
Unit Root CADF Testing with R

Claudio Lupi
University of Molise

Abstract

This document is an update, with minor differences, of Lupi (2009). The paper de-
scribes CADFtest, a R package for testing for the presence of a unit root in a time series
using the Covariate Augmented Dickey-Fuller (CADF) test proposed in Hansen (1995b).
The procedures presented here are user friendly, allow fully automatic model specification,
and allow computation of the asymptotic p values of the test.

Keywords: unit root, stationary covariates, asymptotic p values, R.

1. Introduction and statistical background
Testing for a unit root is a frequent problem in macroeconomic modeling and forecasting.
Although many tests have been developed so far, the practitioner’s workhorse in this field is
still probably the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979, 1981; Said
and Dickey 1984), which is known to have good size but low power under many conditions.1
However, the literature on unit root testing has largely proceeded in a univariate framework,
with notable exceptions being represented by the panel unit root tests (see Choi 2006b, for a
recent survey). In fact, reality is hardly univariate at all and, although univariate representa-
tions of multivariate time series exist (see e.g., Zellner and Palm 1974), nevertheless reckoning
explicitly the multivariate nature of most economic time series can in principle lead to better
testing procedures. In a seminal paper Hansen (1995b) suggests that, when testing for a unit
root, a viable way to exploit the information embodied in related series and increase power
is to consider stationary covariates in an otherwise conventional ADF framework. Unless the
variable of interest is independent of the stationary covariates considered in the analysis, by
the Neyman-Pearson lemma the most powerful test makes use of the information embodied
in the stationary covariates themselves (Hansen 1995b, p. 1152). As a consequence, not con-
sidering the multivariate dimension of the problem leads to a loss in the power of the test.
Using covariates also allows to some extent to couple unit root testing and economic theory,
because economic theory can be used as a guideline to chose the appropriate covariates to
be included in the analysis (see e.g., Amara and Papell 2006; Elliott and Pesavento 2006),
although other approaches can be used as well (Lee and Tsong 2009).
Formally, Hansen (1995b) considers a univariate time series yt composed of a deterministic

1However, large negative MA components are well known to have adverse effects on the size of the ADF
test (see e.g., Schwert 1989). An interesting summary of many Monte Carlo results on different unit root tests
can be found in Stock (1994). Haldrup and Jansson (2006) is a recent survey of the methods proposed to
improve the size and the power of unit roots tests.

2 CADF tests with R

and a stochastic component such that

yt = dt + st (1)
a(L)∆st = δst−1 + vt (2)

vt = b(L)′ (∆xt − µ∆x) + et (3)

where dt is the deterministic term (usually a constant or a constant and a linear trend),
a(L) := (1− a1L− a2L2 − . . . − apLp) is a polynomial in the lag operator L, ∆xt is a vector of
stationary covariates, µ∆x := E(∆x), b(L) := (bq2L−q2 + . . . + bq1Lq1) is a polynomial where
both leads and lags are allowed for. Furthermore, the long-run (zero-frequency) covariance
matrix Ω :=

∑∞
k=−∞ E

(
ϵtϵ

′
t−k

)
, with ϵt := (vt, et)′ can be defined, from which the long-run

squared correlation between vt and et, ρ2, can be derived. When ∆xt has no explicative power
on the long-run movement of vt, then ρ2 ≈ 1. On the contrary, when ∆xt explains nearly all
the zero-frequency variability of vt, then ρ2 ≈ 0. The case ρ2 = 0 is ruled out for technical
reasons (see Hansen 1995b, p. 1151). It should be noted that this restriction excludes the
possibility that the variable yt be cointegrated with the cumulated stationary covariate(s).
As with the ADF test, Hansen’s CADF test is based on different models, according to the
different deterministic kernels that the investigator may wish to consider. For example, the
model with constant and linear trend is

a(L)∆yt = µ + θ t + δyt−1 + b(L)′∆xt + et . (4)

Similarly to the conventional ADF test, the CADF test is based on the t-statistic for δ, t̂(δ),
with the null hypothesis being that a unit root is present, i.e. H0 : δ = 0, against the
one-sided alternative H1 : δ < 0. Hansen (1995b) refers to the test statistic as the CADF(p,
q1, q2) statistic.
Hansen (1995b, p. 1154) proves that under the unit-root null, if conventional weak dependence
and moment restrictions hold, t̂(δ) in the model without deterministic terms is such that

t̂(δ) ⇒ ρ

∫ 1
0 W dW(∫ 1
0 W 2

)1/2 +
(
1 − ρ2

)1/2
N(0, 1) (5)

where ⇒ denotes weak convergence, W is a standard Wiener process, and N(0, 1) is a standard
normal independent of W . It is interesting to note that (5) is the distribution of a weighted
sum of a Dickey-Fuller and a standard normal random variable. If a model with constant
or a model with constant and trend are considered, the standard Wiener process W in (5)
has to be replaced by a demeaned or a detrended Wiener process, respectively. Note that
the asymptotic distribution of the test statistic depends on the nuisance parameter ρ2 but,
provided ρ2 is given, it can be simulated using standard techniques (see e.g., Hatanaka 1996).
Hansen (1995b, p. 1155) provides the asymptotic critical values of the test, while here we
offer a practical way to compute its p values.
Hansen’s CADF test is firmly rooted in the ADF tradition and for this reason it can be more
familiar and attractive to practitioners than other tests, although Elliott and Jansson (2003)
show that Hansen’s CADF test is not the point optimal test in general. Feasible point optimal
tests in the presence of deterministic components are developed in Elliott and Jansson (2003).
A quite different approach is used in this case, the feasible tests being based on VAR models.

