shelter parameter,
respectively. When covariates are included in the model, the first component of the corre-
sponding (sub)vector is the intercept term (not to be included in the matrix), followed by as
many parameters as the number of covariates used to explain the given component.
The variance-covariance matrix of final ML estimates for a fitted model can be retrived by
applying the standard S3 method vcov() to an object of class GEM. For testing ihg models
with or without covariates, for cush models with covariates as well as for cube models with
covariates for all the three parameters, the option hessian = TRUE is selected when calling
optim() to return a numerically differentiated Hessian matrix at the final estimates. For
the other models, the code implements specific inferential results, as the explicit formulae of
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the observed and expected variance-covariance matrices (Piccolo 2006, 2015; Iannario 2012a,
2014).
To compute the (observed) variance-covariance matrix corresponding to given ordinal data
and model-specific parameters (for cub and cube models), the following functions are avail-
able:

varCUB <- varmatCUB(ordinal, m, param, Y = Ycovar, W = Wcovar, X = Xcovar,
shelter = shelter)

varCUBE <- varmatCUBE(ordinal, m, param, Y = Ycovar, W = Wcovar, Z = Zcovar,
expinform = FALSE)

No covariate is considered neither for varmatCUB() nor for varmatCUBE() by default. In
addition, default options for varmatCUB do not consider shelter effect. For varmatCUBE(),
the default option expinform = FALSE provides the variance-covariance matrix based on the
observed information matrix. Setting expinform = TRUE, the variance-covariance matrix will
be based on the expected information matrix instead (as advisable when running simulation
studies).
Other standard S3 methods implemented for GEM objects include:

• coef() to retrieve final parameter estimates;

• logLik() to obtain the maximized log-likelihood at the final ML estimates;

• BIC() to compute the BIC index of the fitted model (in order to compare non-nested
models (Schwarz 1978));

• fitted() to display fitted probability distibution.

• summary() to display summary results of the fitting procedures:

1. ML parameter estimates of the fitted model, asymptotic standard errors and Wald-
tests (based on the asymptotic variance-covariance matrix as returned by vcov());

2. For testing purposes, a list of likelihood-based measures (Log-likelihood, Mean Log-
likelihood, and for models without covariates also Log-likelihood of the saturated
model, Deviance, Log-likelihood of the Uniform and shifted Binomial).

3. BIC, AIC (Akaike 1974) and ICOMP (Bodzogan 1990) measures for the fitted
model, in order to compare non-nested models.

Every call to the main function GEM() stores the following slots to record some further fitting
information:

• $time: the time employed for the estimation procedure;

• $niter: the number of iterations required to the EM algorithm for convergence within
the fixed tolerance.

• $formula: to retrieve the Formula object given as input.



10 The R package cub

Parameter correlation matrix corresponding to an object of class GEM can be computed via
cormat(), or printed out by specifying correlation=TRUE when calling summary().

Table 1 summarizes the main calls to function GEM to fit the different models. Possible extra
arguments to include in the call will be further illustrated and discussed along with the
examples.

3.2. Plot facilities
One of the advantageous features of gem models is that they allow for easy interpretation of
parameters. This is especially convincing for models with no covariates or for (at most) one
dichotomous variable, a case for effective graphical devices.
For an object of class GEM, the generic function makeplot(object) will return a plot which
compares fitted probabilities and observed relative frequencies. Moreover, for cub models,
given the one-to-one correspondence between the probability distribution of R and the pa-
rameter vector θ = (π, ξ)′, a relevant feature of the approach is the possibility to visualize a
cub model as a point in the parameter space, that is the unit square. To this scope, the user
is referred to functions cubvisual(), multicub() and cubshevisual(). Similar features are
performed by cubevisual() and multicube() for cube models.
Other instances of graphical analysis will be shown along with discussion of empirical evidence
in Section 4.

4. Package CUB in use
Some basics routines that can help in the comprehension of cub models and their extensions
are presented. The following code produces Figure 4.1, in which the plots of cube prob-
ability mass functions for varying parameters are shown, as in Iannario (2015). Figure 4.1
displays also the expectation and the variance of the given cube distributions, computed via
expcube() and varcube(), respectively. Similar functions for cub models are expcub00()
and varcub00().

