
Package: arrangements (via r-universe)
October 26, 2024

Type Package

Title Fast Generators and Iterators for Permutations, Combinations,
Integer Partitions and Compositions

Version 1.1.9

Date 2020-09-12

Description Fast generators and iterators for permutations,
combinations, integer partitions and compositions. The
arrangements are in lexicographical order and generated
iteratively in a memory efficient manner. It has been
demonstrated that 'arrangements' outperforms most existing
packages of similar kind. Benchmarks could be found at
<https://randy3k.github.io/arrangements/articles/benchmark.html>.

License MIT + file LICENSE

URL https://github.com/randy3k/arrangements

Depends R (>= 3.4.0)

Imports gmp, methods, R6

Suggests foreach, knitr, rmarkdown, testthat

ByteCompile yes

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 6.1.1

SystemRequirements gmp (>= 4.2.3)

Author Randy Lai [aut, cre]

Maintainer Randy Lai <randy.cs.lai@gmail.com>

Repository CRAN

Date/Publication 2020-09-13 14:00:07 UTC

1

https://randy3k.github.io/arrangements/articles/benchmark.html
https://github.com/randy3k/arrangements

2 arrangements-package

Contents

arrangements-package . 2
Combinations . 3
combinations . 4
Compositions . 5
compositions . 7
ncombinations . 8
ncompositions . 9
npartitions . 10
npermutations . 11
Partitions . 12
partitions . 13
Permutations . 14
permutations . 16

Index 18

arrangements-package arrangements: Fast Generators and Iterators for Permutations, Com-
binations, Integer Partitions and Compositions

Description

Fast generators and iterators for permutations, combinations, integer partitions and compositions.
The arrangements are in lexicographical order and generated iteratively in a memory efficient man-
ner. It has been demonstrated that ’arrangements’ outperforms most existing packages of similar
kind. Benchmarks could be found at <https://randy3k.github.io/arrangements/articles/benchmark.html>.

Author(s)

Maintainer: Randy Lai <randy.cs.lai@gmail.com>

See Also

Useful links:

• https://randy3k.github.io/arrangements

https://randy3k.github.io/arrangements

Combinations 3

Combinations Combinations iterator

Description

This function returns a Combinations iterator for iterating combinations of k items from n items.
The iterator allows users to fetch the next combination(s) via the getnext() method.

Usage

Combinations

icombinations(x = NULL, k = NULL, n = NULL, v = NULL,
freq = NULL, replace = FALSE, skip = NULL)

Arguments

x an integer or a vector, will be treated as n if integer; otherwise, will be treated as
v. Should not be specified together with n and v.

k an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n an integer, the total number of items, its value may be implicitly deduced from
length(v) or length(freq)

v a vector to be drawn, defaults to 1:n.

freq an integer vector of item repeat frequencies

replace an logical to draw items with replacement

skip the number of combinations skipped

Format

An object of class R6ClassGenerator of length 25.

Details

The Combinations class can be initialized by using the convenient wrapper icombinations or

Combinations$new(n, k, v = NULL, freq = NULL, replace = FALSE)

getnext(d = 1L, layout = NULL, drop = NULL)
collect(layout = "row")
reset()

d number of fetched arrangements

layout if "row", "column" or "list" is specified, the returned value would be a "row-major" matrix,
a "column-major" matrix or a list respectively

drop vectorize a matrix or unlist a list

4 combinations

See Also

combinations for generating all combinations and ncombinations to calculate number of combina-
tions

Examples

icomb <- icombinations(5, 2)
icomb$getnext()
icomb$getnext(2)
icomb$getnext(layout = "column", drop = FALSE)
collect remaining combinations
icomb$collect()

library(foreach)
foreach(x = icombinations(5, 2), .combine=c) %do% {

sum(x)
}

combinations Combinations generator

Description

This function generates all the combinations of selecting k items from n items. The results are in
lexicographical order.