Claudio Lupi 3

However, Monte Carlo simulations reported in Elliott and Jansson (2003) suggest that power
gains with respect to Hansen’s CADF test can be obtained at the cost of slightly worse size
performances.
In this paper we present the R (R Development Core Team 2009) package CADFtest that
allows users to perform Hansen’s CADF unit root test easily.2 The main function CADFtest()
returns a CADFtest class object that not only contains the test statistic, but also its asymptotic
p value and many other useful details. In fact, the class CADFtest inherits from the class
htest,3 so that no special print() method is needed. However, dedicated summary() and
plot() methods have been developed in order to allow the user to analyze the test results more
in detail. A specialized update() method is also available that ease testing using different
options.
The remainder of the paper is structured as follows: Section 2 discusses the way Hansen’s
CADF test has been implemented in the function CADFtest(), and some applications are
illustrated in Section 3. In Section 4, the method to compute the asymptotic p values is
illustrated in detail along with the use of the function CADFpvalues(). Section 5 offers some
comparisons with other existing R packages performing the ADF test. A summary is offered
in Section 6.

2. Implementation and use of the function CADFtest()

In principle, carrying out Hansen’s CADF test is no more complicated than carrying out an
ordinary ADF test. What makes things more complicated is the presence of the nuisance
parameter ρ2 in the asymptotic distribution (5). In fact, a consistent estimate of ρ2 has to
be derived in order to choose the correct asymptotic critical value and/or to compute the
correct asymptotic p value of the test. The problem is solved into two steps. First, êt and
v̂t are derived; then, their long-run covariance matrix Ω is estimated using a HAC covariance
estimator (see e.g., Andrews 1991; Zeileis 2004, 2006; Kleiber and Zeileis 2008).
Once the kind of model (no constant, with constant, with constant and trend) has been
chosen, using CADFtest() the investigator can either set the polynomial orders p, q2 and q1
to fixed values, or can decide the maximum value for each and let the procedure to select and
estimate the model according to different information criteria.
In order to estimate ρ2 it is necessary to estimate et and vt first. For example, if the model
with constant and trend (4) is used, then et and vt are estimated as

êt = â(L)∆yt − µ̂∗ − θ̂ t − δ̂τ yt−1 − b̂(L)
′
∆xt (6)

v̂t = b̂(L)
′ (

∆xt − ∆x
)

+ êt (7)

where “̂” denote parameters estimated by ordinary least squares and ∆x is the sample
average of ∆xt. Once êt and v̂t have been computed, a kernel-based HAC covariance estimator
(Andrews 1991) is used to estimate Ω and hence ρ2. In order to estimate ρ2 in a rather flexible
way, in CADFtest() the kernHAC() function included in the sandwich package (Zeileis 2004,
2006) is used. This allows the investigator to chose the kernel to be applied, the bandwidth,
and if and how prewhitening should be performed. Differently from Hansen (1995b) where a

2The present paper describes version 0.3-0 of the package.
3A fairly detailed description of the htest class can be gathered from within R by typing ?t.test.

4 CADF tests with R

Parzen kernel without prewhitening is used, the default choice in CADFtest() is a quadratic
spectral kernel with VAR(1) prewhitening. The bandwidth is adaptively chosen using the
method proposed in Andrews (1991), but the user is free to change any of these default
choices.
The usage of the function is extremely simple:

CADFtest(model, X = NULL, type = c("trend", "drift", "none"),
data = list(), max.lag.y = 1, min.lag.X = 0, max.lag.X = 0,
dname = NULL, criterion = c("none", "BIC", "AIC", "HQC", "MAIC"), ...)

The minimal required input is CADFtest(y), where y can be either a vector or a time series.
However, if no stationary covariate is specified, an ordinary ADF test is performed. In fact,
the ordinary ADF test can be carried out with R using other existing packages such as
fUnitRoots (Wuertz 2009),4 tseries (Trapletti 2009) and urca (Pfaff 2008). In this respect
there would be no need to add one further package. However, given that the ADF test can be
seen as a particular case of the more general CADF test, it seems logical to leave the user the
opportunity to carry out both tests in the same framework, using the same conventions and
allowing for the computation of the test p values. Furthermore, as will be shown in section
3, the interface to CADFtest() is very flexible and intuitive, and the results are easy to read:
this can make carrying out conventional ADF tests using CADFtest() very appealing. As
far as the computation of the p values of the ADF test is concerned, CADFtest() exploits
the facilities offered by punitroot() implemented in the package urca (Pfaff 2008) that uses
the method proposed in MacKinnon (1994, 1996). In principle, it would have been possible
(and easy) to use the function CADFpvalues() described in detail in section 4, but given
that MacKinnon (1996) describes a method to compute approximate finite sample, rather
than asymptotic, p values, it seems fair to refer directly to a function that implements this
procedure. However, note that MacKinnon (1996) derives the finite sample p values for
Gaussian data: in non-Gaussian settings the finite sample p values are not necessarily more
accurate than the asymptotic ones.
All the arguments, with the exception of min.lag.X and max.lag.X that are relevant only
when a CADF test is carried out, work irrespective of the test being ADF or CADF. However,
if a proper CADF test has to be performed, at least a stationary covariate must be passed
to the procedure. The covariates are passed in a very simple way, using a formula (model)
statement. For example, suppose we want to test the variable y using x1 and x2 as stationary
covariates: if the other default options are accepted, then it is sufficient to specify CADFtest(y
~ x1 + x2). Note that the formula that is passed as argument to the CADFtest() function
is not the complete model to be used, but it just indicates which variable has to be tested for
a unit root (y) and which are to be used as stationary covariates in the test (x1 and x2). A
formula statement can be used also to specify an ordinary ADF test by typing CADFtest(y ~
1), where the term “1” does not imply that a model with constant will be used, but it simply
means that no stationary covariate is passed to the procedure (the deterministic kernel is
always defined by the argument type described below).
Other arguments are used to specify the deterministic kernel to be used in the model (type),
the lead and lag orders (max.lag.y, min.lag.X, max.lag.X), and if the model has to be fixed
or selected using a criterion such as "AIC" (Akaike 1973), "BIC" (Schwarz 1978), "HQC"

4Package fUnitRoots was removed from the CRAN repository on 2017-04-24.