###########################################################################
### Selection of 9 CUBE models with csi = 0.3 over 9 ordinal categories ***
###########################################################################
m<-9; csi<-0.3
########### varying pai and phi parameters
paival<-seq(0.9,0.1,by=-0.1)
phival<-rep(c(0.05,0.1,0.3),times=3)
model<-cbind(paival,phival); nmodels<-nrow(model)
##########################################
par(mfrow = c(3,3))
par(mar = c(2,4,3,1)+0.1)
### Probability distribution plots for jmod=1,2,...,9
for (jmod in 1:nmodels){

paij<-model[jmod, 1]
phij<-model[jmod, 2]
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prob<-probcube(m, paij, csi, phij)
exp<-expcube(m, paij, csi, phij)
var<-round(varcube(m, paij, csi, phij), digits = 2)
plot(1:m, prob, type = "h", lwd = 3, ylim = c(0,0.4), xlab = "",

ylab = "Pr(R=r)", las = 1)
text(2.3, 0.38, bquote(pi == .(paij)), cex = 0.7)

text(5, 0.38, bquote(xi == .(csi)), cex = 0.7)
text(7.8, 0.38, bquote(phi == .(phij)), cex = 0.7)
text(7, 0.285, bquote(sigma^2 == .(var)), cex = 0.7)
text(3, 0.28, bquote(mu == .(exp)), cex = 0.7)

}
par(mar = c(5,4,4,2)+0.1) ### reset standard margins
par(mfrow = c(1,1)) ### reset plot screen
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Figure 4.1: Probability distributions of cube models.
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In the following subsections we discuss the usage of package CUB by means of two real
data sets, univer and relgoods, bundled within the package. Detailed descriptions, related
sample experiment and further references can be found at http://www.labstat.it/home/
research/resources/cub-data-sets-2/.

4.1. CUB models

Data set univer arises from a sample survey on students’ evaluation of the Orientation
services that has been administed across all the Faculties of University of Naples Federico II
in five waves. Participants were asked to express their ratings on a 7 point Kikert-type scale
(1 = “very unsatisfied", 7 = “extremely satisfied") on the following items:

• informat: Level of satisfaction about the acquired information

• willingn: Level of satisfaction about the willingness of the staff

• officeho: Level of satisfaction about the opening hours

• competen: Level of satisfaction about the competence of the staff

• global: Level of global satisfaction

Data set collected in 2002 consists of 2179 observations: the first 7 columns correspond to
subjects covariates (for instance, the dichotomous variable gender, equal to 0 for men and to
1 for women, and the continuous measurement age).
As a first step, we show how to visualize simultaneously the ordinal variables included in the
data set univer by means of the function multicub(): it fits a cub model to every ordinal
variable. Then each model is represented as a point in the parameter space corresponding to
the obtained ML uncertainty 1 − π̂ and feeling 1 − ξ̂ estimates: indeed, estimable parameters
are π and ξ, but interpretation depends on the orientation of the measurement scale. If the
evaluation is positive in the direction of the scale, then the actual measure of feeling is 1 − ξ;
flag arguments csiplot and paiplot may be switched to TRUE if direct parameter visulization
is preferred. Notice that multicub() allows for a comparative visual analysis of vectors of
rating data, possibly with different lengths and also over different numbers of categories: for
this reason, they are required to be stored in a list when calling multicub() and optionally
a vector mvett can be set as input argument to specify the corresponding scale lengths. If
only one ordinal variable is considered, then the same visual analysis is implemented via
cubvisual().

data(univer)
listord<-univer[,8:12] # only ratings, excluding covariates
labels<-names(univer)[8:12]
multicub(listord, labels = labels,

caption ="CUB models on Univer data set", pch = 19,
pos = c(1,rep(3, ncol(listord)-1)),ylim=c(0.75,1),xlim=c(0,0.4))

From Figure 4.2, we may conclude that the highest feeling has been expressed for the willing-
ness of the staff, the lowest for the scheduled office hours. However, since the latter item is

http://www.labstat.it/home/research/resources/cub-data-sets-2/
http://www.labstat.it/home/research/resources/cub-data-sets-2/
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Figure 4.2: cub models without covariates for the items of univer (m = 7).

affected by the highest uncertainty, it deserves further specification; thus, hereafter we focus
on the item officeho.

## CUB model without covariates for "officeho"
cub_00<-GEM(Formula(officeho~0|0|0), family="cub",data=univer)
summary(cub_00,digits=5)

=======================================================================
=====>>> CUB model <<<===== ML-estimates via E-M algorithm
=======================================================================
m= 7 Sample size: n= 2179 Iterations= 28 Maxiter= 500

=======================================================================
Uncertainty

Estimates StdErr Wald
pai 0.68019 0.019349 35.153
=======================================================================
Feeling
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Estimates StdErr Wald
csi 0.19714 0.0058822 33.515
=======================================================================
Log-lik = -3759.917
Mean Log-likelihood= -1.72552
Log-lik(UNIFORM) = -4240.138
Log-lik(saturated) = -3706.922
Deviance = 105.9914
-----------------------------------------------------------------------
AIC = 7523.834
BIC = 7535.208
ICOMP = 7521.135
=======================================================================
Elapsed time= 0.003 seconds =====>>> Wed Nov 20 06:28:52 2024
=======================================================================