Usage

combinations(x = NULL, k = NULL, n = NULL, v = NULL, freq = NULL,
replace = FALSE, layout = NULL, nitem = -1L, skip = NULL,
index = NULL, nsample = NULL, drop = NULL)

Arguments

x an integer or a vector, will be treated as n if integer; otherwise, will be treated as
v. Should not be specified together with n and v.

k an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n an integer, the total number of items, its value may be implicitly deduced from
length(v) or length(freq)

v a vector to be drawn, defaults to 1:n.

freq an integer vector of item repeat frequencies

replace an logical to draw items with replacement

layout if "row", "column" or "list" is specified, the returned value would be a "row-
major" matrix, a "column-major" matrix or a list respectively

nitem number of combinations required, usually used with skip

Compositions 5

skip the number of combinations skipped

index a vector of indices of the desired combinations

nsample sampling random combinations

drop vectorize a matrix or unlist a list

See Also

icombinations for iterating combinations and ncombinations to calculate number of combinations

Examples

choose 2 from 4
combinations(4, 2)
combinations(LETTERS[1:3], k = 2)

multiset with frequencies c(2, 3)
combinations(k = 3, freq = c(2, 3))

with replacement
combinations(4, 2, replace = TRUE)

column major
combinations(4, 2, layout = "column")

list output
combinations(4, 2, layout = "list")

specifc range of combinations
combinations(4, 2, nitem = 2, skip = 3)

specific combinations
combinations(4, 2, index = c(3, 5))

random combinations
combinations(4, 2, nsample = 3)

zero sized combinations
dim(combinations(5, 0))
dim(combinations(5, 6))
dim(combinations(0, 0))
dim(combinations(0, 1))

Compositions Compositions iterator

6 Compositions

Description

This function returns a Compositions iterator for iterating compositions of an non-negative integer
n into k parts or parts of any sizes. The iterator allows users to fetch the next partition(s) via the
getnext() method.

Usage

Compositions

icompositions(n, k = NULL, descending = FALSE, skip = NULL)

Arguments

n an non-negative integer to be partitioned

k number of parts

descending an logical to use reversed lexicographical order

skip the number of compositions skipped

Format

An object of class R6ClassGenerator of length 25.

Details

The Compositions class can be initialized by using the convenient wrapper icompositions or

Compositions$new(n, k = NULL, descending = FALSE)

getnext(d = 1L, layout = NULL, drop = NULL)
collect(layout = "row")
reset()

d number of fetched arrangements

layout if "row", "column" or "list" is specified, the returned value would be a "row-major" matrix,
a "column-major" matrix or a list respectively

drop vectorize a matrix or unlist a list

See Also

compositions for generating all compositions and ncompositions to calculate number of composi-
tions

compositions 7

Examples

ipart <- icompositions(4)
ipart$getnext()
ipart$getnext(2)
ipart$getnext(layout = "column", drop = FALSE)
collect remaining compositions
ipart$collect()

library(foreach)
foreach(x = icompositions(6, 2), .combine=c) %do% {

prod(x)
}

compositions Compositions generator

Description

This function generates the compositions of an non-negative interger n into k parts or parts of any
sizes. The results are in lexicographical or reversed lexicographical order.

Usage

compositions(n, k = NULL, descending = FALSE, layout = NULL,
nitem = -1L, skip = NULL, index = NULL, nsample = NULL,
drop = NULL)

Arguments

n an non-negative integer to be partitioned

k number of parts

descending an logical to use reversed lexicographical order

layout if "row", "column" or "list" is specified, the returned value would be a "row-
major" matrix, a "column-major" matrix or a list respectively

nitem number of compositions required, usually used with skip

skip the number of compositions skipped

index a vector of indices of the desired compositions

nsample sampling random compositions

drop vectorize a matrix or unlist a list

See Also

icompositions for iterating compositions and ncompositions to calculate number of compositions