Claudio Lupi 5

(Hannan and Quinn 1979) or "MAIC" (Ng and Perron 2001). Indeed, given that a number of
competing models with potentially many regressors have to be compared, information criteria
offer a handy solution. Furthermore, Hall (1994) shows that when the data are generated by
an ARIMA(p0, 1, 0) process, then the distribution of the ADF test statistic under the null
converges asymptotically to the correct distribution when the number of lags in the empirical
model is determined by using either the AIC, the BIC, or the HQC. On the other hand,
Ng and Perron (2001) argue that standard information criteria should be modified to take
into account the fact that the series are I(1) under the null and propose their modified AIC
(MAIC) that should be more robust in the presence of negative moving-average errors. Ng
and Perron’s MAIC is computed by CADFtest() in the OLS-detrended version suggested by
Perron and Qu (2007). However, notice that although the MAIC should in principle work
well also in the CADF framework, its usefulness has been proved only in the simpler ADF
context.
When no stationary covariate is passed to the procedure, then lag selection is obviously
limited to the lags of ∆yt, but when a proper CADF test is performed, then model selection
implies the joint determination of the lags of the differenced dependent variable and the leads
and lags of the stationary covariates as well. If criterion = "none" (the default choice)
is specified, no automatic model selection is performed and the lag orders are fixed to the
values passed to the procedure. In particular, max.lag.y corresponds to p, the lag order of
a(L) in (4), and it is set to 1 by default: it can be set equal to 0 or to a positive integer.
min.lag.X corresponds to q2, the maximum lead in b(L) in (4), and it is equal to 0 by default:
if modified, it must be set equal to a negative integer (a negative lag is a lead). max.lag.X
correspond to q1, the maximum lag in b(L) in (4), and the default choice is 0: if modified, it
must be set equal to a positive integer. If criterion is different from "none", then all the
models with lags polynomials up to the specified orders (of both the y and the covariates) are
estimated and the final model to be used is selected on the basis of the chosen criterion.
The deterministic components to be used in the model are specified using the conventions
utilized in the R package urca (Pfaff 2008). The default value (type = "trend") implies
that the model with constant and trend (4) is used. If type = "drift" or type = "none" is
specified, then the model with constant or the model without deterministic components are
utilized. data is the data set to be used and dname is the name of data: in general there
is no need to change dname, given that it is automatically computed by the function itself,
unless one wants to indicate for example that a specific data set has been used. Further
arguments can be passed to the procedure to control the parameters to be used in the HAC
covariance estimation. These further arguments can be passed using the conventions valid for
the command kernHAC() (see the package sandwich: Zeileis 2004, 2006). If Hansen’s results
have to be replicated, then kernel = "Parzen" and prewhite = FALSE have to be specified,
otherwise a quadratic spectral kernel with VAR(1) prewhitening is used by default.
The function CADFtest() returns an object of class CADFtest containing the test statis-
tic (statistic), the p value of the test (p.value), the lag structure of the selected model
(max.lag.y, min.lag.X, max.lag.X), the value of the information criteria (AIC, BIC, HQC,
MAIC), the estimated value of ρ2 (parameter), and the full estimated model (est.model).
Other returned information concern the nature of the test (either CADF or ADF) stored in
method, the name of data used (data.name), the value of δ under the null (null.value), the
description of the alternative (alternative) and the estimated value of δ (estimate).
A summary of the test can be obtained just by using a print() command. Given that the

6 CADF tests with R

class CADFtest inherits from the class htest, the print() command produces the standard
R output of the htest class. However, the summary() command is also allowed that returns
a more detailed account of the test results. For greater flexibility, print() can be applied
to a CADFtestsummary object (produced by summary()) to control further printing options.
For example, the number of significant digits can be controlled by digits, while significance
stars can be avoided by setting signif.stars = FALSE.

3. Some examples of application
We provide here some simple examples of application of the function CADFtest(). Data are
taken from the R package urca (Pfaff 2008) and refer to the extended Nelson and Plosser
(1982) data set used in Schotman and Van Dijk (1991). These are the same data used
in Hansen (1995b), so that we will be able to replicate some of the empirical applications
proposed there.
First, we load the data and the required package CADFtest: all the following examples assume
that both have been loaded.