The estimated cub model is identified with uncertainty and feeling given by:

param<-coef(cub_00,digits=3)
param

pai 0.680
csi 0.197

uncertainty<-1-param[1]
uncertainty

[1] 0.32

feeling<-1-param[2]
feeling

[1] 0.803

The following call:

## CUB model without covariates
makeplot(cub_00)

provides a plot showing both the observed relative frequencies and the fitted probabilities, as
in Figure 4.3 (left panel).
Accurate initial values for parameters allow to reach convergence to the ML solutions in
acceptable time (Iannario 2012c): in this regard, the EM algorithm for cub models without
covariates is initialized within GEM(Formula,family="cub") by means of inibest(m,freq),



16 The R package cub

a routine that returns preliminary parameter estimates of a cub model for a given frequency
distribution:

data(univer)
freq<-tabulate(univer$officeho,nbins = 7)
ini<-inibest(m,freq) # preliminary estimates for c(pai,csi)
ini

pai 0.9415651
csi 0.2777778

Features of inibest(m,freq) can be exploited to obtain preliminary parameter estimates for
any purpose. Similarly, inigrid() runs a grid search across the parameter space and it re-
turns the parameter vectors corresponding to the maximum of log-likelihood on the given grid.

In order to improve the fit and interpretation of data, we introduce covariates in the model.
Specifically, to explain the feeling component we consider the dichotomous covariate freqserv,
indicating the usage frequency of the service with levels 0 and 1 for non-regular and regular
users.

cub_csi<-GEM(Formula(officeho~0|freqserv|0), family="cub",data=univer)
summary(cub_csi,digits=3)

=======================================================================
=====>>> CUB model <<<===== ML-estimates via E-M algorithm
=======================================================================
m= 7 Sample size: n= 2179 Iterations= 24 Maxiter= 500

=======================================================================
Uncertainty

Estimates StdErr Wald
pai 0.687 0.0192 35.9
=======================================================================
Feeling

Estimates StdErr Wald
constant -1.152 0.0403 -28.58
freqserv -0.811 0.0850 -9.55
=======================================================================
Log-lik = -3704.357
Mean Log-likelihood= -1.7
-----------------------------------------------------------------------
AIC = 7414.714
BIC = 7431.773
ICOMP = 7410.96
=======================================================================
Elapsed time= 0.069 seconds =====>>> Wed Nov 20 06:28:52 2024
=======================================================================
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For the previous example, the regression coefficients for the logistic link (all of which are
significant) can be retrieved by:

gama<-coef(cub_csi)[2:3]
gama

[1] -1.151942 -0.811228

gama0<-gama[1] ## intercept term
gama1<-gama[2]

Then, to compute the feeling parameter corresponding to non-regular and regular users ac-
cording to (2), respectively, it is possible to run:

csi_nru <- logis(0, gama) ## csi parameter for non regular user (freqserv=0)
csi_nru

## [1] 0.2401346

csi_ru <- logis(1, gama) ## csi parameter for regular user (freqserv=1)
csi_ru

## [1] 0.1231244

where the routine logis() returns the logistic transform componentwise of a standard matrix
(binding the array Y of covariates with a vector of ones to include an intercept term, placed
in the first column) multiplied with the parameter vector param. In conclusion, the feeling
component is specified via:

logit(1 − ξi) = −γ0 − γ1 freqservi, i = 1, . . . , n.

In addition to a likelihood ratio test obtained by comparing the log-likelihoods of the two mod-
els, we remark that the reduction in BIC index from BIC(cub_00)= 7535.208 to BIC(cub_csi)=
7431.773 strongly supports the inclusion of the covariate freqserv in the model. For fitting
purposes it is also possible to compute the X2 statistic of Pearson by implementing:

pai<-coef(cub_csi)[1]
gama<-coef(cub_csi)[2:3]
data(univer)
pearson<-chi2cub(m=7, univer$officeho, W = univer$freqserv, pai, gama)

Degrees of freedom ==> df = 9
Pearson Fitting measure ==> X^2 = 97.49491 (p-val.= 0 )
Deviance ==> Dev = 101.0313 (p-val.= 0 )

str(pearson)
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List of 3
$ chi2: num 97.5
$ df : num 9
$ dev : num 101

Furthermore, the call to makeplot(cub_csi) produces a plot comparing the two fitted proba-
bility distributions conditional on the values of the dichotomous covariate, as shown by Figure
4.3 (right panel).
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Figure 4.3: cub without and with dichotomous covariate freqserv for feeling on officeho.

