
Package: adlift (via r-universe)
September 14, 2024

Version 1.4-5

Date 2023-03-22

Title An Adaptive Lifting Scheme Algorithm

Author Matt Nunes [aut, cre], Marina Knight [aut], Guy Nason [ctb,
ths]

Maintainer Matt Nunes <nunesrpackages@gmail.com>

Description Adaptive wavelet lifting transforms for signal denoising
using optimal local neighbourhood regression, from Nunes et al.
(2006) <doi:10.1007/s11222-006-6560-y>.

Depends EbayesThresh

License GPL

Repository CRAN

Date/Publication 2023-03-22 17:10:05 UTC

NeedsCompilation yes

Contents
AdaptNeigh . 2
AdaptNeighmp . 5
AdaptPred . 7
AdaptPredmp . 9
adjustx . 12
Amatdual . 13
artlev . 15
as.column . 16
as.row . 17
basisfns . 18
condno . 20
CubicPred . 21
CubicPredmp . 23
denoise . 25
denoisehetero . 27

1

https://doi.org/10.1007/s11222-006-6560-y

2 AdaptNeigh

denoiseheteromp . 29
denoiseheteroprop . 31
dojitter . 32
findadds . 33
fwtnp . 35
fwtnpmp . 37
getnbrs . 40
heterovar . 42
intervals . 43
invtnp . 44
invtnpmp . 47
lengthintervals . 49
LinearPred . 50
LinearPredmp . 52
make.signal2 . 54
matcond . 55
modjitter . 56
motorcycledata . 57
PointsUpdate . 58
PointsUpdatemp . 59
postmean.cauchy . 61
QuadPred . 62
QuadPredmp . 64
Rmatsolve . 66
transmatdual . 67
UndoPointsUpdate . 68
UndoPointsUpdatemp . 70

Index 73

AdaptNeigh AdaptNeigh

Description

This function performs the prediction lifting step over neighbourhoods and interpolation schemes.

Usage

AdaptNeigh(pointsin, X, coeff, nbrs, remove, intercept,
neighbours)

AdaptNeigh 3

Arguments

pointsin The indices of gridpoints still to be removed.
X the vector of grid values.
coeff the vector of detail and scaling coefficients at that step of the transform.
nbrs the indices (into X) of the neighbours to be used in the prediction step. Note that

the value to this input is not important, since the procedure checks the neigh-
bourhoods structure in the minimisation step anyway, but is for standardisation
of arguments to the non-adaptive prediction schemes.

remove the index (into X) of the point to be removed.
intercept Boolean value for whether or not an intercept is used in the prediction step of

the transform. (Note that this is actually a dummy argument, since it is not
necessary for the computation of the detail coefficient in AdaptNeigh, though
is used for standardising its arguments with other prediction schemes for use in
the fwtnp function).

neighbours the number of neighbours to be considered in the computation of predicted val-
ues and detail coefficients.

Details

The procedure performs adaptive regression (through AdaptPred) over the three types of regression
and also over the 3*neighbours configurations of neighbours. The combination (type of regression,
configuration of neighbours) is chosen which gives the smallest detail coefficient (in absolute value).

Value

results. This is a ten item list giving the regression information chosen from the detail coefficient
minimisation (i.e, the information supplied to AdaptNeigh by AdaptPred):

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of columns 1, X[nbrs], X[nbrs]2, ... depending on the order of
the prediction used and whether or not an intercept is used. Refer to any refer-
ence on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.
weights the prediction weights for the neighbours.
pred the predicted function value obtained from the regression.
coeff vector of (modified) detail and scaling coefficients to be used in the update step

of the transform.
int if TRUE, an intercept was used in the regression.
scheme a character vector denoting the type of regression used in the prediction ("Lin-

ear", "Quad" or "Cubic").
details a vector of the detail coefficients from which AdaptPred selects the minimum

value. There are six entries. The first three entries represent the detail coeffi-
cients from regression with no intercept in increasing order of prediction. The
second three details are values for regression with intercept.

4 AdaptNeigh

minindex the index into details (results[[9]]) which produces the minimum value.

newinfo. A six item list containing extra information to be used in the main transform procedure
(fwtnp) obtained from the minimisation in AdaptNeigh:

clo boolean value telling the configuration of the neighbours which produce the
overall minimum detail coefficient.

totalminindex the index into mindetails (below) indicating the overall minimum detail coef-
ficient produced by the procedure.

nbrs the indices into X of the neighbours used in the best prediction scheme.

index the indices into pointsin of the neighbours used in the best prediction.

mindetails a vector of 3*neighbours entries giving the minimum details produced by each
call of AdaptPred in AdaptNeigh (for the different number and configuration of
neighbours).

minindices vector of 3*neighbours entries giving the index (out of 6) of the schemes which
produce the best predictions by each call of AdaptPred
in AdaptNeigh.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptPred, fwtnp

Examples

#
Generate some doppler data: 500 observations.
#
tx <- runif(500)
ty<-make.signal2("doppler",x=tx)
#
Compute the neighbours of point 173 (2 neighbours on each side)
#
out<-getnbrs(tx,173,order(tx),2,FALSE)

#
Perform the adaptive lifting step
#
an<-AdaptNeigh(order(tx),tx,ty,out$nbrs,173,FALSE,2)
#
an[[1]][[7]]

an[[2]][[3]]

#shows best prediction when removing point 173, with the neighbours used

AdaptNeighmp 5

AdaptNeighmp AdaptNeighmp

Description

This function performs the prediction lifting step over neighbourhoods and interpolation schemes,
for multiple point data.

Usage

AdaptNeighmp(pointsin, X, coefflist, coeff, nbrs, newnbrs,
remove, intercept, neighbours, mpdet, g)

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

coefflist the list of detail and multiple scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

newnbrs as nbrs, but repeated according to the multiple point structure of the grid.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value. This is not
actually used specifically in AdaptNeighmp, since this is known already from
nbrs.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum detail
coefficient is taken.

g the group structure of the multiple point data.

Details

The procedure performs adaptive regression (through AdaptPred) over the three types of regression
and also over the 3*neighbours configurations of neighbours. The combination (type of regression,
configuration of neighbours) is chosen which gives the smallest detail coefficient (in absolute value).

6 AdaptNeighmp

Value

results. This is a ten item list giving the regression information chosen from the detail coefficient
minimisation (i.e, the information supplied to AdaptNeigh by AdaptPred):

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of columns 1, X[nbrs], X[nbrs]2, ... depending on the order of
the prediction used and whether or not an intercept is used. Refer to any refer-
ence on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

int if TRUE, an intercept was used in the regression.

scheme a character vector denoting the type of regression used in the prediction ("Lin-
ear", "Quad" or "Cubic").

details a vector of the detail coefficients from which AdaptPred selects the minimum
value. There are six entries. The first three entries represent the detail coeffi-
cients from regression with no intercept in increasing order of prediction. The
second three details are values for regression with intercept.

minindex the index into details (results[[9]]) which produces the minimum value.

newinfo. A six item list containing extra information to be used in the main transform procedure
(fwtnp) obtained from the minimisation in AdaptNeigh:

clo boolean value telling the configuration of the neighbours which produce the
overall minimum detail coefficient.

totalminindex the index into mindetails (below) indicating the overall minimum detail coef-
ficient produced by the procedure.

nbrs the indices into X of the neighbours used in the best prediction scheme.

index the indices into pointsin of the neighbours used in the best prediction.

mindetails a vector of 3*neighbours entries giving the minimum details produced by each
call of AdaptPred in AdaptNeigh (for the different number and configuration of
neighbours).

minindices vector of 3*neighbours entries giving the index (out of 6) of the schemes which
produce the best predictions by each call of
AdaptPred in AdaptNeigh.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

AdaptPred 7

See Also

AdaptPredmp, fwtnpmp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
short<-adjustx(times,accel,"mean")
X<-short$sepx
coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]
}

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

#work out repeated neighbours using g...
newnbrs

AdaptNeighmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

AdaptPred AdaptPred

Description

This function performs the prediction lifting step over intercept and regression order.

Usage

AdaptPred(pointsin, X, coeff, nbrs, remove, intercept,
neighbours)

8 AdaptPred

Arguments

pointsin The indices of gridpoints still to be removed.
X the vector of grid values
coeff the vector of detail and scaling coefficients at that step of the transform.
nbrs the indices (into X) of the neighbours to be used in the prediction step. Note that

the value to this input is not important, since the procedure checks the neigh-
bourhoods structure in the minimisation step anyway, but is for standardisation
of arguments to the non-adaptive prediction schemes.

remove the index (into X) of the point to be removed.
intercept Boolean value for whether or not an intercept is used in the prediction step of the

transform. (Note that this is actually a dummy argument, since it is not necessary
for the computation of the detail coefficient in AdaptPred(the intercept is part
of the adaptiveness), though is used for standardising its arguments with other
prediction schemes for use in the fwtnp function).

neighbours the number of neighbours to be considered in the computation of predicted val-
ues and detail coefficients.

Details

The procedure performs adaptive regression (through AdaptPred) over the three types of regression
and also over intercept. The combination (type of regression, intercept) is chosen which gives the
smallest detail coefficient (in absolute value).

Value

results. This is a ten item list giving the regression information chosen from the detail coefficient
minimisation:

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of columns 1, X[nbrs], X[nbrs]2, ... depending on the order of
the prediction used and whether or not an intercept is used. Refer to any refer-
ence on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.
weights the prediction weights for the neighbours.
pred the predicted function value obtained from the regression.
coeff vector of (modified) detail and scaling coefficients to be used in the update step

of the transform.
int if TRUE, an intercept was used in the regression.
scheme a character vector denoting the type of regression used in the prediction ("Lin-

ear", "Quad" or "Cubic").
details a vector of the detail coefficients from which AdaptPred selects the minimum

value. There are six entries. The first three entries represent the detail coeffi-
cients from regression with no intercept in increasing order of prediction. The
second three details are values for regression with intercept.

AdaptPredmp 9

minindex the index into details (results[[9]]) which produces the minimum value.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeigh, CubicPred, fwtnp, LinearPred, QuadPred

Examples

#
Generate some doppler data: 500 observations.
#
tx <- runif(500)
ty<-make.signal2("doppler",x=tx)
#
Compute the neighbours of point 173 (2 neighbours on each side)
#
out<-getnbrs(tx,173,order(tx),2,FALSE)

#
Perform the adaptive lifting step
#
ap<-AdaptPred(order(tx),tx,ty,out$nbrs,173,FALSE,2)
#
#the detail coefficient:
ap[[3]]

#and let's check the scheme used:
ap[[4]]

ap[[5]]

AdaptPredmp AdaptPredmp

Description

This function performs the prediction lifting step over intercept and regression order, for multiple
point data.