R> data("npext", package="urca") # load data
R> library("CADFtest")

A complete description of the data can be retrieved simply by typing ?npext in R.
We first replicate the analysis carried out in Hansen (1995b, p. 1165) by testing for the
presence of a unit root in the log per capita US real GNP using a standard ADF test with
constant, trend and three lags:

R> ADFt <- CADFtest(npext$gnpperca, max.lag.y=3)

The p value of the test is stored in ADFt$p.value and it is easily accessible:

R> ADFt$p.value

[1] 0.08082208

As already mentioned, the finite sample p value is computed using punitroot() implemented
in package urca (Pfaff 2008). In principle, it would have been possible also to compute the
asymptotic p value by using the function CADFpvalues to be described in detail in the next
section by invoking

R> CADFpvalues(ADFt$statistic, type="trend", rho2=1)

[1] 0.07589502

When a standard Dickey-Fuller test is performed, CADFtest() acts as an interface to existing
commands. For example, in the case above equation (4) is estimated using the package dynlm
(Zeileis 2009) and the test p value is computed using punitroot().
Even if all the results are readily accessible, a summary of the test can be obtained just by
typing

Claudio Lupi 7

R> print(ADFt)

ADF test

data: npext$gnpperca
ADF(3) = -3.2606, p-value = 0.08082
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.2014652

The function correctly warns the user that a conventional ADF test has been performed and
reports the main results along with the number of lags used in the test.
If we want to obtain a more detailed summary that includes the details of the estimated
model, we can just type

R> summary(ADFt)

Augmented DF test
ADF test

t-test statistic: -3.26058935
p-value: 0.08082208
Max lag of the diff. dependent variable: 3.00000000

Call:
dynlm(formula = formula(model), start = obs.1, end = obs.T)

Residuals:
Min 1Q Median 3Q Max

-0.163620 -0.025697 0.007439 0.026647 0.147798

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.201825 0.370695 3.242 0.001819 **
trnd 0.004016 0.001203 3.339 0.001349 **
L(y, 1) -0.201465 0.061788 -3.261 0.080822 .
L(d(y), 1) 0.391840 0.110751 3.538 0.000721 ***
L(d(y), 2) 0.060429 0.119135 0.507 0.613584
L(d(y), 3) -0.052543 0.115921 -0.453 0.651761

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05309 on 70 degrees of freedom
(49 observations deleted due to missingness)

Multiple R-squared: 0.2586, Adjusted R-squared: 0.2057
F-statistic: 5.142 on 3 and 70 DF, p-value: 0.002855

8 CADF tests with R

The model output uses the same conventions utilized in the package dynlm (Zeileis 2009):
trnd is the deterministic linear trend, L(y, 1) stands for yt−1 and L(d(y), i) represents
∆yt−i. Note that the p value of the lagged dependent variable refers to the unit root null and
is therefore consistent with the test p value. Note also that, differently from the conventional
usage, the F statistic here pertains to the joint significance of the stationary regressors, so
that under the null it has the standard F distribution (Sims, Stock, and Watson 1990). If a
simple DF test is performed, then the F -statistic is not computed and a NA value is returned.
If more control on the output summary is desired, then it is possible to store the summary
results in an object (of class CADFtestsummary) and print it using print() with the desired
options (for example, digits = 3, signif.stars = FALSE).
Further details about the test can be gathered from the estimated residuals and from residuals
plots. The function residuals() can be used to extract the estimated residuals as in the
following line:

R> res.ADFt <- residuals(ADFt)

The extracted residuals can then be used in any desired analysis. Fairly informative plots can
also be easily produced by a plot() command as in

R> plot(ADFt)

Four plots are produced by default, as in Figure 1. In particular, the standardized residuals,
the estimated residuals density along with the test for normality proposed in Jarque and Bera
(1980), the estimated residuals autocorrelation function (ACF) and partial autocorrelation
function (PACF) are plotted. However, any combination of these plots can be produced as
well. For example, if the residuals density is not needed, then it is sufficient to specify

R> plot(ADFt, plots=c(1,3,4))

to produce a visualization as in Figure 2.
In order to show other useful features of the CADFtest() command, we carry out now a few
data transformations:

R> npext$unemrate <- exp(npext$unemploy) # compute unemployment rate
R> L <- ts(npext, start=1860) # time series of levels
R> D <- diff(L) # time series of diffs
R> S <- window(ts.intersect(L,D), start=1909) # select same sample as Hansen's

Data are now interpreted as annual time series starting in 1860. The sample ends in 1988
(this is easy to verify by invoking the tsp() function). Given that unemploy is the log of
the unemployment rate, while we need the unemployment rate, the series in levels used by
Hansen (1995b) is computed. The time series in levels are stored in L, while D stores the
first differences of the original variables, that will be used as stationary covariates in the
CADF tests. S contains all the series over a common sample that starts in 1909, as in Hansen
(1995b).
The ADF test could have been also performed by invoking

Claudio Lupi 9

standardized residuals

Time

60 80 100 120

−
3

−
1

1
2

3

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

8

residuals density

p−value of the Jarque−Bera test = 0.022

D
en

si
ty

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

residuals ACF

5 10 15

−
0.

2
0.

0
0.

2

Lag

P
ar

tia
l A

C
F

residuals PACF

Figure 1: Standardized residuals, residuals density, residuals ACF and residuals PACF.

R> ADFt <- CADFtest(L.gnpperca ~ 1, data = S, max.lag.y = 3)

Since no stationary covariate is explicitly indicated in the model, the test is performed as an
ordinary ADF test (with constant and trend and three lags, as before).
Automatic lag selection can be achieved by using the criterion argument in the CADFtest()
command. For example, in the following we fix the maximum lag order p of ∆yt−p to p = 4
and let the final model to be selected by the BIC, possibly highlighting that the data are from
the extended Nelson and Plosser (1982) data set used by Schotman and Van Dijk (1991):

R> CADFtest(L.gnpperca ~ 1, data = S, max.lag.y = 4, criterion = "BIC", dname = "Extended Nelson-Plosser data")

ADF test

data: Extended Nelson-Plosser data
ADF(1) = -3.678, p-value = 0.03002
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.2041227

10 CADF tests with R

standardized residuals

Time

60 80 100 120

−
3

−
1

1
2

3

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

residuals ACF

5 10 15

−
0.

2
0.

0
0.