Note that the (normalized) dissimilarity index between observed and fitted probability dis-
tribution for a given fitted model without covariate is reported in the main title of the corre-
sponding plot (see Section 4.5 for more details).
When covariates are specified for the feeling component, optimal preliminary estimates of the
corresponding coefficients (Iannario 2008) are implemented via inibestgama(m, ordinal,
W), which is the option set to initialize the EM algorithm when calling
GEM(Formula~0|W|0,family="cub"):

data(univer)
inicsicov<-inibestgama(m,univer$officeho,W=univer$freqserv)
inicsicov
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gamma_0 -0.001596273
gamma_1 -0.247482482

We conclude this subsection by briefly presenting a case study in which a continuous covariate
and a dichotomous one are jointly considered: in particular, we include the deviation from
the mean of the logarithmic transform of Age, that is the covariate lage, and the covariate
gender to explain both feeling and uncertainty.

data(univer)
age<-univer$age
lage<-log(age)-mean(log(age)) # Deviation from mean of logged Age
cub_pai_csi<-GEM(Formula(officeho~lage+gender|lage+freqserv|0),family="cub",data=univer)
summary(cub_pai_csi,correlation=TRUE,digits=3)

=======================================================================
=====>>> CUB model <<<===== ML-estimates via E-M algorithm
=======================================================================
m= 7 Sample size: n= 2179 Iterations= 23 Maxiter= 500

=======================================================================
Uncertainty

Estimates StdErr Wald
constant 0.563 0.118 4.78
lage 1.240 0.613 2.02
gender 0.495 0.169 2.94
=======================================================================
Feeling

Estimates StdErr Wald
constant -1.147 0.0404 -28.41
lage -0.590 0.2410 -2.45
freqserv -0.824 0.0851 -9.68
=======================================================================
Parameters Correlation matrix

constant lage gender constant lage freqserv
constant 1.0000000 -0.0506498 -0.6428539 0.1733713 0.0186039 0.1264982
lage -0.0506498 1.0000000 0.0915196 -0.0064633 0.2750023 -0.0028018
gender -0.6428539 0.0915196 1.0000000 -0.0158130 -0.0255944 0.0369170
constant 0.1733713 -0.0064633 -0.0158130 1.0000000 -0.0992397 -0.4153292
lage 0.0186039 0.2750023 -0.0255944 -0.0992397 1.0000000 0.0802712
freqserv 0.1264982 -0.0028018 0.0369170 -0.4153292 0.0802712 1.0000000
=======================================================================
Log-lik = -3693.888
Mean Log-likelihood= -1.695
-----------------------------------------------------------------------
AIC = 7399.776
BIC = 7433.895
ICOMP = 7396.68
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=======================================================================
Elapsed time= 0.327 seconds =====>>> Wed Nov 20 06:28:52 2024
=======================================================================

When covariates are included for both parameters as in the previous example, the estimates
will be the corresponding coefficients of the logistic regression for the uncertainty and the
feeling components:

coef(cub_pai_csi,digits=3)

##
## constant 0.563
## lage 1.240
## gender 0.495
## constant -1.147
## lage -0.590
## freqserv -0.824

Then, the resulting cub model can be summarized by:{
logit(1 − πi) = −β0 − β1 lagei − β2 genderi

logit(1 − ξi) = −γ0 − γ1 lagei − γ2 freqservi.

Since no plot is directly provided as output, the performance of the cub model with signif-
icant covariates on feeling and uncertainty parameters may be summarized as in Figure 4.4,
obtained by the following code:

data(univer)
age<-univer$age
average<-mean(log(age))
ageseq<-log(seq(17, 51, by = 0.1))-average
param<-coef(cub_pai_csi)
####################
paicov0<-logis(cbind(ageseq, 0), param[1:3])
paicov1<-logis(cbind(ageseq, 1), param[1:3])

csicov0<-logis(cbind(ageseq, 0), param[4:6])
csicov1<-logis(cbind(ageseq, 1), param[4:6])
####################
plot(1-paicov0, 1-csicov0, type = "n", col = "blue", cex = 1,

xlim = c(0, 0.6), ylim = c(0.4, 0.9), font.main = 4, las = 1,
main = "CUB models with covariates",
xlab = expression(paste("Uncertainty ", (1-pi))),
ylab = expression(paste("Feeling ", (1-xi))), cex.main = 0.9,
cex.lab = 0.9)

lines(1-paicov1, 1-csicov1, lty = 1, lwd = 4, col = "red")
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lines(1-paicov0, 1-csicov0, lty = 1, lwd = 4, col = "blue")
lines(1-paicov0, 1-csicov1, lty = 1, lwd = 4, col = "black")
lines(1-paicov1, 1-csicov0, lty = 1, lwd = 4, col = "green")
legend("bottomleft", legend = c("Man-User", "Man-Not User",