8 ncombinations

Examples

all compositions of 4
compositions(4)
reversed lexicographical order
compositions(4, descending = TRUE)

fixed number of parts
compositions(6, 3)
reversed lexicographical order
compositions(6, 3, descending = TRUE)

column major
compositions(4, layout = "column")
compositions(6, 3, layout = "column")

list output
compositions(4, layout = "list")
compositions(6, 3, layout = "list")

zero sized compositions
dim(compositions(0))
dim(compositions(5, 0))
dim(compositions(5, 6))
dim(compositions(0, 0))
dim(compositions(0, 1))

ncombinations Number of combinations

Description

Number of combinations

Usage

ncombinations(x = NULL, k = NULL, n = NULL, v = NULL,
freq = NULL, replace = FALSE, bigz = FALSE)

Arguments

x an integer or a vector, will be treated as n if integer; otherwise, will be treated as
v. Should not be specified together with n and v.

k an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n an integer, the total number of items, its value may be implicitly deduced from
length(v) or length(freq)

v a vector to be drawn, defaults to 1:n.

freq an integer vector of item repeat frequencies

ncompositions 9

replace an logical to draw items with replacement

bigz an logical to use gmp::bigz

See Also

combinations for generating all combinations and icombinations for iterating combinations

Examples

ncombinations(5, 2)
ncombinations(LETTERS, k = 5)

integer overflow
Not run: ncombinations(40, 15)
ncombinations(40, 15, bigz = TRUE)

number of combinations of `c("a", "b", "b")`
they are `c("a", "b")` and `c("b", "b")`
ncombinations(k = 2, freq = c(1, 2))

zero sized combinations
ncombinations(5, 0)
ncombinations(5, 6)
ncombinations(0, 1)
ncombinations(0, 0)

ncompositions Number of compositions

Description

Number of compositions

Usage

ncompositions(n, k = NULL, bigz = FALSE)

Arguments

n an non-negative integer to be partitioned

k number of parts

bigz an logical to use gmp::bigz

See Also

compositions for generating all compositions and icompositions for iterating compositions

10 npartitions

Examples

number of compositions of 10
ncompositions(10)
number of compositions of 10 into 5 parts
ncompositions(10, 5)

integer overflow
Not run: ncompositions(160)
ncompositions(160, bigz = TRUE)

zero sized compositions
ncompositions(0)
ncompositions(5, 0)
ncompositions(5, 6)
ncompositions(0, 0)
ncompositions(0, 1)

npartitions Number of partitions

Description

Number of partitions

Usage

npartitions(n, k = NULL, distinct = FALSE, bigz = FALSE)

Arguments

n an non-negative integer to be partitioned

k number of parts

distinct an logical to restrict distinct values

bigz an logical to use gmp::bigz

See Also

partitions for generating all partitions and ipartitions for iterating partitions

Examples

number of partitions of 10
npartitions(10)
number of partitions of 10 into 5 parts
npartitions(10, 5)

integer overflow
Not run: npartitions(160)

npermutations 11

npartitions(160, bigz = TRUE)

zero sized partitions
npartitions(0)
npartitions(5, 0)
npartitions(5, 6)
npartitions(0, 0)
npartitions(0, 1)

npermutations Number of permutations

Description

Number of permutations

Usage

npermutations(x = NULL, k = NULL, n = NULL, v = NULL,
freq = NULL, replace = FALSE, bigz = FALSE)

Arguments

x an integer or a vector, will be treated as n if integer; otherwise, will be treated as
v. Should not be specified together with n and v.

k an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n an integer, the total number of items, its value may be implicitly deduced from
length(v) or length(freq)

v a vector to be drawn, defaults to 1:n.

freq an integer vector of item repeat frequencies

replace an logical to draw items with replacement

bigz an logical to use gmp::bigz

See Also

permutations for generating all permutations and ipermutations for iterating permutations

Examples

npermutations(7)
npermutations(LETTERS[1:5])
npermutations(5, 2)
npermutations(LETTERS, k = 5)

integer overflow
Not run: npermutations(14, 10)
npermutations(14, 10, bigz = TRUE)

12 Partitions

number of permutations of `c("a", "b", "b")`
they are `c("a", "b")`, `c("b", "b")` and `c("b", "b")`
npermutations(k = 2, freq = c(1, 2))

zero sized partitions
npermutations(0)
npermutations(5, 0)
npermutations(5, 6)
npermutations(0, 1)
npermutations(0, 0)

Partitions Partitions iterator

Description

This function returns a Partitions iterator for iterating partitions of an non-negative integer n into k
parts or parts of any sizes. The iterator allows users to fetch the next partition(s) via the getnext()
method.