2

Lag

P
ar

tia
l A

C
F

residuals PACF

Figure 2: Standardized residuals, residuals ACF and residuals PACF.

or by updating the object ADFt that contains the results of a previous test:

R> ADFt2 <- update(ADFt, change=list("max.lag.y = 4", "criterion = 'BIC'", "dname = 'Extended Nelson-Plosser data'"))

Of course, when automatic lag selection is enabled, all the models are estimated on the same
common sample.
Let’s now turn back again to our ADF(3) test performed by using CADFtest():

R> ADFt <- CADFtest(L.gnpperca ~ 1, data = S, max.lag.y = 3)

Now, suppose that we want to run Hansen’s CADF test on the log-real GNP per capita by
using the first difference of the unemployment rate as a stationary covariate. The test is
carried out with constant and trend and allowing 3 lags for the (differences of the) dependent
variable and 0 lags for the covariate. For the results to be fully consistent with Hansen
(1995b, Table 8, column 2, p. 1166), kernel = "Parzen" and prewhite = FALSE have to be
specified. Given the last ADF was carried out using 3 lags, we can perform the CADF test
just by calling

Claudio Lupi 11

R> CADFt <- update(ADFt, change=list("+ D.unemrate", "kernel = 'Parzen'", "prewhite = FALSE"))
R> print(CADFt)

CADF test

data: L.gnpperca ~ D.unemrate
CADF(3,0,0) = -3.413, rho2 = 0.063515, p-value = 0.001729
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.08720302

Differently from Hansen (1995b), we not only verify that the test is significant at the asymp-
totic 1% level, but we can also give a precise assessment of the test p value.
Besides the CADF(3,0,0) test, Hansen’s original analysis includes some other CADF tests,
namely the CADF(3,2,0), CADF(3,2,2), CADF(3,0,2). Instead of using different tests in this
way, we rather specify the maximum lag for the dependent and the maximum lead and lag for
the stationary covariate, and leave the model to be selected by using the BIC. Of course, the
AIC, HQC or MAIC could have been used as well and the orders of all the lags polynomials
would have been again selected automatically:

R> CADFt <- update(CADFt, change=list("max.lag.X = 3", "min.lag.X = -3", "criterion = 'BIC'"))
R> print(CADFt)

CADF test

data: L.gnpperca ~ D.unemrate
CADF(0,2,0) = -4.4072, rho2 = 0.011013, p-value = 8.18e-05
alternative hypothesis: true delta is less than 0
sample estimates:

delta
-0.1086331

The selected model is CADF(0,2,0) and the null is rejected for any reasonable confidence
level. The last update() is equivalent to

R> CADFt <- CADFtest(L.gnpperca ~ D.unemrate, data = S, max.lag.y = 3, max.lag.X = 3, min.lag.X = -3, criterion = "BIC", kernel = "Parzen", prewhite = FALSE)

Of course, if desired the test can be easily carried out using more than just one covariate. In
fact, it is sufficient to specify the model accordingly as in

R> CADFt <- CADFtest(L.gnpperca ~ D.unemrate + D.indprod, data = S, max.lag.y = 3, max.lag.X = 3, min.lag.X = -3, criterion = "BIC", kernel = "Parzen", prewhite = FALSE)

or using the update() command.

4. p values computation and the function CADFpvalues()

12 CADF tests with R

The possibility of computing the p values of a test greatly increases the chances that the test
is effectively used by practitioners. This is a fortiori true when the test procedure requires the
use of non-standard tables available only in few specialized papers. There are even instances
where computation of the p values is necessary for further investigations, as is the case for
some panel unit root tests (see e.g., Maddala and Wu 1999; Choi 2001, 2006a; Costantini,
Lupi, and Popp 2007). The R function CADFpvalues() presented here allows the computation
of asymptotic p values of the CADF test proposed in Hansen (1995b). CADFpvalues() is used
within the CADFtest() function to compute the p values of the test along with the other test
results already discussed. However, CADFpvalues() can also be used separately from the
main testing procedure.
The method used to compute the p values has been originally proposed in Costantini et al.
(2007) and is based on a response surface approach similar to that proposed in MacKinnon
(1994, 1996) for the p values of the ADF test (classical references on the estimation and
use of response surfaces are, among others Hendry 1984; Ericsson 1986). Differently from
what happens with reference to the Dickey-Fuller distribution which is free from nuisance
parameters, the asymptotic distribution of the CADF test statistic depends on the nuisance
parameter 0 < ρ2 ≤ 1, so that the asymptotic distribution (5) has to be simulated over a
grid of values for ρ2. When ρ2 = 1 the distribution coincides with the ordinary Dickey-Fuller
distribution.
In order to obtain fairly good approximations, here a grid of 40 values ρ2 ∈ {0.025, 0.050,
0.0725, . . . , 1} is considered. For each of the three models (without deterministic components,
with constant, with constant and linear trend), 100,000 replications5 have been used for
each value of ρ2. The Wiener functionals have been simulated using a standard approach
(see e.g., Hatanaka 1996, p. 67) with T = 5, 000 (for the “no constant”, “constant” and
“constant plus trend” case, standard, demeaned and detrended Wiener processes have been
used, respectively). On the basis of the simulated values, for each value of ρ2 1,005 asymptotic
quantiles qρ have been derived corresponding to the probabilities p = (0.00025, 0.00050,
0.00075, . . ., 0.001, 0.002, . . ., 0.998, 0.999, 0.99925, 0.99950, 0.99975). As a result, we
obtained a 1, 005 × 40 matrix of estimated quantiles. Along the rows of the matrix it is
possible to read how a given quantile varies with ρ2. Indeed, the estimated quantiles vary
very smoothly with ρ2 (see Costantini et al. 2007).
For each row of the quantile matrix the model

qρ(p) = β0 + β1ρ2 + β2
(
ρ2

)2
+ β3

(
ρ2

)3
+ ϵ (8)

is estimated and the β̂’s are saved in a 1, 005 × 4 table. The tables of estimated coefficients
for the “no constant”, “constant” and “constant plus trend” case, respectively are used by
the function CADFpvalues() in order to compute the asymptotic p values for any value of
0 < ρ2 ≤ 1 for the relevant model.6

The way the computation of the p values proceeds in CADFpvalues() is essentially the fol-
lowing:

1. The relevant table of parameters is read, depending on the specific model used (“no
constant”, “constant” or “constant plus trend”).