"Woman-User", "Woman-Not User"), col = c("black", "blue", "red", "green"),
lty = 1, text.col = c("black", "blue", "red", "green"), cex = 0.6)

text(0.1, 0.85, labels = "Young", offset = 0.3, cex = 0.8, font = 4)
text(0.5, 0.5, labels = "Elderly", offset = 0.3, cex = 0.8, font = 4)
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Figure 4.4: cub models with covariates: logged age and gender for uncertainty and logged
age and freqserv for feeling.

Summarizing, the sketch of analysis so pursued indicates that satisfaction increase with age
whereas indecision decreases, and that men are more satisfied than women across all profiles.

4.2. Comparing IHG and CUBE models

As shown in Figure 4.1, cube models offer a wide flexibility in fitting data having different
shapes and features. We now discuss how to perform an analysis on ordinal data with a cube
model by considering the variable willingn within data(univer).
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starting<-c(0.5, 0.5, 0.1)
cubefit<-GEM(Formula(willingn~0|0|0),family="cube", starting = starting,

maxiter = 100, toler = 1e-4,data=univer)
summary(cubefit,digits=7)

=======================================================================
=====>>> CUBE model <<<===== ML-estimates via E-M algorithm
=======================================================================
m= 7 Sample size: n= 2179 Iterations= 28 Maxiter= 100

=======================================================================
Uncertainty

Estimates StdErr Wald
pai 0.8826023 0.01267281 69.64537
=======================================================================
Feeling

Estimates StdErr Wald
csi 0.1248506 0.004427189 28.20087
=======================================================================
Overdispersion

Estimates StdErr Wald
phi 0.0508419 0.01201249 4.232419
=======================================================================
Log-lik = -2996.124
Mean Log-likelihood= -1.374999
Log-lik(UNIFORM) = -4240.138
Log-lik(saturated) = -2988.635
Deviance = 14.97685
-----------------------------------------------------------------------
AIC = 5998.247
BIC = 6015.307
ICOMP = 5993.791
=======================================================================
Elapsed time= 0.014 seconds =====>>> Wed Nov 20 06:28:52 2024
=======================================================================

As shown with the current example, the user can set some extra options for the estimation
procedure: the maximum number of iterations allowed for the optimization procedure (the
default value for cube model is maxiter = 1000), the error tolerance to stop iterations (by
changing the default option toler = 1e-6), and most importantly the argument starting,
that is the vector of starting values to initialize the EM algorithm. The default option
is based on the routine inibestcube(), a convenient choice of preliminary estimates for
parameters in cube models. For cube models with covariates, only for feeling or for all
the three parameters, initial estimates of parameters are implemented via inibestcubecsi()
and inibestcubecov(), which are also set as default options when calling
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GEM(Formula(ordinal~0|W|0),family="cube")

and

GEM(Formula(ordinal~Y|W|Z),family="cube")

respectively.
Given the shape of the distribution of the selected ordinal data (see Figure 4.5, left panel), the
low level of uncertainty (1-coef(cubefit)[1]= 0.1174) and in particular, the extreme feeling
(1-coef(cubefit)[2]= 0.8752) corresponding to the modal value at the last category m = 7,
we check if the more parsimonious ihg model provides comparable goodness of fit. For such a
model, the ML estimation procedure is initialized by considering as starting value the moment
estimate of the preference parameter θ, computed via the function iniihg(m,freq).

ihgfit<-GEM(Formula(willingn~0),family="ihg",data=univer)
summary(ihgfit,digits=7)

=======================================================================
=====>>> IHG model <<<===== ML-estimates via E-M algorithm
=======================================================================
m= 7 Sample size: n= 2179 Iterations= 1 Maxiter= 1

=======================================================================
Estimates StdErr Wald

theta 0.04756359 0.001414214 33.63254
=======================================================================
Log-lik = -3244.08
Mean Log-likelihood= -1.488793
Log-lik(UNIFORM) = -4240.138
Log-lik(saturated) = -2988.635
Deviance = 510.8901
-----------------------------------------------------------------------
AIC = 6490.16
BIC = 6495.847
ICOMP = 6488.16
=======================================================================
Elapsed time= 0.001 seconds =====>>> Wed Nov 20 06:28:53 2024
=======================================================================

In order to check if the fit improvement obtained with cube models justifies the inclusion of
two additional parameters, that is, if the more parsimonious ihg model should be discarded
in favor of cube model, we perform a likelihood ratio test:

llcube<-logLik(cubefit)
llihg<-logLik(ihgfit)
lrt<- -2*(llihg - llcube) ### 495.9135
pv<- 1-pchisq(lrt, 2) ### 0
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It confirms that a consistently better fit is ensured by the cube model. Figure 4.5 displays the
observed and fitted probability distributions for both models as returned by makeplot(cubefit)
and makeplot(ihgfit), respectively.
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Figure 4.5: cube (left panel) and ihg (right panel) fit to the data.