Usage

AdaptPredmp(pointsin, X, coefflist, coeff, nbrs, newnbrs, remove,
intercept, neighbours, mpdet, g)

10 AdaptPredmp

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

coefflist the list of detail and multiple scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

newnbrs as nbrs, but repeated according to the multiple point structure of the grid.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value. This is
not actually used specifically in AdaptPredmp, since this is known already from
nbrs.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum detail
coefficient is taken.

g the group structure of the multiple point data.

Details

The procedure performs adaptive regression (through AdaptPred) over the three types of regression
and also over intercept. The combination (type of regression, intercept) is chosen which gives the
smallest detail coefficient (in absolute value).

Value

results.This is a ten item list giving the regression information chosen from the detail coefficient
minimisation:

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of columns 1, X[newnbrs], X[newnbrs]2, ... depending on the
order of the prediction used and whether or not an intercept is used. Refer to
any reference on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

int if TRUE, an intercept was used in the regression.

scheme a character vector denoting the type of regression used in the prediction ("Lin-
ear", "Quad" or "Cubic").

AdaptPredmp 11

details a vector of the detail coefficients from which AdaptPredmp selects the minimum
value. There are six entries. The first three entries represent the detail coeffi-
cients from regression with no intercept in increasing order of prediction. The
second three details are values for regression with intercept.

minindex the index into details (results[[9]]) which produces the minimum value.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeighmp, CubicPredmp, fwtnpmp, LinearPredmp, QuadPredmp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
short<-adjustx(times,accel,"mean")
X<-short$sepx
coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]
}

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

#work out repeated neighbours using g...
newnbrs

AdaptPredmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

12 adjustx

adjustx adjustx

Description

This function produces new grid values to cope with data with repeated grid values according to the
method chosen to deal with it.

Usage

adjustx(x, f, type = "mean")

Arguments

x a vector of the original (repeated) gridpoints.

f the vector of function values associated to the grid vector X.

type The method used to cope with the multiple points. "mean" averages all function
values with the same grid value. The "jitter" option adds a small amount
to all but one of each repeated grid value, and associates the function values to
these new gridpoints. In this way, the each gridpoint value corresponds uniquely
to the function values.

Details

The function compares x to unique(x) to find the occurences of repeated grid values, and stores
the information in groups. In the "jitter" case, this is then used to modify the original gridpoints
by adding an epsilon to the repeated values. In the case of type="mean", the new gridpoints are,
in fact unique(x), and the information is used to average the groups of original function values to
construct sepf.

Value

sepx the vector of new gridpoints.

sepf the function values associated to sepx.

groups a list of indices into x showing where the original repeated grid values occured.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnp,

Amatdual 13

Examples

#read in the motorcycle crash data
#
data(motorcycledata)

#
dim(motorcycledata)

#check data.
#
times<-motorcycledata$time
accel<-motorcycledata$accel

a<-adjustx(times,accel,"mean")
#
#note the repeated values in the original grid data
#
#display new data vectors
a$sepx
#
a$sepf
#
#and now the new adjusted data has length 94.
#

Amatdual Amatdual

Description

Combines filter matrices to produce a refinement matrix A for a wavelet transform.

Usage

Amatdual(steps, pointsin, removelist, nbrs, weights, alpha)

Arguments

steps a value indicating which refinement matrix to construct. It refers to the number
of points already removed during the transform.

pointsin The indices of gridpoints still to be removed.

removelist a vector of indices into envX of the lifted coefficients during the transform (in
the order of removal).

nbrs indices of the neighbours used in the last step of the decomposition.

weights the prediction weights obtained from the regression in the prediction step of the
transform.

alpha the update weights used to update lengths and coeff.

14 Amatdual

Details

The function uses the prediction and update weights to construct the filter matrices Hdual and
Gdual. Combining these two matrices results in the refinement matrix Adual.

Value

Adual the refinement matrix for the particular step of the transform.

Hdual the high-pass filter matrix for the current step of the transform.

Gdual the low-pass filter matrix for the current step of the transform.

o the indices of nbrs into the vector of pointsin and the steps removed points
of the transform.

alpha the update weights used to update lengths and coeff.

weights the prediction weights obtained from the regression in the prediction step of the
transform.

Note

This function has been left in the package for completeness. However, the transform matrix is
(optionally) computed within the forward lifting transform function fwtnp.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

transmatdual, fwtnp

Examples

#
x<-runif(256)
y<-make.signal2("doppler",x=x)
a<-fwtnp(x,y,LocalPred=AdaptNeigh,neighbours=2)
#
Adual<-Amatdual(90,a$pointsin,a$removelist,a$neighbrs[[90]],
a$gamlist[[90]],a$alphalist[[90]])
#
Adual
#
#the 90th refinement matrix for the transform above.
#

artlev 15

artlev artlev

Description

This function splits the coefficients into levels according to increasing quantiles of the removed
interval lengths.

Usage

artlev(y, rem)

Arguments

y a vector of the removed interval lengths (in the order of removelist).

rem vector of indices of the removed points (from the output of the forward trans-
form).

Details

The function finds the median of the removed interval lengths, and takes all pointsin indices
with removed interval lengths at most this value as the first artificial level. These indices are now
not considered in later groups. The cut-off value, q, is now increased to the 75th percentile, and
the indices at most this value are grouped into the second level. The procedure is continued with
successive percentiles (1+q)/2 until all indices are grouped. At each stage, the level size is checked
to ensure it has at least 10 elements, and if not, the level is taken together with the next level (i.e.
the present percentile is ignored, and increased to the q value).

Value

p a list of the grouped indices of removelist (in decreasing group size) indicating
thresholding groups.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

denoise,

Examples

#create test signal data
#
x<-runif(100)
y<-make.signal2("blocks",x=x)
#

16 as.column

#perform forward transform...
#
out<-fwtnp(x,y,LocalPred=AdaptNeigh,neighbours=2)
#
al<-artlev(out$lengthsremove,out$removelist)
#
#
the indices of removelist split into levels:
al
#

as.column as.column

Description

This function returns a given vector as a column (with dimension).

Usage

as.column(x)

Arguments

x any vector or array.

Details

x can either be a vector with no dimension attributes (a list of values), a vector with dimensions, or a
matrix/array. If x is a matrix/array, the function gives x if ncol(x) is less than or equal to nrow(x),
or its transpose if ncol(x) is greater than or equal to nrow(x). For any input, the input is given
non-null dimensions.

Value

y a vector identical to x, but given as a column.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

as.row

as.row 17

Examples

vector<-1:8
#
vector
#
#...vector has no dimension attributes
#
as.column(vector)
#
#...gives output dimension of (8,1)
#
A<-matrix(c(6,2,2,10,6,17),3,2)
#
#
as.column(A)

#
#the function has no effect on F
#
F<-t(A)
F
#now has dimension (2,3)...
#
as.column(A)
#
#the output is made to have more rows than columns

as.row as.row

Description

This function returns a given vector as a row (with dimension).

Usage

as.row(x)

Arguments

x any vector or array

Details

x can either be a vector with no dimension attributes (a list of values), a vector with dimensions,
or a matrix/array. If x is a matrix/array, the function gives x if ncol(x) is greater than or equal to
nrow(x), or its transpose if ncol(x) is less than or equal to nrow(x). For any input, the input is
given non-null dimensions.

18 basisfns

Value

y a vector identical to x, but given as a row.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

as.column

Examples

X<-0:5
#
X
#
as.row(X)
#
#puts input into row (matrix)
#
Y<-matrix(0:5,6,1)
#
Y
#
as.row(Y)
#
#input forced into a row.
#

basisfns basisfns

Description

This function plots all mother and father wavelets associated with a given wavelet transform.

Usage

basisfns(x, f, pred, neigh, int, clo, keep, plot.f = FALSE,
plot.bas = FALSE, separate = FALSE)

Arguments

x a gridpoint vector.

f the vector of associated function values.

pred The type of regression to be performed. Possible options are LinearPred, Quad-
Pred, CubicPred, AdaptPred and AdaptNeigh.

basisfns 19

neigh The number of neighbours over which the regression is performed at each step.
If closest is false, then this in fact denotes the number of neighbours on each
side of the removed point.

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If closest is false, the
neighbours will be chosen symmetrically around the removed point. Otherwise,
the closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

plot.f a boolean value indicating whether to plot the original function or not. If so, the
signal is plotted with vertical coloured lines, showing which prediction method
was used on the different parts of the signal. The plot also shows which grid-
points correspond to scaling functions.

plot.bas subset of 1:length(f), denoting which basis functions to plot. Each basis func-
tion is colour-coded according to which prediction scheme was used in the lift-
ing of the corresponding gridpoint.

separate a boolean argument indicating if the basis functions should be plotted on a single
graphsheet.

Details

The procedure constructs W, the matrix representation of the forward transform specified in the
arguments to the function, and then uses the inverse matrix to calculate the vectors of basis function
values: to work out the basis function values, one inverts the transform with a delta vector, with
a one in the position corresponding to the basis function required. Since this is equivalent to pre-
multiplying the delta vector by the matrix representation for the inverse transform (W−1), the basis
function values are precisely the columns of W−1. The procedure then plots the basis functions
(each on a separate graphsheet, if chosen), colour coded according to the prediction scheme used or
whether it is a scaling function.

Value

out the output from the forward transform which is specified in the arguments to this
function

$

pointsin the vector of indices of points still to be removed.

schhist a character string vector of the prediction scheme used for the prediction of each
gridpoint (in the order of x).

inthist vector of boolean values indicating whether an intercept was used in the predic-
tion steps during the transform (in the order of x).

basmat a matrix of wavelet basis function values. The row i represents the function
values corresponding to the grid for the basis function associated to the gridpoint
i.

20 condno

Note

If plot.bas=T, since the function produces one graph for each gridpoint, R or Splus is likely to
exceed the total number of open devices for large datasets.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnp,fwtnp

Examples

#create test signal data
#
x<-runif(100)
y<-make.signal2("blocks",x=x)
#
#perform procedure...
#
a<-basisfns(x,y,AdaptNeigh,2,TRUE,TRUE,2,FALSE,c(1,14,15),FALSE)
#
#this produces plots of three basis functions all on one graph.

condno condno

Description

This function uses a specified norm to compute the condition number of a matrix representation of
a wavelet transform.

Usage

condno(W, type)

Arguments

W a matrix which represents a wavelet transform.

type a character string denoting which norm to use when computing the condition
number. Possible values are "l1", or one of the standard norm types, "F"
(Frobenius norm), "i" (infinity norm), "m" (max modulus of a matrix) or "1"
(1-norm).

Details

The function computes the condition number as condno = ||W || ∗ ||W−1||.

CubicPred 21

Value

condno the condition number of the matrix W.

