# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "appnn" in publications use:' type: software license: GPL-3.0-only title: 'appnn: Amyloid Propensity Prediction Neural Network' version: 1.0-1 identifiers: - type: doi value: 10.32614/CRAN.package.appnn abstract: Amyloid propensity prediction neural network (APPNN) is an amyloidogenicity propensity predictor based on a machine learning approach through recursive feature selection and feed-forward neural networks, taking advantage of newly published sequences with experimental, in vitro, evidence of amyloid formation. authors: - family-names: Família given-names: Carlos email: carlosfamilia@gmail.com - family-names: Dennison given-names: Sarah R. - family-names: Quintas given-names: Alexandre - family-names: Phoenix given-names: David A. preferred-citation: type: manual title: 'appnn: Amyloid Propensity Prediction Neural Network' authors: - family-names: Família given-names: Carlos email: carlosfamilia@gmail.com - family-names: Dennison given-names: Sarah R. - family-names: Quintas given-names: Alexandre - family-names: Phoenix given-names: David A. year: '2024' notes: R package version 1.0-1 url: https://CRAN.R-project.org/package=appnn repository: https://CRAN.R-project.org/package=appnn date-released: '2024-12-05' contact: - family-names: Família given-names: Carlos email: carlosfamilia@gmail.com references: - type: article title: Prediction of Peptide and Protein Propensity for Amyloid Formation authors: - family-names: Família given-names: Carlos - family-names: Dennison given-names: Sarah R. - family-names: Quintas given-names: Alexandre - family-names: Phoenix given-names: David A. journal: PLoS ONE doi: 10.1371/journal.pone.0134679 pmcid: PMC4524629 year: '2015' issue: '8' volume: '10' month: '8' start: e0134679