4.3. Models for shelter effect
As already mentioned in Section 2, the class of cub mixture models includes a specific exten-
sion to fit the so-called shelter effect, arising in presence of an inflated category. We show how
to perform the analysis of a possible shelter effect on the data set data(relgoods), a survey
designed to assess importance of relational goods and involvement in leisure time activities:
data were collected in December 2014 in the metropolitan area of Naples, Italy. Every par-
ticipant was asked to measure his/her personal score for relational goods (for instance, time
dedicated to friends and family) and his/her preferences towards leisure activities on a 10
point ordinal scale, ranging from 1 = “Not at all, nothing, never", to 10 = “Totally, extremely
important, always". On the whole, respondents gave rating scores to 34 items. The sam-
ple is composed by 2459 interviews and 16 subjects’ covariates (including gender, education,
residence, marital status and age, among others). For these data some missing values are
present.
Here, the implementation of the so-called shelter effect within cub models is discussed. Let
us consider the ordinal variable Writing, indicating the respondents’ degree of engagement
in writing as a preferred activity for leisure time.
One observes an excess in frequency corresponding to the first category, so we first fit an
extended cub model with shelter effect by running the following code (notice that both the
available parameterizations (3) and (4) are reported on screen):

cub_she<-GEM(Formula(Writing~0|0|0),family="cub", shelter = 1,
maxiter=500,toler=1e-3,data=relgoods)

summary(cub_she)

=======================================================================
=====>>> CUB model <<<===== ML-estimates via E-M algorithm
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=======================================================================
m= 10 Sample size: n= 2449 Iterations= 77 Maxiter= 500

=======================================================================
=======================================================================

Estimates StdErr Wald
pai1 0.1922306 0.01652574 11.63219
pai2 0.4902216 0.01907354 25.70166
csi 0.7518936 0.01433876 52.43784
=======================================================================
Alternative parameterization

Estimates StdErr Wald
paistar 0.2816762 0.02422031 11.62975
csi 0.7518936 0.01433876 52.43784
delta 0.3175478 0.01121160 28.32315
=======================================================================
Log-lik = -4887.843
Mean Log-likelihood= -1.995853
Log-lik(UNIFORM) = -5639.031
Log-lik(saturated) = -4859.017
Deviance = 57.65222
-----------------------------------------------------------------------
AIC = 9781.686
BIC = 9799.096
ICOMP = 9776.957
=======================================================================
Elapsed time= 0.003 seconds =====>>> Wed Nov 20 06:28:53 2024
=======================================================================

As shown by the printed output, the observed distribution is affected by a low weight for the
shifted Binomial component (pai1<-coef(cub_she)[1]), and a moderately high weight for
the Uniform component (pai2<-coef(cub_she)[2]): Figure 4.6 (left panel) shows the plot
returned by running makeplot(cub_she), which compares the observed frequencies and the
fitted probabilities.
As a matter of fact the data set under consideration includes several instances of distributions
characterized by a huge heterogeneity and an inflated category. As already explained in
Section 2, such occurrence motivated the specification of cush models. For the variable
Writing here considered, the fit of a cush model is implemented by the code:

cush<-GEM(Formula(Writing~0),family="cush",shelter = 1,data=relgoods)
summary(cush,digits=3)

=======================================================================
=====>>> CUSH model <<<===== ML-estimates via E-M algorithm
=======================================================================
m= 10 Sample size: n= 2449 Iterations= 1 Maxiter= 1

=======================================================================
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Estimates StdErr Wald
delta 0.313 0.0109 28.7
=======================================================================
Log-lik = -4956.733
Mean Log-likelihood= -2.024
Log-lik(UNIFORM) = -5639.031
Log-lik(saturated) = -4859.017
Deviance = 195.432
-----------------------------------------------------------------------
AIC = 9915.466
BIC = 9921.27
ICOMP = 9913.466
=======================================================================
Elapsed time= 0 seconds =====>>> Wed Nov 20 06:28:53 2024
=======================================================================

Summarizing, cub model with shelter effect provides a better fit in terms of log-likelihood
and BIC indexes. As for other models within the gem family, makeplot(cush) compares
fitted and observed frequency distributions as displayed in Figure 4.6 (right panel).
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Figure 4.6: cub with shelter (left panel) and cush (right panel) fit to the data.