Note

The matrix W must be invertible.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

Examples

#create test signal data
#
x<-runif(100)
y<-make.signal2("blocks",x=x)
#
a<-fwtnp(x,y,LocalPred=AdaptNeigh,neigh=2,do.W=TRUE,varonly=FALSE)
#
#computes the transition matrix for the specified options
#
W<-a$W
#
condno(W,"F")
#
condno(W,"l1")
#
condno(W,"1")
#

CubicPred CubicPred

Description

This function performs the prediction lifting step using a cubic regression curve given a configura-
tion of neighbours.

Usage

CubicPred(pointsin, X, coeff, nbrs, remove, intercept,
neighbours)

22 CubicPred

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value. This is not
actually used specifically in CubicPred, since this is known already from nbrs.

Details

The procedure performs cubic regression using the given neighbours using an intercept if chosen.
The regression coefficients (weights) are used to predict the new function value at the removed
point. If there are not enough neighbours to generate a cubic regression curve, the order of predic-
tion is decreased until it is possible (i.e. to QuadPred, then LinearPred).

Value

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of columns X[nbrs], X[nbrs]2, X[nbrs]3 augmented with a col-
umn of ones if an intercept is used. Refer to any reference on linear regression
for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnp, LinearPred, QuadPred

Examples

#
Generate some doppler data: 500 observations.
#
tx <- runif(500)

CubicPredmp 23

ty<-make.signal2("doppler",x=tx)
#
Compute the neighbours of point 173 (2 neighbours on each side)
#
out<-getnbrs(tx,173,order(tx),2,FALSE)

#
Perform cubic prediction based on the neighbours (without intercept)
#
cp<-CubicPred(order(tx),tx,ty,out$nbrs,173,FALSE,2)
#
cp$bhat

#
#the coefficients which define the cubic regression curve
#
cp$pred

#
#the predicted value from the regression curve
#

CubicPredmp CubicPredmp

Description

This function performs the prediction lifting step using a cubic regression curve given a configura-
tion of neighbours, for multiple point data.

Usage

CubicPredmp(pointsin, X, coefflist, coeff, nbrs, newnbrs, remove,
intercept, neighbours, mpdet, g)

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

coefflist the list of detail and multiple scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

newnbrs as nbrs, but repeated according to the multiple point structure of the grid.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

24 CubicPredmp

neighbours the number of neighbours in the computation of the predicted value. This is
not actually used specifically in CubicPredmp, since this is known already from
nbrs.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum de-
tail coefficient is taken. Note that this is taken to standardise the input when
LocalPredmp is called.

g the group structure of the multiple point data. Note that this is taken to standard-
ise the input when LocalPredmp is called.

Details

The procedure performs cubic regression using the given neighbours using an intercept if chosen.
The regression coefficients (weights) are used to predict the new function value at the removed
point.

Value

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of the column X[newnbrs] augmented with a column of ones if
an intercept is used. Refer to any reference on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnpmp, LinearPredmp, QuadPredmp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel

short<-adjustx(times,accel,"mean")
X<-short$sepx

denoise 25

coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]
}

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

#work out repeated neighbours using g...
newnbrs

CubicPredmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

denoise denoise

Description

Denoises the inputted signal using artificial levels noise variance estimation and bayesian thresh-
olding.

Usage

denoise(x, f, pred, neigh, int, clo, keep, rule = "median",
returnall=FALSE)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to x. Must be of the same length as
x.

pred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neigh The number of neighbours over which the regression is performed at each step.
If clo is false, then this in fact denotes the number of neighbours on each side of
the removed point.

26 denoise

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-
bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

rule The type of bayesian thresholding used in the procedure. Possible values are
"mean", "median" (posterior mean or median thresholding) or "hard
or "soft" (hard or soft thresholding).

returnall Indicates whether the function should return useful variables or just the denoised
datapoints.

Details

The function uses the transform matrix to normalise the detail coefficients produced from the for-
ward transform according to the correlation structure, so that they can be used in the bayesian
thresholding procedure EbayesThresh. The coefficients are divided into artificial levels, and the
first (largest)level is used to estimate the noise variance of the coefficients. EbayesThresh is then
used to threshold the coefficients. The resulting new coefficients are then unnormalised and the
transform inverted to obtain an estimate of the true (unnoisy) signal.

Value

If returnall=FALSE, the estimate of the function after denoising. If returnall=TRUE, a list with
components:

fhat the estimate of the function after denoising.

w the matrix associated to the wavelet transform.

indsd the individual coefficient variances introduced by the transform.

al the artificial levels used to estimate the noise variance.

sd the standard deviation of the noise.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

denoisehetero

Examples

x1<-runif(256)
y1<-make.signal2("doppler",x=x1)
n1<-rnorm(256,0,.1)
z1<-y1+n1
#

denoisehetero 27

est1<-denoise(x1,z1,AdaptNeigh,1,TRUE,TRUE,2)
sum(abs(y1-est1))
#
#the error between the true signal and the denoised version.

denoisehetero denoisehetero

Description

Denoises the inputted signal using artificial levels noise variance estimation and bayesian thresh-
olding, using heteroscedastic (estimated) noise variances.

Usage

denoisehetero(x, f, pred, neigh, int, clo, keep, rule = "median",
returnall=FALSE)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to x. Must be of the same length as
x.

pred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neigh The number of neighbours over which the regression is performed at each step.
If clo is false, then this in fact denotes the number of neighbours on each side of
the removed point.

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-
bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

rule The type of bayesian thresholding used in the procedure. Possible values are
"mean", "median" (posterior mean or median thresholding) or "hard or
"soft" (hard or soft thresholding).

returnall Indicates whether the function returns useful variables or just the denoised dat-
apoints.

28 denoisehetero

Details

The function uses the transform matrix to normalise the detail coefficients produced from the for-
ward transform, so that they can be used in the bayesian thresholding procedure EbayesThresh.
The coefficients are divided into artificial levels, and the first (largest)level is used to estimate the
noise variances of the coefficients, based on the MAD of those coefficients falling in a sliding win-
dow around each gridpoint. EbayesThresh is then used to threshold the coefficients. The resulting
new coefficients are then unnormalised and the transform inverted to obtain an estimate of the true
(unnoisy) signal.

Value

If returnall=FALSE, the estimate of the function after denoising. If returnall=TRUE, a list with
components:

fhat the estimate of the function after denoising.

fhat1 the estimate of the function after denoising, using the alternate variance estimate
of MAD, centered at zero.

fhat2 the estimate of the function after denoising, using the alternate variance estimate
of the median of the absolute values of the detail coefficients.

w the matrix associated to the wavelet transform.

indsd the individual coefficient variances introduced by the transform.

al the artificial levels used to estimate the noise variance.

sd the standard deviation of the noise.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

denoise, heterovar

Examples

x1<-runif(256)
y1<-make.signal2("doppler",x=x1)
n1<-rnorm(256,0,.1)
z1<-y1+n1
#
est1<-denoisehetero(x1,z1,AdaptNeigh,1,TRUE,TRUE,2)
traceback()
sum(abs(y1-est1))
#
#the error between the true signal and the denoised version.

denoiseheteromp 29

denoiseheteromp denoiseheteromp

Description

Denoises the multiple observation inputted signal using artificial levels noise variance estimation
and bayesian thresholding, using heteroscedastic (estimated) noise variances.

Usage

denoiseheteromp(x, f, pred, neigh, int, clo, keep,
rule = "median", mpdet="ave",returnall=FALSE)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to x. Must be of the same length as
x.

pred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neigh The number of neighbours over which the regression is performed at each step.
If clo is false, then this in fact denotes the number of neighbours on each side of
the removed point.

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-
bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

rule The type of bayesian thresholding used in the procedure. Possible values are
"mean", "median" (posterior mean or median thresholding) or "hard or
"soft" (hard or soft thresholding).

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum detail
coefficient is taken.

returnall Indicates whether the function returns useful variables or just the denoised dat-
apoints.

Details

The function uses the transform matrix to normalise the detail coefficients produced from the for-
ward transform, so that they can be used in the bayesian thresholding procedure EbayesThresh. The
coefficients are divided into artificial levels, and the first (largest)level is used to estimate the noise

30 denoiseheteromp

variances of the coefficients, based on those coefficients falling in a sliding window around each
gridpoint. EbayesThresh is then used to threshold the coefficients. The resulting new coefficients
are then unnormalised and the transform inverted to obtain an estimate of the true (unnoisy) signal.

Value

If returnall=FALSE, the estimate of the function after denoising. If returnall=TRUE, a list with
components:

fhat the estimate of the function after denoising.

fhat1 the estimate of the function after denoising, using the alternate variance estimate
of MAD, centered at zero.

fhat2 the estimate of the function after denoising, using the alternate variance estimate
of the median of the absolute values of the detail coefficients.

indsd the individual coefficient variances introduced by the transform.

al the artificial levels used to estimate the noise variance.

sd the standard deviation of the noise.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

denoisehetero, heterovar

Examples

data(motorcycledata)
#
times<-motorcycledata$time
accel<-motorcycledata$accel

est1<-denoiseheteromp(times,accel,AdaptNeighmp,1,TRUE,TRUE,2,
"median","ave")
#
#the estimate of the underlying curve.

denoiseheteroprop 31

denoiseheteroprop denoiseheteroprop

Description

Denoises the inputted signal using artificial levels noise variance estimation and bayesian thresh-
olding, assuming noise variances known up to proportionality constants.

Usage

denoiseheteroprop(x, f, pred, neigh, int, clo, keep,
rule = "median",gamvec,returnall=FALSE)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to x. Must be of the same length as
x.

pred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neigh The number of neighbours over which the regression is performed at each step.
If clo is false, then this in fact denotes the number of neighbours on each side of
the removed point.

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-
bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

rule The type of bayesian thresholding used in the procedure. Possible values are
"mean", "median" (posterior mean or median thresholding) or "hard or
"soft" (hard or soft thresholding).

gamvec A vector of proportions of the noise standard deviations (in the order of x).

returnall Indicates whether the function returns useful variables or just the denoised dat-
apoints.

Details

The function uses the transform matrix to normalise the detail coefficients produced from the for-
ward transform, so that they can be used in the bayesian thresholding procedure EbayesThresh. The
normalising factors are calculated assuming that the noise associated to the ith gridpoint is γiσ. The
coefficients are divided into artificial levels, and the first (largest)level is used to estimate the noise
variance of the coefficients. EbayesThresh is then used to threshold the coefficients. The resulting
new coefficients are then unnormalised and the transform inverted to obtain an estimate of the true
(unnoisy) signal.

32 dojitter

Value

If returnall=FALSE, the estimate of the function after denoising. If returnall=TRUE, a list with
components:

fhat the estimate of the function after denoising.

w the matrix associated to the wavelet transform.

indsd the individual coefficient variances introduced by the transform.

al the artificial levels used to estimate the noise variance.

sd the standard deviation of the noise.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

denoise

Examples

x1<-runif(256)
y1<-make.signal2("doppler",x=x1)
n1<-rnorm(256,0,.1)
z1<-y1+n1
gvec<-c(rep(.4,times=100),rep(.7,times=100),rep(.3,times=56))
#
est1<-denoiseheteroprop(x1,z1,AdaptNeigh,1,TRUE,TRUE,2,"median",gvec)
sum(abs(y1-est1))
#
#the error between the true signal and the denoised version.

dojitter dojitter

Description

This function adds a random uniform vector of the same length as the input to modify the input.