5Simulations have been carried out using R.
6The estimated tables of coefficients are available from within the package.

Claudio Lupi 13

2. For any desired value ρ2
0 of ρ2, the estimated parameters are used to compute for all

the 1,005 probability values p the fitted quantiles q̂ρ0(p) as

q̂ρ0(p) = β̂0 + β̂1ρ2
0 + β̂2

(
ρ2

0

)2
+ β̂3

(
ρ2

0

)3
. (9)

3. The approach suggested in MacKinnon (1994, 1996) can now be used on q̂ρ0 to derive
the p value. First, given the value t̂(δ) of the test statistic, it is necessary to find the
fitted quantile q̂ρ0 that is closest to t̂(δ) and the corresponding probability p̃.

4. The regression

Φ−1(p) = γ0 + γ1q̂ρ0(p) + γ2q̂ρ0
2(p) + γ3q̂ρ0

3(p) + νp (10)

where Φ−1(p) is the inverse of the cumulative standard normal distribution is estimated
locally on an interval of p centered on p̃. In CADFpvalues() local interpolation takes
place using 11 values centered on p̃.

5. The p value associated with the estimated test statistic t̂(δ) is finally obtained from

Φ
(

γ̂0 + γ̂1t̂(δ) + γ̂2t̂(δ)
2

+ γ̂3t̂(δ)
3
)

. (11)

While computation is rather involved, from the user’s viewpoint the usage of the function is
extremely simple:

CADFpvalues(t0, rho2 = 0.5, type = "trend")

where t0 is the value of the test statistic t̂(δ), rho2 is the estimated value of ρ2, and type
assumes the values "trend" (the default), "drift" or "none" as discussed above when a
model with constant plus trend, with constant or without constant is considered.
For example, suppose that we want to know the p values of the tests reported in Hansen
(1995b, Table 10). These tests are carried out using models with constant and trend. Specifi-
cally, consider the CADF(3,0,0) and CADF(3,2,0) whose test statistics are -2.2 and -1.7, with
ρ̂2 equal to 0.53 and 0.20, respectively. The computation of the p values of these tests is
immediate:

R> CADFpvalues(t0 = -2.2, rho2 = 0.53)

[1] 0.2447352

R> CADFpvalues(t0 = -1.7, rho2 = 0.20)

[1] 0.2189253

It is now clear that both tests do not reject the null.
If desired, CADFpvalues() can be used also to compute the asymptotic p values of the ordinary
ADF test, as shown above in Section 3. In fact, it is sufficient to set rho2 = 1 to obtain the
asymptotic p values of the Dickey-Fuller distribution. For example

14 CADF tests with R

R> CADFpvalues(-0.44, type = "drift", rho2 = 1)

[1] 0.9018844

computes a p value that can be compared directly with the values reported for example in
Table 4.2 in Banerjee, Dolado, Galbraith, and Hendry (1993).

5. Other R implementations of the ADF test
While CADFtest implements Hansen’s covariate augmented Dickey-Fuller test and includes
the ADF test as a special case, other R packages can perform the ADF test. However, we
believe that the function CADFtest() has a more flexible and convenient interface than other
existing functions have.
urca (Pfaff 2008) is a leading R package for the analysis of integrated and cointegrated time
series that includes the ur.df() function for the ADF test. However, this command cannot
deal with missing values and does not have a data argument. Therefore, in order to carry
out the same ADF test with three lags we did before, we need to specify all the data details
manually, leaving out the first 49 observations for which we have missing values:

R> library("urca")
R> adf.urca <- ur.df(npext$gnpperca[-(1:49)], type = "trend", lags = 3)

Apart from the call being less flexible, the results are not as easy to read as are those that
can be obtained from CADFtest(). Only the critical values, taken from Dickey and Fuller
(1981) and Hamilton (1994), are available to judge the significance of the test, while the
test p value is not reported. In fact, if a summary() is performed, the p value associated to
the coefficient of the lagged dependent variable is computed using the t distribution that is
obviously incorrect under the null. Automatic lag selection is possible on the basis of the AIC
and BIC criteria (not the HQ or the MAIC) and a plot() method is available that, when
applied to adf.urca, produces a result similar to Figure 2.
As with ur.df(), adf.test() in package tseries (Trapletti 2009) does not allow for missing
values. The typical call would be

R> library("tseries")
R> adf.tseries <- adf.test(npext$gnpperca[-(1:49)], k = 3)

The output is easily interpretable, but no summary() or plot() methods are offered. Fur-
thermore, the model is restricted to the case with constant and trend only, and the p value
is computed using a simplified procedure based on the interpolation of the values reported in
Banerjee et al. (1993, Table 4.2, p. 103). Finally, adf.test() does not offer automatic lag
selection options.
fUnitRoots (Wuertz 2009) is another important R package performing unit root tests.7 In
particular, the function unitrootTest() performs the ADF test and computes the relevant

7Package fUnitRoots was removed from the CRAN repository on 2017-04-24.