The possibility of including covariates to explain the shelter effect in a cush model is presented
in the next section along with the simulation routines offered by package CUB.

4.4. Simulation routines and experiments

Package CUB offers several facilities to perform simulation experiments involving gem mod-
els. In order to generate n pseudo-random numbers from cub, cube, cub with shelter, cush
and ihg distributions, respectively, the following functions are available:

simCUB <- simcub(n, m, pai, csi)
simCUBE <- simcube(n, m, pai, csi, phi)
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simCUBshe <- simcubshe(n, m, pai, csi, delta, shelter)
simCUSH <- simcush(n, m, delta, shelter)
simIHG <- simihg(n, m, theta)

For instance, consider the following example, where the theoretical and fitted probability
distributions of a cub model are displayed for simulated data in Figure 4.7:

m<-9; n<-500
pai<-0.7; csi<-0.2
pr<-probcub00(m, pai, csi)
set.seed(123)
ordinal<-simcub(n, m, pai, csi)
cub<-GEM(Formula(ordinal~0|0|0),family="cub", maxiter = 50, toler = 1e-4)
pr_est<-fitted(cub)[,1]
plot(1:m, pr, type = "h", xlab = "Ordinal categories",

ylab = "Probability", lwd = 3, ylim = c(0, 0.3))
vett<-1:m + 0.2
lines(vett, pr_est, type = "h", col = "blue", lwd = 3, lty = 2)
legend(1, 0.3, legend = c("Theoretical", "Fitted"), col = c("black", "blue"),

lty = c(1, 2), lwd = 3, text.col = c("black", "blue"), bty = "n")

In order to simulate observations from a model with covariates, a two-step approach has to be
implemented: one should first obtain the parameters (πi, ξi, . . .) corresponding to the chosen
respondents’ profiles and then generate the sample data by using corresponding simulation
routines with the given parameters. We outline how to implement such a procedure for a
cush model with a dichotomous covariate for the shelter effect. Figure 4.8 displayes the two
cush distributions conditional to the value of the covariate.

omega0<- -1.5
omega1<- -2
delta0<-as.numeric(logis(0, c(omega0, omega1))) ## 0.1824255
delta1<-as.numeric(logis(1, c(omega0, omega1))) ## 0.0293122
m<-9
n0<-700
n1<-1300
set.seed(1234)
ord0<-simcush(n0, m, delta0, shelter = s)
ord1<-simcush(n1, m, delta1, shelter = s)
ordinal<-c(ord0, ord1)
X<-c(rep(0, n0), rep(1, n1))
cushcov<-GEM(Formula(ordinal~X),family="cush",shelter = m)
coef(cushcov)
makeplot(cushcov)

4.5. Extra features of CUB package
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Figure 4.7: Fitted and theoretical cub distributions on simulated data.

The R package CUB provides a flexible framework for the analysis of ordinal data that covers
some of the most common distributions related to gem models. For a given discrete proba-
bility distribution, some additional features concern, for instance, the functions gini() and
laakso(), for the normalized Gini (1912) and Laakso and Taagepera (1989) heterogeneity
indexes, respectively, and the function deltaprob(prob) for the Mean Difference index (ac-
cording to the de Finetti and Paciello (1930) formulation): Figure 4.9 shows an example of
usage.

m<-7
pai<-0.4
csi<-0.2
prob<-probcub00(m, pai, csi)
Giniindex<-round(gini(prob), digits = 3)
Laaksoindex<-round(laakso(prob), digits = 3)
Delta<-round(deltaprob(prob), digits = 3)
plot(1:m, prob, type = "n", ylab = "", xlab = "", ylim = c(0, 0.4), las = 1)
lines(1:m, prob, type = "h", lwd = 3)
legend("topleft", xjust = 1, legend = c(paste("Gini =", Giniindex),

paste("Laakso =", Laaksoindex),
paste("Delta =", Delta)), cex = 0.8)
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Figure 4.8: cush distributions with a dichotomous covariate.