Usage

Partitions

ipartitions(n, k = NULL, distinct = FALSE, descending = FALSE,
skip = NULL)

Arguments

n an non-negative integer to be partitioned

k number of parts

distinct an logical to restrict distinct values

descending an logical to use reversed lexicographical order

skip the number of partitions skipped

Format

An object of class R6ClassGenerator of length 25.

Details

The Partitions class can be initialized by using the convenient wrapper ipartitions or

Partitions$new(n, k = NULL, descending = FALSE)

partitions 13

getnext(d = 1L, layout = NULL, drop = NULL)
collect(layout = "row")
reset()

d number of fetched arrangements

layout if "row", "column" or "list" is specified, the returned value would be a "row-major" matrix,
a "column-major" matrix or a list respectively

drop vectorize a matrix or unlist a list

See Also

partitions for generating all partitions and npartitions to calculate number of partitions

Examples

ipart <- ipartitions(10)
ipart$getnext()
ipart$getnext(2)
ipart$getnext(layout = "column", drop = FALSE)
collect remaining partitions
ipart$collect()

library(foreach)
foreach(x = ipartitions(6, 2), .combine=c) %do% {

prod(x)
}

partitions Partitions generator

Description

This function partitions an non-negative interger n into k parts or parts of any sizes. The results are
in lexicographical or reversed lexicographical order.

Usage

partitions(n, k = NULL, distinct = FALSE, descending = FALSE,
layout = NULL, nitem = -1L, skip = NULL, index = NULL,
nsample = NULL, drop = NULL)

Arguments

n an non-negative integer to be partitioned

k number of parts

distinct an logical to restrict distinct values

descending an logical to use reversed lexicographical order

14 Permutations

layout if "row", "column" or "list" is specified, the returned value would be a "row-
major" matrix, a "column-major" matrix or a list respectively

nitem number of partitions required, usually used with skip

skip the number of partitions skipped

index a vector of indices of the desired partitions

nsample sampling random partitions

drop vectorize a matrix or unlist a list

See Also

ipartitions for iterating partitions and npartitions to calculate number of partitions

Examples

all partitions of 6
partitions(6)
reversed lexicographical order
partitions(6, descending = TRUE)

fixed number of parts
partitions(10, 5)
reversed lexicographical order
partitions(10, 5, descending = TRUE)

column major
partitions(6, layout = "column")
partitions(6, 3, layout = "column")

list output
partitions(6, layout = "list")
partitions(6, 3, layout = "list")

zero sized partitions
dim(partitions(0))
dim(partitions(5, 0))
dim(partitions(5, 6))
dim(partitions(0, 0))
dim(partitions(0, 1))

Permutations Permutations iterator

Description

This function returns a Permutations iterator for iterating permutations of k items from n items. The
iterator allows users to fetch the next permutation(s) via the getnext() method.

Permutations 15

Usage

Permutations

ipermutations(x = NULL, k = NULL, n = NULL, v = NULL,
freq = NULL, replace = FALSE, skip = NULL)

Arguments

x an integer or a vector, will be treated as n if integer; otherwise, will be treated as
v. Should not be specified together with n and v.

k an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n an integer, the total number of items, its value may be implicitly deduced from
length(v) or length(freq)

v a vector to be drawn, defaults to 1:n.

freq an integer vector of item repeat frequencies

replace an logical to draw items with replacement

skip the number of combinations skipped

Format

An object of class R6ClassGenerator of length 25.