Usage

dojitter(x, amount = 0)

findadds 33

Arguments

x a vector to be jittered (e.g. a gridpoint vector).

amount a value of how much to jitter the vector x.

Details

The function creates length(x) samples from a uniform[-amount,amount], and adds these to the
original vector x. If amount=0, the new vector jx is the same as the original vector.

Value

jx the jittered version of x

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

modjitter

Examples

#create grid vector
#
xgrid<-seq(0,1,length=51)
#
xgrid
#
#a regularly-spaced grid
#
dojitter(xgrid,.01)
#
#a jittered grid.
#

findadds Finds minimum number of inversion steps

Description

This function finds the minimum inversion steps to perform to fully reconstruct (a subset of) data

Usage

findadds(rem, neighbrs, po, index = 1:(length(rem) + length(po)))

34 findadds

Arguments

rem the removelist variable from a lifting decomposition. See fwtnp.

neighbrs A list of neighbour indices corresponding to lifting steps in a decomposition.
See fwtnp.

po The pointsin variable in a lifting decomposition (the index into the unlifted
datapoints). See fwtnp.

index a vector of indices into the original data, indicating which points should be fully
reconstructed during inversion.

Details

This function gives a computational shortcut to get datapoint information in certain inversion cases.
In some circumstances,when inverting, you might only be interested in the inverted coefficients for
a subset of timepoints. In this case, it is not necessary to do a full inversion to look at the desired
coefficients; the function uses the neighbourhood and removal order of the forward transform infor-
mation and notes: 1) when the desired points were lifted (if at all) and 2) when the desired points
were used as neighbours in prediction (if applicable). The number of inversion steps needed for
each index individually is then taken as the maximum for these two conditions to be met. Inverting
the transform with this number will yield the correct inverted coefficient. Note that to get the correct
coefficients for all index, the number of inversion steps is max(adds).

Value

adds: a vector corresponding to index, each element of which is the number of inversion steps
needed for that datapoint to be fully reconstructed.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>)

See Also

invtnp

Examples

#create data:
x<-runif(256)

f<-make.signal2("bumps",x=x)

#do forward transform:
fwd<-fwtnp(x,f)

#I want to invert enough so that points 1:3 are reconstructed.

adds<-findadds(fwd$removelist,fwd$neighbrs,fwd$pointsin,1:3)
adds

fwtnp 35

#now reconstruct...
fhat<-invtnp(fwd,f,nadd=max(adds))

#...and check that the desired points are the same:
f[1:3]
fhat[1:3]

fwtnp fwtnp

Description

Performs the lifting transform on a signal with grid input and corresponding function values f.
There is a unique correspondence between the grid values and the function values. Can also cope
with length vector input instead of gridpoint vector input.

Usage

fwtnp(input, f, nkeep = 2, intercept = TRUE,
initboundhandl = "reflect", neighbours = 1, closest = FALSE,
LocalPred = LinearPred, do.W=FALSE, varonly=FALSE)

Arguments

input A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to input. Must be of the same length
as input.

nkeep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

intercept Indicates whether or not the regression curve includes an intercept.

initboundhandl variable specifying how to handle the boundary at the start of the transform.
Possible values are "reflect" - the intervals corresponding to the first and last
datapoints are taken to have the respective grid values as midpoints; and "stop"
- the first and last intervals have the first and last grid values (respectively) as
outer endpoints.

neighbours The number of neighbours over which the regression is performed at each step.
If closest is false, then this in fact denotes the number of neighbours on each
side of the removed point.

closest Refers to the configuration of the chosen neighbours. If closest is false, the
neighbours will be chosen symmetrically around the removed point. Otherwise,
the closest neighbours will be chosen.

LocalPred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

do.W A boolean indicating whether the transform matrix should be computed and
returned.

36 fwtnp

varonly A boolean indicating whether only the coefficient variances should be returned
(if do.W=TRUE).

Details

Given n points on a line, input, each with a corresponding envf value this algorithm computes a
lifting transform of the (input,f) data. If lengths are inputted (inputtype="lengths"), then the
gridpoints are taken to be the left endpoints of the intervals defined by the lengths inputted. Step
One. Order the grid values so that corresponding intervals can be constructed.

Step Two. Compute "integrals" for each point. For each point its integral is the length of the interval
associated to the gridpoint.

Step Three. Identify the point to remove as that with the smallest integral. Generally, we remove
points in order of smallest to largest integral. The integrals of neighbours of removed points change
at each step.

Step Four(a). The neighbours of the removed point are identified using the specified neighbour
configuration. The value of f at the removed point is predicted using the specified regression curve
over the neighbours, unless an adaptive procedure is chosen. In this case, the algorithm adjusts
itself. The difference between the removed point’s f value and the prediction is computed: this
is the wavelet coefficient for the removed point. The difference replaces the function value in the
vector coeff at the removed point’s location. In this way wavelet coefficients gradually overwrite
(scaling) function values in coeff.

Step Four(b). The integrals and the scaling function values (other coeff values) of neighbours of
the removed point are updated. The values of the rest of the scaling coefficients are unaffected.

Step Five. Return to step 3 but in the identification of a point to remove the updated integrals are
used.

The algorithm continues until as many points as desired are removed. If do.W=TRUE, the predict
and update lifting steps are used to propogate coefficient contributions to the transform matrix W. If
varonly=TRUE, only the (detail and scaling) coefficient variances are returned. After each lifting
step, the coefficient variance is computed and the transform matrix row corresponding to the lifted
coefficient is deleted for the next stage (minimal storage efficiency). The transform matrix is not
returned (i.e. W=NULL).

Value

x data vector of the grid used in the transform.

coeff vector of detail and scaling coefficients in the wavelet decomposition of the
signal.

origlengths vector of initial interval lengths corresponding to the gridpoints.

lengths vector of (updated) interval lengths at the end of the transform. This is of length
nkeep.

lengthsremove vector of interval lengths corresponding to the points removed during the trans-
form (in removelist).

pointsin indices into X of the scaling coefficients in the wavelet decomposition. These
are the indices of the X values which remain after all points in removelist have
been predicted and removed. This has length nkeep.

fwtnpmp 37

removelist a vector of indices into X of the lifted coefficients during the transform (in the
order of removal).

neighbrs a list of indices into X. Each list entry gives the indices of the neighbours of the
removed point used at that particular step of the transform.

neighbours the user-specified number of neighbours used in the prediction step of the trans-
form.

gamlist a list of all the prediction weights used at each step of the transform.

alphalist a list of the update coefficients used in the update step of the decomposition.

schemehist a vector of character strings indicating the type of regression used at each step
of the transform.

interhist a boolean vector indicating whether or not an intercept was used in the regres-
sion curve at each step.

clolist a boolean vector showing whether or not the neighbours were symmetrical
(FALSE) about the removed point during the transform. This is NULL except
when LocalPred=AdaptNeigh.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina.Knight

See Also

AdaptNeigh, AdaptPred, CubicPred, fwtnpmp, invtnp, LinearPred, QuadPred

Examples

#
Generate some one-dimensional data: 100 observations.
#
input <- runif(100)
f <- input^2 - 3*input
#
Compute fwtnp function on this data
#
out <- fwtnp(input,f,LocalPred=AdaptPred,neighbours=2,closest=TRUE)
#
That's it.
#

fwtnpmp fwtnpmp

Description

Performs the lifting transform on a signal with grid input and corresponding function values f,
where f has multiple points, that is, more than one function value for (some of) the grid values.

38 fwtnpmp

Usage

fwtnpmp(input, f, nkeep = 2, intercept = TRUE,
initboundhandl = "reflect", neighbours = 1,
closest = FALSE, LocalPred = LinearPredmp, mpdet="ave")

Arguments

input A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to input. Must be of the same length
as input.

nkeep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

intercept Indicates whether or not the regression curve includes an intercept.

initboundhandl variable specifying how to handle the boundary at the start of the transform.
Possible values are "reflect" - the intervals corresponding to the first and last
datapoints are taken to have the respective grid values as midpoints; and "stop"
- the first and last intervals have the first and last grid values (respectively) as
outer endpoints.

neighbours The number of neighbours over which the regression is performed at each step.
If closest is false, then this in fact denotes the number of neighbours on each
side of the removed point.

closest Refers to the configuration of the chosen neighbours. If closest is false, the
neighbours will be chosen symmetrically around the removed point. Otherwise,
the closest neighbours will be chosen.

LocalPred The type of regression to be performed. Possible options are LinearPredmp,
QuadPredmp, CubicPredmp, AdaptPredmp and AdaptNeighmp.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum detail
coefficient is taken.

Details

Given n points on a line, input, with multiple f values, this algorithm computes a lifting transform
of the (input,f) data.

Step One. Order the grid values so that corresponding intervals can be constructed, using the aver-
age function value at multiple points.

Step Two. Compute "integrals" for each point. For each point its integral is the length of the interval
associated to the gridpoint.

Step Three. Identify the point to remove as that with the smallest integral. Generally, we remove
points in order of smallest to largest integral. The integrals of neighbours of removed points change
at each step.

Step Four(a). The neighbours of the removed point are identified using the specified neighbour
configuration. The values of f at the removed point are predicted using the specified regression
curve over the neighbours, unless an adaptive procedure is chosen. In this case, the algorithm

fwtnpmp 39

adjusts itself. If the removed point has multiple point neighbours, the extra points are used in the
regression. The difference between the removed point(s) f value and the prediction is computed:
these are the wavelet coefficient for the removed point. When the removed point is itself a multiple
point, this will produce multiple detail coefficients at that point. mpdet says how the final detail
coefficient for that point is recorded (either averaged or the minimum). The detail replaces the
function value in the vector coeff at the removed point’s location. In this way wavelet coefficients
gradually overwrite (scaling) function values in coeff.

Step Four(b). The integrals and the scaling function values (other coeff and coefflist values) of
neighbours of the removed point are updated. The values of the rest of the scaling coefficients are
unaffected.

Step Five. Return to step 3 but in the identification of a point to remove the updated integrals are
used.

The algorithm continues until as many points as desired are removed.

