Title: | Visualization of Simulated Datasets with Multiple Simulation Input Dimensions |
---|---|
Description: | Plots simulation results of clinical trials. Its main feature is allowing users to simultaneously investigate the impact of several simulation input dimensions through dynamic filtering of the simulation results. A more detailed description of the app can be found in Meyer et al. <DOI:10.1016/j.softx.2023.101347> or the vignettes on 'GitHub'. |
Authors: | Elias Laurin Meyer [aut, cre] , Constantin Kumaus [aut, ctb], Michal Majka [aut, ctb] , Franz Koenig [aut, ctb] |
Maintainer: | Elias Laurin Meyer <[email protected]> |
License: | GPL-3 |
Version: | 1.4.3 |
Built: | 2024-12-06 01:36:26 UTC |
Source: | CRAN |
Runs the Shiny app "AIRSHIP".
airship( dfData = NULL, cLastInputVar = NULL, cReplicationVar = NULL, bIsFacts = FALSE )
airship( dfData = NULL, cLastInputVar = NULL, cReplicationVar = NULL, bIsFacts = FALSE )
dfData |
Dataset that should be plotted by Airship; can be NULL if upload should be done within the app. |
cLastInputVar |
Optional and only useful in combination with dfData. Character name of last input variable. |
cReplicationVar |
Optional and only useful in combination with dfData. Character name of simulation replication variable. |
bIsFacts |
Boolean variable; is the supplied dfData a FACTS aggregated simulation file. |
No return value
if(interactive()){ airship() } # See Vignette.
if(interactive()){ airship() } # See Vignette.
An artificially simulated dataset containing bivariate normal outcomes. Outcomes depend on four input variables in a very simple manner. For each set of input variables, 1000 replications are simulated.
ExampleData1
ExampleData1
An object of class data.frame
with 81000 rows and 7 columns.
input1 <- c("A", "B", "C") input2 <- c(1, 2, 3) input3 <- c("Z", "Y", "X") input4 <- c(11, 12, 13) replications <- 1:1000 scenarios <- expand.grid( replications = replications, input1 = input1, input2 = input2, input3 = input3, input4 = input4 ) for (i in 1:nrow(scenarios)) { var <- ifelse(scenarios$input1[i] == "A", 1, 10) cor <- ifelse(scenarios$input3[i] == "Z", 0.7, 0.1) out <- mvtnorm::rmvnorm( 1, mean = c(scenarios$input2[i], scenarios$input4[i]), sigma = matrix(c(var, cor, cor, var), nrow = 2) ) scenarios$output1[i] <- out[1] scenarios$output2[i] <- out[2] } ExampleData1 <- scenarios
input1 <- c("A", "B", "C") input2 <- c(1, 2, 3) input3 <- c("Z", "Y", "X") input4 <- c(11, 12, 13) replications <- 1:1000 scenarios <- expand.grid( replications = replications, input1 = input1, input2 = input2, input3 = input3, input4 = input4 ) for (i in 1:nrow(scenarios)) { var <- ifelse(scenarios$input1[i] == "A", 1, 10) cor <- ifelse(scenarios$input3[i] == "Z", 0.7, 0.1) out <- mvtnorm::rmvnorm( 1, mean = c(scenarios$input2[i], scenarios$input4[i]), sigma = matrix(c(var, cor, cor, var), nrow = 2) ) scenarios$output1[i] <- out[1] scenarios$output2[i] <- out[2] } ExampleData1 <- scenarios
Simulated dataset from Meyer et al. (2022) https://doi.org/10.1002/pst.2194.
ExampleData2
ExampleData2
An object of class data.frame
with 10080 rows and 18 columns.
https://github.com/el-meyer/airship/blob/master/data/ExampleDataNASH.csv