Details

The Permutations class can be initialized by using the convenient wrapper ipermutations or

Permutations$new(n, k, v = NULL, freq = NULL, replace = FALSE)

getnext(d = 1L, layout = NULL, drop = NULL)
collect(layout = "row")
reset()

d number of fetched arrangements

layout if "row", "column" or "list" is specified, the returned value would be a "row-major" matrix,
a "column-major" matrix or a list respectively

drop vectorize a matrix or unlist a list

See Also

permutations for generating all permutations and npermutations to calculate number of permuta-
tions

16 permutations

Examples

iperm <- ipermutations(5, 2)
iperm$getnext()
iperm$getnext(2)
iperm$getnext(layout = "column", drop = FALSE)
collect remaining permutations
iperm$collect()

library(foreach)
foreach(x = ipermutations(5, 2), .combine=c) %do% {

sum(x)
}

permutations Permutations generator

Description

This function generates all the permutations of selecting k items from n items. The results are in
lexicographical order.

Usage

permutations(x = NULL, k = NULL, n = NULL, v = NULL, freq = NULL,
replace = FALSE, layout = NULL, nitem = -1L, skip = NULL,
index = NULL, nsample = NULL, drop = NULL)

Arguments

x an integer or a vector, will be treated as n if integer; otherwise, will be treated as
v. Should not be specified together with n and v.

k an integer, the number of items drawn, defaults to n if freq is NULL else sum(freq)

n an integer, the total number of items, its value may be implicitly deduced from
length(v) or length(freq)

v a vector to be drawn, defaults to 1:n.

freq an integer vector of item repeat frequencies

replace an logical to draw items with replacement

layout if "row", "column" or "list" is specified, the returned value would be a "row-
major" matrix, a "column-major" matrix or a list respectively

nitem number of permutations required, usually used with skip

skip the number of permutations skipped

index a vector of indices of the desired permutations

nsample sampling random permutations

drop vectorize a matrix or unlist a list

permutations 17

See Also

ipermutations for iterating permutations and npermutations to calculate number of permutations

Examples

permutations(3)
permutations(LETTERS[1:3])

choose 2 from 4
permutations(4, 2)
permutations(LETTERS[1:3], k = 2)

multiset with frequencies c(2, 3)
permutations(k = 3, freq = c(2, 3))

with replacement
permutations(4, 2, replace = TRUE)

column major
permutations(3, layout = "column")
permutations(4, 2, layout = "column")

list output
permutations(3, layout = "list")
permutations(4, 2, layout = "list")

specifc range of permutations
permutations(4, 2, nitem = 2, skip = 3)

specific permutations
permutations(4, 2, index = c(3, 5))

random permutations
permutations(4, 2, nsample = 3)

zero sized permutations
dim(permutations(0))
dim(permutations(5, 0))
dim(permutations(5, 6))
dim(permutations(0, 0))
dim(permutations(0, 1))

Index

∗ datasets
Combinations, 3
Compositions, 5
Partitions, 12
Permutations, 14

arrangements (arrangements-package), 2
arrangements-package, 2

Combinations, 3, 3
combinations, 4, 4, 9
Compositions, 5, 6
compositions, 6, 7, 9

gmp::bigz, 9–11

icombinations, 5, 9
icombinations (Combinations), 3
icompositions, 7, 9
icompositions (Compositions), 5
ipartitions, 10, 14
ipartitions (Partitions), 12
ipermutations, 11, 17
ipermutations (Permutations), 14

ncombinations, 4, 5, 8
ncompositions, 6, 7, 9
npartitions, 10, 13, 14
npermutations, 11, 15, 17

Partitions, 12, 12
partitions, 10, 13, 13
Permutations, 14, 14
permutations, 11, 15, 16

18

	arrangements-package
	Combinations
	combinations
	Compositions
	compositions
	ncombinations
	ncompositions
	npartitions
	npermutations
	Partitions
	partitions
	Permutations
	permutations
	Index