Value

x data vector of the grid used in the transform.

coeff vector of detail and scaling coefficients in the wavelet decomposition of the
signal.

coefflist list of detail and scaling coefficients. Should be the same as coeff, apart from
possible multiple points at the scaling function values.

origlengths vector of initial interval lengths corresponding to the gridpoints.

lengths vector of (updated) interval lengths at the end of the transform. This is of length
nkeep.

lengthsremove vector of interval lengths corresponding to the points removed during the trans-
form (in removelist).

pointsin indices into X of the scaling coefficients in the wavelet decomposition. These
are the indices of the X values which remain after all points in removelist have
been predicted and removed. This has length nkeep.

removelist a vector of indices into X of the lifted coefficients during the transform (in the
order of removal).

neighbrs a list of indices into X. Each list entry gives the indices of the neighbours of the
removed point used at that particular step of the transform.

neighbours the user-specified number of neighbours used in the prediction step of the trans-
form.

gamlist a list of all the prediction weights used at each step of the transform.

alphalist a list of the update coefficients used in the update step of the decomposition.

schemehist a vector of character strings indicating the type of regression used at each step
of the transform.

interhist a boolean vector indicating whether or not an intercept was used in the regres-
sion curve at each step.

clolist a boolean vector showing whether or not the neighbours were symmetrical
(FALSE) about the removed point during the transform. This is NULL except
when LocalPred=AdaptNeigh.

40 getnbrs

g a list desscribing the group structure (indices) of the initial function values.

mp a boolean vector of which of the groups are actually multiple points.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina.Knight

See Also

AdaptNeighmp, AdaptPredmp, CubicPredmp, fwtnp, invtnpmp, LinearPredmp, QuadPredmp

Examples

#read in multiple point data...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel

out<-fwtnpmp(times,accel,LocalPred=AdaptPredmp,neighbours=2)
out$coeff

#these are the detail coefficients of the transform.

getnbrs getnbrs

Description

This function uses the user’s neighbourhood configuration input to find the neighbours of the lifted
datapoint to be used in the prediction step of the transform.

Usage

getnbrs(X, remove, pointsin, neighbours, closest)

Arguments

X The vector of gridpoints.

remove the index (into X) of the point to be removed.

pointsin The indices of gridpoints still to be removed.

neighbours the number of neighbours to find for use in prediction.

closest Boolean argument: If FALSE, the neighbours selected are the ones on both sides
of the removed point.

getnbrs 41

Details

The function uses the value of neighbours and closest to choose the neighbours to return. If
closest is FALSE, pointsin is used to find neighbours indices on both sides of the index of the
removed point (remove). If closest is TRUE, then the function uses the gridpoint vector (X) to
calculate distances from the removed point to neighbours neighbours on each side of the removed
point (if they exist) and then uses this information to choose the closest neighbours ones, recording
where they lie in relation to the removed point, and accordingly their index can be obtained. If the
removed point is on the boundary, then by choice, we take only one neighbour.

Value

nbrs the indices of the neighbours corresponding to the specified configuration.

index the indices into pointsin of the neighbours

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnp

Examples

x1<-runif(20)
#
x1
#
y1<-make.signal2("bumps",x=x1)
#
y1
#
order(x1)
#
shows where the points lie in relation to each other.
#
neigh<-getnbrs(x1,3,order(x1),4,TRUE)
#
neigh$nbrs
#
these are the indices of the 4 closest neighbours to point 3.
#

42 heterovar

heterovar heterovar

Description

Estimates individual wavelet coefficient variances using a sliding window approach.

Usage

heterovar(y, detail, al)

Arguments

y a vector of the gridpoints of removelist after executing the forward transform,
in the order of the gridpoint vector.

detail the vector of detail coefficients after the forward transform has been performed,
in the order of the gridpoint vector.

al The list of indices into removelist divided into artificial levels.

Details

The function works out the interval endpoints for each gridpoint in removelist, based on an initial
window length of one fifth of the range of y, and then adjusts them so that they lie within the range
of y. The indices of the removelist points inside these intervals are then compared against the
indices of the first artificial level for the data. These new indices are then used to compute the
individual coefficient variances, based on the detail values of the new indices. If any of the window
indices list entries contains less than four values, then the initial window length is increased by 5%
and the process redone, until each window contains at least four coefficients.

Value

ep1 a two-column matrix with the (true) endpoints of the windows from which to
calculate the coefficient variances (according to the specified window length).

ep2 a two-column matrix with the endpoints of the windows from which to calculate
the coefficient variances (adjusted to be of the window length and within the
range of y).

idlist a list of indices into y showing the points each interval contains.
newidlist a list of indices into y showing the points each interval contains, which are also

in the first artificial level.
dlist a list of detail coefficients which correspond to the indices in newidlist.
varvec a vector of median absolute deviation values (from the median) for the coeffi-

cients in dlist.
varvec1 a vector of median absolute deviation values (from the median), centered at zero,

for the coefficients in dlist.
varvec2 a vector of median absolute deviation values (from the median), centered at zero,

for the coefficients in dlist.

intervals 43

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

denoisehetero

Examples

x1<-runif(256)
#
y1<-make.signal2("doppler",x=x1)
#
fwd<-fwtnp(x1,y1,LocalPred=AdaptNeigh,neighbours=2)
#
y<-fwd$lengthsremove
rem<-fwd$removelist
al<-artlev(y,rem)
#
yrem<-x1[sort(rem)]
detail<-fwd$coeff[sort(rem)]
#
h<-heterovar(yrem,detail,al)
#
h$varvec[1:10]
#
#the first ten coefficient variances to be used in the normalisation of the detail
#coefficients

intervals intervals

Description

This function constructs the intervals around the grid values to be used as scaling integrals during
the transform

Usage

intervals(X, initboundhandl)

Arguments

X The vector of gridpoints.

initboundhandl the interval construction at the boundary. Takes the value "reflect" for in-
tervals symmetric about the endpoints or "stop" if the endpoint intervals are
limited to the edges of the dataset, i.e. the intervals end at the first and last
gridpoints respectively.

44 invtnp

Details

The function constructs the intervals by sorting the observed gridpoints. The endpoints of the inter-
vals are found as the midpoints between consecutive (sorted) gridpoints. In this way the intervals
are not necessarily centered around the gridpoints. The first and last intervals are then modified ac-
cording to initboundhandl (see above). These intervals represent the support of the initial scaling
functions associated to each gridpoint.

Value

intervals a vector of length (length(X)+1) with the X values of the endpoints of the in-
tervals (including the edges).

order order(X) (the sorted observation order).

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

lengthintervals

Examples

x2<-runif(50)
x2
#
intervals(x2,"reflect")
#
#check that the gridpoints are between the interval vector entries...
#

invtnp invtnp

Description

Performs the inverse lifting transform on a detail and scaling coefficient vector with grid X and
corresponding coefficients coeff. There is a unique correspondence between the grid values and
the function values.

Usage

invtnp(X, coeff, lengths, lengthsremove, pointsin, removelist,
neighbrs, schemehist, interhist, nadd = length(X) - 2,
intercept = TRUE, neighbours = 1, closest = FALSE, LocalPred = LinearPred)

invtnp 45

Arguments

X data vector of the grid used in the transform.

coeff vector of detail and scaling coefficients in the wavelet decomposition of the
signal.

lengths vector of interval lengths to be used in the update step of the transform. This is
of length pointsin.

lengthsremove vector of interval lengths corresponding to the points removed during the for-
ward transform.

pointsin indices into X of the scaling coefficients in the wavelet decomposition.

removelist a vector of indices into X of the lifted coefficients during the transform (in the
order of removal).

neighbrs a list of indices into X. Each list entry gives the indices of the neighbours of the
removed point used at that particular step of the forward transform.

schemehist a vector of character strings indicating the type of regression used at each step
of the forward transform. This is NULL apart from when AdaptNeigh is to be
used in the transform.

interhist a boolean vector indicating whether or not an intercept was used in the regres-
sion curve at each step of the forward transform. This is NULL apart from when
AdaptNeigh is to be used in the transform.

nadd The number of steps to perform of the inverse transform. This corresponds to
(length(X)-nkeep) in the forward transform.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value.

closest a boolean value showing whether or not the neighbours were symmetrical (FALSE)
about the removed point during the transform.

LocalPred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

Details

This algorithm reconstructs an estimate of a function/signal from information about detail and scal-
ing coefficients in its wavelet decomposition. Step One. Extract information about the first point
to be added in the transform from the last entries in removelist, lengthsremove and neighbrs.
Use this information to discover the correct placement of this point in relation to the indices in
pointsin.

Step Two. Using the information about the prediction scheme used in the "forward" transform, use
the corresponding version of LocalPred to obtain prediction weights and value for the lifted point.

Step Three. "Undo" the update step of the transform, and then the prediction step of the transform.
The vector of scaling and detail coefficients, as well as the interval lengths are modified accordingly.

Step Four. Remove the added point from removelist. Update pointsin and lengths to contain
the added point.

46 invtnp

Step Five. Return to step 1 but in the identification of the next point to add, the second to last entries
in (the original) removelist, lengthsremove and neighbrs are used to indentify the point and
then place it in pointsin.

The algorithm continues like this until as many points as desired are added.

Value

X data vector of the grid used in the transform.

coeff vector of signal function values after inversion.

lengths vector of interval lengths at the start of the transform. This should be the same
as intervals(X).

lengthsremove vector of interval lengths corresponding to the points added during the trans-
form.

pointsin indices into X of the scaling coefficients in the wavelet decomposition. These
are the indices of the X values which remain after all points in removelist
have been added. For a straight forward-inverse transform implementation, this
should be order(X).

removelist a vector of indices into X of the lifted coefficients during the transform (in the
reverse order of how they were added).

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeigh, AdaptPred, CubicPred, fwtnp, invtnpmp, LinearPred, QuadPred, UndoPointsUpdate

Examples

#
Generate some one-dimensional data: 500 observations.
x2<-runif(500)
f2<-make.signal2("bumps",x=x2)
#
perform the forward transform...
out<-fwtnp(x2,f2,LocalPred=AdaptPred)
#
and now invert using the information from out...
#
fhat<-invtnp(x2,out$coeff,out$lengths,out$lengthsremove,out$pointsin,out$removelist,
out$neighbrs,out$schemehist,out$interhist,LocalPred=AdaptPred)

#
Now compare the original signal with the reconstruction.
sum(abs(f2-fhat$coeff))
#

invtnpmp 47

invtnpmp invtnpmp

Description

Performs the inverse lifting transform on a detail and scaling coefficient vector with grid X and
corresponding coefficients coeff, based on multiple point information.