Claudio Lupi 15

finite sample p values using the approach developed in MacKinnon (1996). However, no
automatic lag selection is performed.

6. Summary
This paper presents the R package CADFtest that allows unit root testing using the Covariate
Augmented Dickey-Fuller (CADF) test originally proposed in Hansen (1995b).
Differently from the already available routines written in GAUSS and in MATLAB (Hansen
1995a), the present functions are easy to use, do not require the user to modify the programs,
and allow the computation of the asymptotic p values of the tests. Beside being extremely
useful in general, p values computation opens to the possibility of using the CADF tests in
unit root combination tests, for example in the context of macro panels (see e.g., Maddala
and Wu 1999; Choi 2001, 2006a; Costantini et al. 2007). When used to perform conventional
ADF tests, CADFtest also encompasses the main features of other existing R packages, with
a more flexible and intuitive interface.
CADFtest can be downloaded from the Comprehensive R Archive Network (CRAN) at http:
//CRAN.r-project.org/package=CADFtest.

Computational details
This documents describes package CADFtest version 0.3.3 and has been compiled using R
version 4.4.1 (2024-06-14) and the following packages, listed in alphabetical order: dynlm
version 0.3.6 (Zeileis 2009), sandwich version 3.1.1 (Zeileis 2004, 2006), tseries version 0.10.58
(Trapletti 2009), urca version 1.3.4 (Pfaff 2008).

Acknowledgments
I would like to thank Achim Zeileis for his many comments and suggestions that helped me
in improving on previous versions of the package. Both the software and the paper greatly
benefited from the detailed comments I received from two anonymous referees and an associate
editor of the Journal of Statistical Software. I am grateful to Mauro Costantini and Stephan
Popp for comments and discussion. Of course, none of them is responsible for any remaining
error. I owe a special thank you to the authors of the R packages used in the development of
CADFtest.
This text was typeset in LATEX using R (R Development Core Team 2009) and Sweave()
(Leisch 2002, 2003).

References

Akaike H (1973). “Information Theory and an Extension of the Maximum Likelihood Prin-
ciple.” In BN Petrov, F Csaki (eds.), Second International Symposium on Information
Theory, pp. 267–281. Akademiai Kaido, Budapest.

http://CRAN.r-project.org/package=CADFtest
http://CRAN.r-project.org/package=CADFtest

16 CADF tests with R

Amara J, Papell DH (2006). “Testing for Purchasing Power Parity Using Stationary Covari-
ates.” Applied Financial Economics, 16(1-2), 29–39.

Andrews DWK (1991). “Heteroskedasticity and Autocorrelation Consistent Covariance Ma-
trix Estimation.” Econometrica, 59(3), 817–858.

Banerjee A, Dolado J, Galbraith JW, Hendry DF (1993). Co-Integration, Error-Correction,
and the Econometric Analysis of Non-Stationary Data. Advanced Texts in Econometrics.
Oxford University Press, Oxford.

Choi I (2001). “Unit Root Tests for Panel Data.” Journal of International Money and Finance,
20(2), 249–272.

Choi I (2006a). “Combination Unit Root Tests for Cross-Sectionally Correlated Panels.” In
D Corbae, SN Durlauf, BE Hansen (eds.), Econometrics Theory and Practice: Frontiers
of Analysis and Applied Research, chapter 12, pp. 311–333. Cambridge University Press,
Cambridge.

Choi I (2006b). “Nonstationary Panels.” In TC Mills, K Patterson (eds.), Econometric
Theory, volume 1 of Palgrave Handbook of Econometrics, chapter 13, pp. 511–539. Palgrave
MacMillan, New York.

Costantini M, Lupi C, Popp S (2007). “A Panel-CADF Test for Unit Roots.” Economics and
Statistics Discussion Paper 39/07, University of Molise.

Dickey DA, Fuller WA (1979). “Distributions of the Estimators for Autoregressive Time Series
With a Unit Root.” Journal of the American Statistical Association, 74(366), 427–431.

Dickey DA, Fuller WA (1981). “Likelihood Ratio Statistics for Autoregressive Time Series
with a Unit Root.” Econometrica, 49, 1057–1072.

Elliott G, Jansson M (2003). “Testing for Unit Roots With Stationary Covariates.” Journal
of Econometrics, 115(1), 75–89.

Elliott G, Pesavento E (2006). “On the Failure of Purchasing Power Parity for Bilateral
Exchange Rates after 1973.” Journal of Money, Credit, and Banking, 38(6), 1405–1430.

Ericsson NR (1986). “Post-Simulation Analysis of Monte Carlo Experiments: Interpreting
Pesaran’s (1974) Study of Non-Nested Hypothesis Test Statistics.” Review of Economic
Studies, 53(4), 691–707.

Haldrup N, Jansson M (2006). “Improving Size and Power in Unit Root Testing.” In TC Mills,
K Patterson (eds.), Econometric Theory, volume 1 of Palgrave Handbook of Econometrics,
chapter 7, pp. 252–277. Palgrave MacMillan, Basingstoke.

Hall A (1994). “Testing for a Unit Root in Time Series with Pretest Data-Based Model
Selection.” Journal of Business and Economic Statistics, 12(4), 461–470.

Hamilton JD (1994). Time Series Analysis. Princeton University Press, Princeton, NJ.

Hannan EJ, Quinn BG (1979). “The Determination of the Order of an Autoregression.”
Journal of the Royal Statistical Society B, 41(2), 190–195.

Claudio Lupi 17

Hansen BE (1995a). UR_REG: GAUSS and MATLAB Procedures to Compute the Covari-
ate Augmented Dickey-Fuller Test. URL http://www.ssc.wisc.edu/~bhansen/progs/
et_95.html.