Another example concerns the simulation of the critical values for the normalized dissim-
ilarity index between observed relative frequencies (f1, . . . , fm) and estimated (theoretical)
probabilities (p1(θ̂), . . . , pm(θ̂)):

Diss = 1
2

m∑
r=1

|fr − pr(θ̂)|,

which is computed by the routine dissim(). This index evaluates the distance of the esti-
mated model to a perfect fit. Due to its importance in model performance, this dissimilarity
measure is computed when fitting cub models and extensions within CUB package and dis-
played also in the plot title when it is returned. For this index we show how to run a simulation
experiment for detecting the critical value for an assigned cub model. The code concerns the
distribution of a cub model with π = 0.3 and ξ = 0.8. Figure 4.10 displays the results after
nsimul= 10000 simulations of samples of sizes n = 300 over m = 7 categories.

pai<-0.3; csi<-0.8
nsimul<-10000
n<-300; m<-7
vectdiss<-rep(NA, nsimul)
for (j in 1:nsimul){



30 The R package cub

1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4 Gini       = 0.972
Laakso  = 0.834
Delta     = 2.102

Figure 4.9: Heterogeneity and mutual variability indexes.

ordinal<-simcub(n, m, pai, csi)
mod<-GEM(Formula(ordinal~0|0|0),family="cub")
theor<-fitted(mod)[,1]
freq<-tabulate(ordinal, nbins = m)/n
vectdiss[j]<-dissim(freq, theor)

}

sortvect<-sort(vectdiss)
alpha<-0.05
signif<-sortvect[(1-alpha)*nsimul] # empirical percentile 0.05
cr<-vectdiss[vectdiss>signif] # critical region

effe<-density(vectdiss)
band<-effe$bw # band width of the kernel plot
f<-function(x){ # compute kernel density (the default is Gaussian kernel)

(1/(band*length(vectdiss)))*sum(dnorm((x-vectdiss)/band))
}
sortcr<-sort(cr)
sup<-numeric(length(cr))
for (j in 1:length(cr)){

sup[j]=f(sortcr[j]) # compute kernel density values for critical values
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}
title <- paste("Normalized Dissimilarity distribution, Critical level(0.05) = ",

round(signif, 3))
plot(density(vectdiss), main = title, cex.main = 0.7, lwd = 3, xlab = "",

cex.main = 0.7, las = 1)
polygon(c(signif, sortcr, sortcr[length(sortcr)], signif), c(0, sup, 0, 0),

col = "gray")
abline(h=0)
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Figure 4.10: Distribution of the (normalized) dissimilarity index for simulated cub model
with π = 0.3 and ξ = 0.8.

We conclude the presentation of package CUB by underlying the effective graphical interpre-
tation of parameters allowed by cub models. When covariates are included to explain feeling
and uncertainty, a Scatter of Parameter Estimates (SPE, for short) (Iannario and Piccolo
2014) reveals to be a convincing plotting device to identify different response patterns across
subsets of respondents. A SPE simply performs the multiple representation of a cub model
as a point in the parameter space for each parameter vector (πi, ξi) associated with each re-
spondent. We show an example based on the univer dataset, by showing the cub model for
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the global satisfaction conditioning both feeling and uncertainty on the evaluation expressed
for officeho, and further specifying both components for varying age.

data(univer)
ordinal<-univer$global
lage<-log(univer$age)-mean(log(univer$age)) #Deviation from mean of logged Age
Y<-W<-cbind(univer$officeho,lage)
cub_pai_csi<-GEM(Formula(global~Y|W|0),family="cub",data=univer)
bet<-coef(cub_pai_csi)[1:3]
gama<-coef(cub_pai_csi)[4:6]
paivett<-logis(Y,bet)
csivett<-logis(W,gama)
n<-length(ordinal)
main<- "Scatter plot of estimated parameters"
vettcol<-symb<-rep(NA,n)
vettcol[univer$officeho<=3]<-"red"
vettcol[univer$officeho==4]<-"black"
vettcol[univer$officeho>=5]<-"blue"

symb[univer$officeho<=3]<-0
symb[univer$officeho==4]<-1
symb[univer$officeho>=5]<-2

plot(1-paivett,1-csivett,xlim=c(0,1),ylim=c(0,1),
cex=0.8,pch=symb,col=vettcol,
xlab=expression(1-pi),ylab=expression(1-xi),
main=main,cex.main=1,font.main=4)

legend("topright",legend=c("Unsatisfied","Indifferent","Satisfied"),
cex=0.7,text.col=c("red","black","blue"),pch=c(0,1,2),
col=c("red","black","blue"))

5. Conclusions
Package CUB is under active development. Future plans include extra functions to fit cube
models with further covariate specification, as well as higher flexibility for gecub models to
possibly include covariates only for shelter effect or any pair of components. Implementation
of Hierarchical cub models and other extensions, including an adjusted version of cubmodels
to account for response styles and a multivariate model for repeated measurements are under
scrutiny.
Package CUB has been implemented under R Version 3.2.5.
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