Usage

invtnpmp(X, coefflist, coeff, lengths, lengthsremove, pointsin, removelist,
neighbrs, newneighbrs, schemehist, interhist, nadd = length(X) - 2,
intercept = TRUE, neighbours = 1, closest = FALSE, LocalPred = LinearPredmp, mpdet)

Arguments

X data vector of the grid used in the transform.

coefflist list of detail and multiple scaling coefficients.

coeff vector of detail and scaling coefficients in the wavelet decomposition of the
signal.

lengths vector of interval lengths to be used in the update step of the transform. This is
of length pointsin.

lengthsremove vector of interval lengths corresponding to the points removed during the for-
ward transform.

pointsin indices into X of the scaling coefficients in the wavelet decomposition.

removelist a vector of indices into X of the lifted coefficients during the transform (in the
order of removal).

neighbrs a list of indices into X. Each list entry gives the indices of the neighbours of the
removed point used at that particular step of the forward transform.

newneighbrs a list of indices into X. Each list entry gives the indices of the multiple neighbours
of the removed point used at that particular step of the forward transform.

schemehist a vector of character strings indicating the type of regression used at each step
of the forward transform. This is NULL apart from when AdaptNeigh is to be
used in the transform.

interhist a boolean vector indicating whether or not an intercept was used in the regres-
sion curve at each step of the forward transform. This is NULL apart from when
AdaptNeigh is to be used in the transform.

nadd The number of steps to perform of the inverse transform. This corresponds to
(length(X)-nkeep) in the forward transform.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value.

48 invtnpmp

closest a boolean value showing whether or not the neighbours were symmetrical (FALSE)
about the removed point during the transform.

LocalPred The type of regression to be performed. Possible options are LinearPredmp,
QuadPredmp, CubicPredmp, AdaptPredmp and AdaptNeighmp.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum detail
coefficient is taken.

Details

This algorithm reconstructs an estimate of a function/signal from information about detail and scal-
ing coefficients in its wavelet decomposition, using the multiple point structure information to esti-
mate the spread of original points. Step One. Extract information about the first point to be added
in the transform from the last entries in removelist, lengthsremove and neighbrs. Use this
information to discover the correct placement of this point in relation to the indices in pointsin.

Step Two. Using the information about the prediction scheme used in the "forward" transform, use
the corresponding version of LocalPred to obtain prediction weights and value for the lifted point.

Step Three. "Undo" the update step of the transform, and then the prediction step of the transform.
The vector of scaling and detail coefficients, as well as the interval lengths are modified accordingly.

Step Four. Remove the added point from removelist. Update pointsin and lengths to contain
the added point.

Step Five. Return to step 1 but in the identification of the next point to add, the second to last entries
in (the original) removelist, lengthsremove and neighbrs are used to indentify the point and
then place it in pointsin.

The algorithm continues like this until as many points as desired are added.

Value

X data vector of the grid used in the transform.

coeff vector of signal function values after inversion.

lengths vector of interval lengths at the start of the transform. This should be the same
as intervals(X).

lengthsremove vector of interval lengths corresponding to the points added during the trans-
form.

pointsin indices into X of the scaling coefficients in the wavelet decomposition. These
are the indices of the X values which remain after all points in removelist
have been added. For a straight forward-inverse transform implementation, this
should be order(X).

removelist a vector of indices into X of the lifted coefficients during the transform (in the
reverse order of how they were added).

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

lengthintervals 49

See Also

AdaptNeighmp, AdaptPredmp, CubicPredmp, fwtnpmp, invtnp, LinearPredmp, QuadPredmp, UndoPointsUpdatemp

Examples

#read in multiple point data...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
shortf<-adjustx(times,accel)$sepf

out<-fwtnpmp(times,accel,LocalPred=CubicPredmp,neighbours=2)

inv<-invtnpmp(times, out$coefflist, out$coeff, out$lengths, out$lengthsremove, out$pointsin,
out$removelist,out$neighbrs,out$newneighbrs,out$schemehist,out$interhist, neighbours = 2,
LocalPred = CubicPredmp)

sum(abs(shortf-inv$coeff))

lengthintervals lengthintervals

Description

This function constructs the vector of interval lengths from a vector of interval endpoints.

Usage

lengthintervals(X, I, type = "midpoints", neighbours, closest)

Arguments

X The vector of gridpoints.

I a vector of interval endpoints. This is of length length(X)+1.

type a character string, either "midpoints" or "average", denoting the way of com-
puting the interval lengths, if closest=TRUE. If "average", then the average
neighbour distance is associated as the interval lengths to the gridpoints; other-
wise the lengths are associated from the interval vector, I in the obvious way :
right endpoint - left endpoint.

neighbours the number of neighbours to be used in the prediction step of the transform. This
is only used if closest=TRUE, since it specifies how many distances to average
over when type="average".

closest indicates whether the neighbourhood structure to be used in the transform is
symmetrical or not. When combined with type="average", enables the option
of average closest neighbour distance as the associated interval lengths to the
gridpoints.

50 LinearPred

Details

The function computes the interval lengths by finding the differences between the consecutive en-
tries of the supplied interval vector I. In the case of the choice of average closest neighbour distance
interval association, the method uses the function getnbrs to find the initial neighbours of each
gridpoint to compute the average distances.

Value

lengths a vector of length(X) with the intervals lengths associated to the gridpoints.

initialnbrs a matrix with columns order(X), possibly together with the neighbour indices
into X of each gridpoint, if type="average".

initialindex If closest=TRUE and type="average", a matrix of dimension length(X) x
neighbours, showing the indices into order(X) of the neighbours of each grid-
point. Otherwise is NULL.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

getnbrs, intervals

Examples

input<-runif(10)
#gridpoint vector
#
I<-intervals(input,"reflect")
#create the interval endpoint vector using the input
#
lengthintervals(input,I,"average",3,TRUE)
#
#computes 'intervals' based on 3 closest neighbour distance averages
#

LinearPred LinearPred

Description

This function performs the prediction lifting step using a linear regression curve given a configura-
tion of neighbours.

Usage

LinearPred(pointsin, X, coeff, nbrs, remove, intercept, neighbours)

LinearPred 51

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value. This is
not actually used specifically in LinearPred, since this is known already from
nbrs.

Details

The procedure performs linear regression using the given neighbours using an intercept if chosen.
The regression coefficients (weights) are used to predict the new function value at the removed
point.

Value

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of the column X[nbrs] augmented with a column of ones if an
intercept is used. Refer to any reference on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

CubicPred, fwtnp, QuadPred

Examples

#
Generate some doppler data: 500 observations.
#
tx <- runif(500)
ty<-make.signal2("doppler",x=tx)

52 LinearPredmp

#
Compute the neighbours of point 173 (2 neighbours on each side)
#
out<-getnbrs(tx,173,order(tx),2,FALSE)
#
Perform linear regression based on the neighbours (without intercept)
#
lp<-LinearPred(order(tx),tx,ty,out$nbrs,173,FALSE,2)
#
#
lp
#
#the regression curve details

LinearPredmp LinearPredmp

Description

This function performs the prediction lifting step using a linear regression curve given a configura-
tion of neighbours, for multiple point data.

Usage

LinearPredmp(pointsin, X, coefflist, coeff, nbrs, newnbrs, remove, intercept,
neighbours, mpdet, g)

Arguments

pointsin The indices of gridpoints still to be removed.
X the vector of grid values.
coeff the vector of detail and scaling coefficients at that step of the transform.
coefflist the list of detail and multiple scaling coefficients at that step of the transform.
nbrs the indices (into X) of the neighbours to be used in the prediction step.
newnbrs as nbrs, but repeated according to the multiple point structure of the grid.
remove the index (into X) of the point to be removed.
intercept Boolean value for whether or not an intercept is used in the prediction step of

the transform.
neighbours the number of neighbours in the computation of the predicted value. This is not

actually used specifically in LinearPredmp, since this is known already from
nbrs.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum de-
tail coefficient is taken. Note that this is taken to standardise the input when
LocalPredmp is called.

LinearPredmp 53

g the group structure of the multiple point data. Note that this is taken to standard-
ise the input when LocalPredmp is called.

Details

The procedure performs linear regression using the given neighbours using an intercept if chosen.
The regression coefficients (weights) are used to predict the new function value at the removed
point.

Value

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of the column X[newnbrs] augmented with a column of ones if
an intercept is used. Refer to any reference on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

Note

The Matrix is needed for this function.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

CubicPredmp, fwtnpmp, QuadPredmp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
short<-adjustx(times,accel,"mean")
X<-short$sepx
coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]

54 make.signal2

}

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

#work out repeated neighbours using g...
newnbrs

LinearPredmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

make.signal2 make.signal2

Description

This function computes signal function values based on a grid input.

Usage

make.signal2(name, x, snr = Inf, ...)

Arguments

name a character string of the test signal to create.

x a vector of gridpoints.

snr optional argument to scale the function values according to a signal-to-noise
ratio.

... any additional arguments.

Details

This function is based on the make.signal function included in the S-Plus wavelets module, except
that the x vector can be irregular. As well as the signals included for the original version (e.g. the
Donoho/Johnstone test signals), a piecewise polynomial can be sampled.

Value

z the signal function values.

matcond 55

Note

The test signals have domain [0,1], so the grid vector x must have values within this interval.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

Examples

#create grid vector
#
xgrid<-rnorm(50)
xgrid
#
pp<-make.signal2("ppoly",x=xgrid)
#
#piecewise polynomial data vector
#
plot(sort(xgrid),pp[order(xgrid)],type="l")
#

matcond matcond

Description

Works out two alternative condition numbers for the transform associated to the prediction scheme
given in the arguments to the function.

Usage

matcond(x, f, Pred, neigh, int, clo, keep)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.
f A vector of function values corresponding to x. Must be of the same length as

x.
Pred The type of regression to be performed. Possible options are LinearPred,

QuadPred, CubicPred, AdaptPred and AdaptNeigh.
neigh The number of neighbours over which the regression is performed at each step.

If clo is false, then this in fact denotes the number of neighbours on each side
of the removed point.

int Indicates whether or not the regression curve includes an intercept.
clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-

bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

56 modjitter

Details

The function uses the transform matrices to work out their norms and singular value decompo-
sitions. Condition numbers are calculated by ||Tj || ∗ ||T−1

j || and svd$d[1]/svd$d[nrow(T_j)]
respectively.

Value

cno the condition numbers for the augmented transform matrices, calculated using
the Frobenius norm (see condno).

v the condition numbers for the augmented transform matrices, calculated using
the ratio between the largest to the smallest singular values in the singular value
decomposition of the augmented matrices.

a the transform matrix information for the transform (output from fwtnp).

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

condno, fwtnp

Examples

x1<-runif(256)
y1<-make.signal2("doppler",x=x1)
#
m<-matcond(x1,y1,AdaptNeigh,2,TRUE,TRUE,2)
#
m$cno
#
m$v
shows the two different condition number measures for the matrix associated
to the transform performed.
#

modjitter modjitter

Description

This function jitters grid values by a proportion of the regular distance between consecutive grid-
points and then alters it to lie in [0,1].

Usage

modjitter(x, amount)

motorcycledata 57

Arguments

x a vector to be jittered (e.g. a gridpoint vector).

amount a value of how much to jitter the vector (expressed as a proportion of the regular
gridpoint distance, d).

Details

The function uses dojitter to jitter the gridpoint vector by (amount*d) . The endpoints are fixed to
be zero and one, and the corresponding jx values to x[2] and x[length(x)-1] are randomised
again in the intervals [0,x[2]+amount*d] and [x[length(x)-1]-amount*d,1] respectively.