Hansen BE (1995b). “Rethinking the Univariate Approach to Unit Root Testing: Using
Covariates to Increase Power.” Econometric Theory, 11(5), 1148–1171.

Hatanaka M (1996). Time-Series-Based Econometrics: Unit Roots and Cointegration. Ad-
vanced Texts in Econometrics. Oxford University Press, Oxford.

Hendry DF (1984). “Monte Carlo Experimentation in Econometrics.” In Z Griliches, M In-
triligator (eds.), Handbook of Econometrics, volume 2, chapter 16, pp. 937–976. Elsevier
Science Publishers, Amsterdam.

Jarque CM, Bera AK (1980). “Efficient Tests for Normality, Homoscedasticity and Serial
Independence of Regression Residuals.” Economics Letters, 6(3), 255–259.

Kleiber C, Zeileis A (2008). Applied Econometrics with R. Springer-Verlag, New York.

Lee CF, Tsong CC (2009). “Covariate Selection for Testing Purchasing Power Parity.” Applied
Economics. Forthcoming.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Härdle, B Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational Statistics,
pp. 575–580. Physica-Verlag, Heidelberg.

Leisch F (2003). “Sweave and Beyond: Computations on Text Documents.” In K Hornik,
F Leisch, A Zeileis (eds.), Proceedings of the 3rd International Workshop on Distributed
Statistical Computing, Vienna, Austria. ISSN 1609-395X, URL http://www.ci.tuwien.
ac.at/Conferences/DSC-2003/Proceedings/.

Lupi C (2009). “Unit Root CADF Testing with R.” Journal of Statistical Software. Forth-
coming.

MacKinnon JG (1994). “Approximate Asymptotic Distribution Functions for Unit-Root and
Cointegration Tests.” Journal of Business and Economic Statistics, 12(2), 167–176.

MacKinnon JG (1996). “Numerical Distribution Functions for Unit Root and Cointegration
Tests.” Journal of Applied Econometrics, 11(6), 601–618.

Maddala GS, Wu S (1999). “A Comparative Study of Unit Root Tests with Panel Data
and a New Simple Test.” Oxford Bulletin of Economics and Statistics, 61(Supplement 1),
631–652.

Nelson CR, Plosser CR (1982). “Trends and Random Walks in Macroeconomic Time Series:
Some Evidence and Implications.” Journal of Monetary Economics, 10(2), 139–162.

Ng S, Perron P (2001). “Lag Length Selection and the Construction of Unit Root Tests with
Good Size and Power.” Econometrica, 69(6), 1519–1554.

Perron P, Qu Z (2007). “A Simple Modification to Improve the Finite Sample Properties of
Ng and Perron’s Unit Root Tests.” Economics Letters, 94(1), 12–19.

http://www.ssc.wisc.edu/~bhansen/progs/et_95.html
http://www.ssc.wisc.edu/~bhansen/progs/et_95.html
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

18 CADF tests with R

Pfaff B (2008). Analysis of Integrated and Cointegrated Time Series with R. 2nd edition.
Springer-Verlag, New York.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//R-project.org.

Said SE, Dickey DA (1984). “Test for Unit Roots in Autoregressive-Moving Average Models
of Unknown Order.” Biometrika, 71(3), 599–607.

Schotman PC, Van Dijk HK (1991). “On Bayesian Routes to Unit Roots.” Journal of Applied
Econometrics, 6(4), 387–401.

Schwarz G (1978). “Estimating the Dimension of a Model.” Annals of Statistics, 6(2), 461–
464.

Schwert GW (1989). “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business
and Economic Statistics, 7(2), 147–159.

Sims CA, Stock JH, Watson MW (1990). “Inference in Linear Time Series Models with Some
Unit Roots.” Econometrica, 58(1), 113–144.

Stock JH (1994). “Unit Roots, Structural Breaks and Trends.” In RF Engle, DL McFadden
(eds.), Handbook of Econometrics, volume 4, chapter 46, pp. 2739–2841. Elsevier Science
Publishers, Amsterdam.

Trapletti A (2009). tseries: Time Series Analysis and Computational Finance. R package
version 0.10-19, URL http://CRAN.R-project.org/package=tseries.

Wuertz D (2009). fUnitRoots: Trends and Unit Roots. R package version 260.75, URL
http://CRAN.R-project.org/package=fUnitRoots.

Zeileis A (2004). “Econometric Computing with HC and HAC Covariance Matrix Estimators.”
Journal of Statistical Software, 11(10), 1–17.

Zeileis A (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statis-
tical Software, 16(9), 1–16.

Zeileis A (2009). dynlm: Dynamic Linear Regression. R package version 0.2-3, URL http:
//CRAN.R-project.org/package=dynlm.

Zellner A, Palm FC (1974). “Time Series Analysis and Simultaneous Equation Econometric
Models.” Journal of Econometrics, 2(1), 17–54.

Affiliation:
Claudio Lupi
Department of Economics, Management and Social Sciences (SEGeS)
University of Molise
Via De Sanctis I-86100 Campobasso, Italy
E-mail: lupi@unimol.it

http://R-project.org
http://R-project.org
http://CRAN.R-project.org/package=tseries
http://CRAN.R-project.org/package=fUnitRoots
http://CRAN.R-project.org/package=dynlm
http://CRAN.R-project.org/package=dynlm
mailto:lupi@unimol.it

	Introduction and statistical background
	Implementation and use of the function CADFtest()
	Some examples of application
	p values computation and the function CADFpvalues()
	Other R implementations of the ADF test
	Summary

