The clustering of populations following admixture models is, for now, based on the K-sample test theory (see (Milhaud et al. 2024). Consider K samples. For i = 1, ..., K, sample X(i) = (X1(i), ..., Xni(i)) follows Li(x) = piFi(x) + (1 − pi)Gi, x ∈ ℝ.
We still use IBM approach to perform pairwise hypothesis testing. The idea is to adapt the K-sample test procedure to obtain a data-driven method that cluster the K populations into N subgroups, characterized by a common unknown mixture component. The advantages of such an approach is twofold:
This clustering technique thus allows to cluster unobserved subpopulations instead of individuals. We call this algorithm the K-sample 2-component mixture clustering (K2MC).
We now detail the steps of the algorithm.
If $H_0$ is not rejected then $S_1 = \{x,y\}$,\\
Else $S_1 = \{x\}$, $S_{c+1} = \{y\}$ and then $c=c+1$.
Select $u={\rm argmin}\{d(i,j); i\in S_c, j\in S\setminus \bigcup_{k=1}^c S_k\}$;
Test $H_0$ the simultaneous equality of all the $f_j$, $j\in S_c$ :\\
If $H_0$ not rejected, then put $S_c=S_c\bigcup \{u\}$;\\
Else $S_{c+1} = \{u\}$ and $c = c+1$.
We present a case study with 5 populations to cluster on ℝ+, with Gamma-Exponential, Exponential-Exponential and Gamma-Gamma mixtures.
#set.seed(123)
## Simulate mixture data:
mixt1 <- twoComp_mixt(n = 6000, weight = 0.8,
comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 16, "scale" = 1/4),
list("rate" = 1/3.5)))
mixt2 <- twoComp_mixt(n = 6000, weight = 0.7,
comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 14, "scale" = 1/2),
list("rate" = 1/5)))
mixt3 <- twoComp_mixt(n = 6000, weight = 0.6,
comp.dist = list("gamma", "gamma"),
comp.param = list(list("shape" = 16, "scale" = 1/4),
list("shape" = 12, "scale" = 1/2)))
mixt4 <- twoComp_mixt(n = 6000, weight = 0.5,
comp.dist = list("exp", "exp"),
comp.param = list(list("rate" = 1/2),
list("rate" = 1/7)))
mixt5 <- twoComp_mixt(n = 6000, weight = 0.5,
comp.dist = list("gamma", "exp"),
comp.param = list(list("shape" = 14, "scale" = 1/2),
list("rate" = 1/6)))
data1 <- getmixtData(mixt1)
data2 <- getmixtData(mixt2)
data3 <- getmixtData(mixt3)
data4 <- getmixtData(mixt4)
data5 <- getmixtData(mixt5)
admixMod1 <- admix_model(knownComp_dist = mixt1$comp.dist[[2]],
knownComp_param = mixt1$comp.param[[2]])
admixMod2 <- admix_model(knownComp_dist = mixt2$comp.dist[[2]],
knownComp_param = mixt2$comp.param[[2]])
admixMod3 <- admix_model(knownComp_dist = mixt3$comp.dist[[2]],
knownComp_param = mixt3$comp.param[[2]])
admixMod4 <- admix_model(knownComp_dist = mixt4$comp.dist[[2]],
knownComp_param = mixt4$comp.param[[2]])
admixMod5 <- admix_model(knownComp_dist = mixt5$comp.dist[[2]],
knownComp_param = mixt5$comp.param[[2]])
## Look for the clusters:
admix_cluster(samples = list(data1,data2,data3,data4,data5),
admixMod = list(admixMod1,admixMod2,admixMod3,admixMod4,admixMod5),
conf_level = 0.95, tune_penalty = TRUE, tabul_dist = NULL, echo = FALSE,
n_sim_tab = 50, parallel = FALSE, n_cpu = 2)
#> Call:
#> admix_cluster(samples = list(data1, data2, data3, data4, data5),
#> admixMod = list(admixMod1, admixMod2, admixMod3, admixMod4,
#> admixMod5), conf_level = 0.95, tune_penalty = TRUE, tabul_dist = NULL,
#> echo = FALSE, n_sim_tab = 50, parallel = FALSE, n_cpu = 2)
#>
#> Number of detected clusters across the samples provided: 3.
#>
#> List of samples involved in each built cluster (in numeric format, i.e. inside c()) :
#> - Cluster #1: vector of populations c(1, 3)
#> - Cluster #2: vector of populations 4
#> - Cluster #3: vector of populations c(2, 5)