Value

jx the jittered version of x

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

dojitter, make.signal2

Examples

#create grid vector
#
xgrid<-seq(0,1,length=51)
#
xgrid
#
#a regularly-spaced grid on [0,1]
#
modjitter(xgrid,1)
#
#jitters xgrid with a maximum change of .02, keeping endpoints of zero and one

motorcycledata Motorcycle data.

Description

This table gives the results of 133 simulations showing the effects of motorcycle crashes on victims
heads: time after a simulated impact with motorcycles and head acceleration of a PTMO (post
mortem human test object) were recorded.

Usage

data(motorcycledata)

58 PointsUpdate

Format

A 133 by 2 data frame.

References

Hardle, W. (1990) Applied Nonparametric Regression. Cambridge University Press.

PointsUpdate PointsUpdate

Description

This function performs the update lifting step using a given configuration of neighbours and bound-
ary handling.

Usage

PointsUpdate(X, coeff, nbrs, index, remove, pointsin, weights, lengths)

Arguments

X the vector of grid values.
coeff the vector of detail and scaling coefficients at that step of the transform.
nbrs the indices (into X) of the neighbours to be used in the lifting step.
index the indices into pointsin of nbrs, the neighbours of remove.
remove the index (into X) of the point to be removed.
pointsin The indices of gridpoints still to be removed.
weights the prediction weights obtained from the regression in the prediction step of the

transform.
lengths the vector of interval lengths at the present step of the transform (to be updated).

Details

The procedure performs a minimum norm update lifting step. Firstly the interval lengths are updated
using the coefficients obtained. Secondly, the scaling and detail coefficient vector is modified using
the new interval lengths.

Value

coeff vector of (modified) detail and scaling coefficients to be used in the next step of
the transform.

lengths the vector of interval lengths after the update step of the transform.
r the index into pointsin of remove.
N length(pointsin).
weights The regression coefficients used in prediction.
alpha the update weights used to update lengths and coeff.

PointsUpdatemp 59

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeigh, AdaptPred, CubicPred, fwtnp, LinearPred, QuadPred, UndoPointsUpdate

Examples

#
Generate some blocks data: 100 observations.
#
x <- runif(100)
y <-make.signal2("blocks",x=x)
#
#find initial interval lengths...
#
I<-intervals(x,"reflect")
lengths<-lengthintervals(x,I,neighbours=2,closest=FALSE)
#
#perform prediction step...
p<-AdaptNeigh(order(x),x,y,32,5,TRUE,2)
#
#
u<-PointsUpdate(x,p$results[[6]],p$newinfo[[2]],p$newinfo[[3]],5,order(x),p$results[[4]],lengths)
#
#and here are the updated coefficients...
u$coeff
#

PointsUpdatemp PointsUpdatemp

Description

This function performs the update lifting step using a given configuration of neighbours and bound-
ary handling.

Usage

PointsUpdatemp(X, coeff, nbrs, newnbrs, index, remove, pointsin,
weights, lengths)

60 PointsUpdatemp

Arguments

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the lifting step.

newnbrs as nbrs, but repeated according to the multiple point structure of the grid.

index the indices into pointsin of nbrs, the neighbours of remove.

remove the index (into X) of the point to be removed.

pointsin The indices of gridpoints still to be removed.

weights the prediction weights obtained from the regression in the prediction step of the
transform.

lengths the vector of interval lengths at the present step of the transform (to be updated).

Details

The procedure performs a minimum norm update lifting step. Firstly the interval lengths are updated
using the coefficients obtained. Secondly, the scaling and detail coefficient list is modified using the
new interval lengths.

Value

coeff vector of (modified) detail and scaling coefficients to be used in the next step of
the transform.

lengths the vector of interval lengths after the update step of the transform.

r the index into pointsin of remove.

N length(pointsin).

weights The regression coefficients used in prediction.

alpha the update weights used to update lengths and coeff.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeighmp, AdaptPredmp, CubicPredmp, fwtnpmp, LinearPredmp, QuadPredmp, UndoPointsUpdatemp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel

short<-adjustx(times,accel,"mean")
X<-short$sepx

postmean.cauchy 61

coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]
}

I<-intervals(X,"reflect")
lengths<-lengthintervals(X,I,neighbours=2,closest=TRUE)

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

#work out repeated neighbours using g...
newnbrs

p<-AdaptNeighmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

nbrs<-p$newinfo[[3]]
nbrs
newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}
newnbrs

coefflist[[31]]<-p$results[[6]][31]

u<-PointsUpdatemp(X,coefflist,p$newinfo[[2]],newnbrs,p$newinfo[[3]],31,
order(X),p$results[[4]],lengths)
#
#and here is the updated coefficient list...
u$coeff

postmean.cauchy postmean.cauchy

Description

Posterior mean calculations for Bayesian thresholding.

62 QuadPred

Details

This function replaces one in the EbayesThresh package, which perform Bayesian thresholding.
For more information, see help by Silverman (see references below).

References

Johnstone, I.M. and Silverman, B.W. (2002) EbayesThresh: R and S-PLUS software for Empirical
Bayes thresholding (Submitted for publication).

Johnstone, I.M. and Silverman, B.W. (2004) Needles and hay in haystacks: Empirical Bayes esti-
mates of possibly sparse sequences. Ann. Statist., 32, 1594–1649.

See Also

denoise,denoisehetero, denoiseheteromp, denoiseheteroprop

QuadPred QuadPred

Description

This function performs the prediction lifting step using a quadratic regression curve given a config-
uration of neighbours.

Usage

QuadPred(pointsin, X, coeff, nbrs, remove, intercept, neighbours)

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value. This is not
actually used specifically in QuadPred, since this is known already from nbrs.

Details

The procedure performs quadratic regression using the given neighbours using an intercept if cho-
sen. The regression coefficients (weights) are used to predict the new function value at the removed
point. If there are not enough neighbours to generate a quadratic regression curve, the order of pre-
diction is decreased down to LinearPred.

QuadPred 63

Value

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of columns X[nbrs], X[nbrs]2, augmented with a column of
ones if an intercept is used. Refer to any reference on linear regression for more
details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

CubicPred, fwtnp, LinearPred

Examples

#
Generate some doppler data: 500 observations.
#
tx <- runif(500)
ty<-make.signal2("doppler",x=tx)
#
Compute the neighbours of point 173 (2 neighbours on each side)
#
out<-getnbrs(tx,173,order(tx),2,FALSE)
#
Perform quadratic prediction based on the neighbours (without intercept)
#
qp<-QuadPred(order(tx),tx,ty,out$nbrs,173,FALSE,2)
#
#
qp[3:5]
#
#the regression curve details

64 QuadPredmp

QuadPredmp QuadPredmp

Description

This function performs the prediction lifting step using a quadratic regression curve given a config-
uration of neighbours, for multiple point data.

Usage

QuadPredmp(pointsin, X, coefflist, coeff, nbrs, newnbrs, remove, intercept,
neighbours, mpdet, g)

Arguments

pointsin The indices of gridpoints still to be removed.

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

coefflist the list of detail and multiple scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the prediction step.

newnbrs as nbrs, but repeated according to the multiple point structure of the grid.

remove the index (into X) of the point to be removed.

intercept Boolean value for whether or not an intercept is used in the prediction step of
the transform.

neighbours the number of neighbours in the computation of the predicted value. This is
not actually used specifically in QuadPredmp, since this is known already from
nbrs.

mpdet how the mutiple point detail coefficients are computed. Possible values are
"ave", in which the multiple detail coefficients produced when performing the
multiple predictions are averaged, or "min", where the overall minimum de-
tail coefficient is taken. Note that this is taken to standardise the input when
LocalPredmp is called.

g the group structure of the multiple point data. Note that this is taken to standard-
ise the input when LocalPredmp is called.

Details

The procedure performs quadratic regression using the given neighbours using an intercept if cho-
sen. The regression coefficients (weights) are used to predict the new function value at the removed
point.

QuadPredmp 65

Value

Xneigh matrix of X values corresponding to the neighbours of the removed point. The
matrix consists of the column X[newnbrs] augmented with a column of ones if
an intercept is used. Refer to any reference on linear regression for more details.

mm the matrix from which the prediction is made. In terms of Xneigh, it is
(XneighTXneigh)−1XneighT .

bhat The regression coefficients used in prediction.

weights the prediction weights for the neighbours.

pred the predicted function value obtained from the regression.

coeff vector of (modified) detail and scaling coefficients to be used in the update step
of the transform.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

CubicPredmp, fwtnpmp, LinearPredmp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
short<-adjustx(times,accel,"mean")
X<-short$sepx
coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]
}

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

66 Rmatsolve

#work out repeated neighbours using g...
newnbrs

QuadPredmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

Rmatsolve Rmatsolve

Description

This function calculates matrix inverses for symmetric matrices.

Usage

Rmatsolve(m)

Arguments

m a (symmetric) matrix.

Details

This function uses the eigenvalue decomposition of a matrix m to work out its inverse. The function
is used here since standard matrix inverse algorithms do not cope well with matrices which are near
singular (this often happens in the regression stages of the forward transforms.

Value

inv the matrix inverse of m.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

Examples

#
#create a 4x4 matrix
m<-matrix(runif(16),4,4)

temp<-crossprod(m)

#i.e. temp is t(m)%*%m

inv<-Rmatsolve(temp)

transmatdual 67

transmatdual transmatdual

Description

Works out the transform matrix for a particular prediction scheme and neighbourhood structure.

Usage

transmatdual(x, f, Pred = AdaptNeigh, neigh = 1, int = TRUE, clo = TRUE,
keep = 2,varonly=FALSE)

Arguments

x A vector of grid values. Can be of any length, not necessarily equally spaced.

f A vector of function values corresponding to x. Must be of the same length as
x.

Pred The type of regression to be performed. Possible options are LinearPred,
QuadPred, CubicPred, AdaptPred and AdaptNeigh.

neigh The number of neighbours over which the regression is performed at each step.
If clo is false, then this in fact denotes the number of neighbours on each side
of the removed point.

int Indicates whether or not the regression curve includes an intercept.

clo Refers to the configuration of the chosen neighbours. If clo is false, the neigh-
bours will be chosen symmetrically around the removed point. Otherwise, the
closest neighbours will be chosen.

keep The number of scaling coefficients to be kept in the final representation of the
initial signal. This must be at least two.

varonly A boolean variable indicating whether only the coefficient variances should be
returned, i.e. just the diagonal of the transform matrix Wnew.

Details

The function uses Amatdual to form the refinement matrices Aj , from which the augmented matri-
ces Tj are constructed. This process is iterated, to find the transform matrix (the top level augmented
matrix). The rows and columns of this matrix are then reordered to be in the order of out$coeff,
i.e. so that the columns correspond to f1 . . . fn.

Value

out the output from the forward transform.

Wnew the matrix associated to the wavelet transform.

x the original gridpoint vector.

68 UndoPointsUpdate

Note

This function has been left in the package for completeness. However, the transform matrix is
(optionally) computed within the forward lifting transform function fwtnp.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

fwtnp, Amatdual

Examples

x1<-runif(10)
y1<-make.signal2("doppler",x=x1)
#
a<-transmatdual(x1,y1,AdaptNeigh,2,TRUE,TRUE,2)
#
a$Wnew
#
#the transform matrix for this adaptive lifting scheme

UndoPointsUpdate UndoPointsUpdate

Description

This function undoes the update lifting step in the inverse transform.

Usage

UndoPointsUpdate(X, coeff, nbrs, index, remove, r, N, pointsin, gamweights,
lengths, lengthrem)

Arguments

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the lifting step.

index the indices into pointsin of nbrs, the neighbours of remove, the point to be
added.

remove the index (into X) of the point to be added.

r the index into pointsin of the added point, remove.

N length(pointsin).

UndoPointsUpdate 69

pointsin The indices of gridpoints still to be added.

gamweights the prediction weights obtained from the regression in the prediction step of the
transform.

lengths the vector of interval lengths at the present step of the transform.

lengthrem the interval length associated to the point to be added.

Details

This procedure uses minimum norm update coefficients to invert the update step of the transform.
The prediction weights are used to change the interval lengthsm before the update weights are used
to modify coeff.

Value

coeff vector of (modified) detail and scaling coefficients to be used later in the trans-
form.

lengths vector of interval lengths after inverting the update step of the transform.

alpha the weights used to modify lengths and coeff.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeigh, AdaptPred, CubicPred, invtnp, LinearPred, PointsUpdate, QuadPred

Examples

#
Generate some blocks data: 100 observations.
#
x <- runif(100)
y <-make.signal2("blocks",x=x)
#
#find initial interval lengths...
#
I<-intervals(x,"reflect")
lengths<-lengthintervals(x,I,neighbours=2,closest=FALSE)
#
#perform prediction step...
p<-AdaptNeigh(order(x),x,y,32,5,TRUE,2)
#
#
u<-PointsUpdate(x,p$results[[6]],p$newinfo[[2]],p$newinfo[[3]],5,order(x),p$results[[4]],
lengths)
#
p2<-setdiff(order(x),5)
a<-which(order(x)==5)
l2<-lengths[setdiff(1:100, a)]

70 UndoPointsUpdatemp

#
#remove the lifted coefficient
#
#now undo the update step...
#
undo<-UndoPointsUpdate(x,u$coeff,p$newinfo[[2]],p$newinfo[[3]],5,a,99,p2,
p$results[[4]],l2,lengths[a])
#

UndoPointsUpdatemp UndoPointsUpdatemp

Description

This function undoes the update lifting step in the multiple observation inverse transform.

Usage

UndoPointsUpdatemp(X, coeff, nbrs, newnbrs, index, remove, r, N, pointsin,
gamweights, lengths, lengthrem)

Arguments

X the vector of grid values.

coeff the vector of detail and scaling coefficients at that step of the transform.

nbrs the indices (into X) of the neighbours to be used in the lifting step.

newnbrs as nbrs, but repeated according to the multiple point structure of the grid.

index the indices into pointsin of nbrs, the neighbours of remove, the point to be
added.

remove the index (into X) of the point to be added.

r the index into pointsin of the added point, remove.

N length(pointsin).

pointsin The indices of gridpoints still to be added.

gamweights the prediction weights obtained from the regression in the prediction step of the
transform.

lengths the vector of interval lengths at the present step of the transform.

lengthrem the interval length associated to the point to be added.

Details

This procedure uses minimum norm update coefficients to invert the update step of the transform.
The prediction weights are used to change the interval lengthsm before the update weights are used
to modify coefflist.

UndoPointsUpdatemp 71

Value

coeff vector of (modified) detail and scaling coefficients to be used later in the trans-
form.

lengths vector of interval lengths after inverting the update step of the transform.

alpha the weights used to modify lengths and coeff.

Author(s)

Matt Nunes (<nunesrpackages@gmail.com>), Marina Knight

See Also

AdaptNeighmp, AdaptPredmp, CubicPredmp, invtnpmp, LinearPredmp, PointsUpdatemp, QuadPredmp

Examples

#read in data with multiple values...

data(motorcycledata)
times<-motorcycledata$time
accel<-motorcycledata$accel
short<-adjustx(times,accel,"mean")
X<-short$sepx
coeff<-short$sepx
g<-short$g

coefflist<-list()
for (i in 1:length(g)){
coefflist[[i]]<-accel[g[[i]]]
}

I<-intervals(X,"reflect")
lengths<-lengthintervals(X,I,neighbours=2,closest=TRUE)

#work out neighbours of point to be removed (31)

out<-getnbrs(X,31,order(X),2,TRUE)
nbrs<-out$n

nbrs

newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}

#work out repeated neighbours using g...
newnbrs

p<-AdaptNeighmp(order(X),X,coefflist,coeff,nbrs,newnbrs,31,TRUE,2,"ave",g)

72 UndoPointsUpdatemp

nbrs<-p$newinfo[[3]]
newnbrs<-NULL
for (i in 1:length(nbrs)){
newnbrs<-c(newnbrs,rep(nbrs[i],times=length(g[[nbrs[i]]])))
}
coefflist[[31]]<-p$results[[6]][31]

u<-PointsUpdatemp(X,coefflist,p$newinfo[[2]],newnbrs,p$newinfo[[3]],31,order(X),p$results[[4]],
lengths)

p2<-setdiff(order(X),31)
a<-which(order(X)==31)
l2<-lengths[setdiff(1:length(X), a)]
#
#remove the lifted coefficient
#
#now undo the update step...
#
undo<-UndoPointsUpdatemp(X,coeff,newnbrs,p$newinfo[[2]],p$newinfo[[3]],31,
a,length(X)-1,p2,p$results[[4]],l2,lengths[a])
#

Index

∗ algebra
condno, 20
matcond, 55

∗ arith
adjustx, 12
artlev, 15
dojitter, 32
getnbrs, 40
heterovar, 42
intervals, 43
lengthintervals, 49
modjitter, 56
PointsUpdate, 58
PointsUpdatemp, 59
UndoPointsUpdate, 68
UndoPointsUpdatemp, 70

∗ array
Amatdual, 13
condno, 20
matcond, 55
Rmatsolve, 66
transmatdual, 67

∗ datagen
make.signal2, 54

∗ datasets
motorcycledata, 57

∗ graphs
basisfns, 18

∗ manip
adjustx, 12
as.column, 16
as.row, 17
dojitter, 32
modjitter, 56

∗ methods
findadds, 33
fwtnp, 35
fwtnpmp, 37
invtnp, 44

invtnpmp, 47
postmean.cauchy, 61

∗ regression
AdaptNeigh, 2
AdaptNeighmp, 5
AdaptPred, 7
AdaptPredmp, 9
CubicPred, 21
CubicPredmp, 23
denoise, 25
denoisehetero, 27
denoiseheteromp, 29
denoiseheteroprop, 31
LinearPred, 50
LinearPredmp, 52
QuadPred, 62
QuadPredmp, 64

∗ smooth
denoise, 25
denoisehetero, 27
denoiseheteromp, 29
denoiseheteroprop, 31

AdaptNeigh, 2, 9, 18, 25, 27, 29, 31, 37, 46,
55, 59, 67, 69

AdaptNeighmp, 5, 11, 40, 49, 60, 71
AdaptPred, 4, 7, 18, 25, 27, 29, 31, 37, 46, 55,

59, 67, 69
AdaptPredmp, 7, 9, 40, 49, 60, 71
adjustx, 12
Amatdual, 13, 68
Amatdual2 (Amatdual), 13
artlev, 15
as.column, 16, 18
as.row, 16, 17

basisfns, 18

condno, 20, 56

73

74 INDEX

CubicPred, 9, 18, 21, 25, 27, 29, 31, 37, 46,
51, 55, 59, 63, 67, 69

CubicPredmp, 11, 23, 40, 49, 53, 60, 65, 71

denoise, 15, 25, 28, 32, 62
denoise2 (denoise), 25
denoisehetero, 26, 27, 30, 43, 62
denoisehetero2 (denoisehetero), 27
denoiseheteromp, 29, 62
denoiseheteroprop, 31, 62
denoiseheteroprop2 (denoiseheteroprop),

31
dojitter, 32, 57

findadds, 33
fwtnp, 4, 9, 12, 14, 20, 22, 34, 35, 40, 41, 46,

51, 56, 59, 63, 68
fwtnp2 (fwtnp), 35
fwtnpmp, 7, 11, 24, 37, 37, 49, 53, 60, 65

getnbrs, 40, 50

heterovar, 28, 30, 42

intervals, 43, 50
intervals2 (intervals), 43
invtnp, 34, 37, 44, 49, 69
invtnp2 (invtnp), 44
invtnpmp, 40, 46, 47, 71

lengthintervals, 44, 49
LinearPred, 9, 18, 22, 25, 27, 29, 31, 37, 46,

50, 55, 59, 63, 67, 69
LinearPredmp, 11, 24, 40, 49, 52, 60, 65, 71

make.signal2, 54, 57
matcond, 55
modjitter, 33, 56
motorcycledata, 57

PointsUpdate, 58, 69
PointsUpdate2 (PointsUpdate), 58
PointsUpdatemp, 59, 71
postmean.cauchy, 61

QuadPred, 9, 18, 22, 25, 27, 29, 31, 37, 46, 51,
55, 59, 62, 67, 69

QuadPredmp, 11, 24, 40, 49, 53, 60, 64, 71

Rmatsolve, 66

transmatdual, 14, 67
transmatdual2 (transmatdual), 67

UndoPointsUpdate, 46, 59, 68
UndoPointsUpdate2 (UndoPointsUpdate), 68
UndoPointsUpdatemp, 49, 60, 70

	AdaptNeigh
	AdaptNeighmp
	AdaptPred
	AdaptPredmp
	adjustx
	Amatdual
	artlev
	as.column
	as.row
	basisfns
	condno
	CubicPred
	CubicPredmp
	denoise
	denoisehetero
	denoiseheteromp
	denoiseheteroprop
	dojitter
	findadds
	fwtnp
	fwtnpmp
	getnbrs
	heterovar
	intervals
	invtnp
	invtnpmp
	lengthintervals
	LinearPred
	LinearPredmp
	make.signal2
	matcond
	modjitter
	motorcycledata
	PointsUpdate
	PointsUpdatemp
	postmean.cauchy
	QuadPred
	QuadPredmp
	Rmatsolve
	transmatdual
	UndoPointsUpdate
	UndoPointsUpdatemp
	Index

